1
|
Maiese K. Microglia: Formidable Players in Alzheimer's Disease and Other Neurodegenerative Disorders. Curr Neurovasc Res 2024; 20:515-518. [PMID: 37888824 DOI: 10.2174/1567202620999231027155308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 10/28/2023]
|
2
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
3
|
Liu Z, Xia Q, Ma D, Wang Z, Li L, Han M, Yin X, Ji X, Wang S, Xin T. Biomimetic nanoparticles in ischemic stroke therapy. DISCOVER NANO 2023; 18:40. [PMID: 36969494 PMCID: PMC10027986 DOI: 10.1186/s11671-023-03824-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
Abstract Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed. Graphic abstract
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Longji Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
4
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Zolotarev YA, Shram SI, Dadayan AK, Dolotov OV, Markov DD, Nagaev IY, Kudrin VS, Narkevich VB, Sokolov OY, Kost NV. HLDF-6 peptides exhibit neuroprotective effects in the experimental model of preclinical Parkinson's disease. Neuropeptides 2022; 96:102287. [PMID: 36280440 DOI: 10.1016/j.npep.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
The mechanisms of the neuroprotective action of the hexapeptides HLDF-6 encoded by the amino acid sequence 41-46 of Human Leukemia Differentiation Factor and its homoserine derivative HLDF-6H were studied in an experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model of Parkinson's disease (PD). C57Bl/6 mice received two intraperitoneal injections of 18 mg/kg MPTP-HCl, with an interval of 2 hours. MPTP-induced motor dysfunction was assessed using horizontal grid test. Our data show that chronic intranasal administration of peptides (3 weeks, 300 μg/kg/day) restored normal levels of dopamine and improved its turnover rates in the striatum. Furthermore, peptide administration increased serum estradiol levels and led to a significant improvement in motor functions in MPTP-treated mice. Additionally, peptide treatment increased the levels of mRNA encoding neurotrophin BDNF, but normalized the levels of mRNA encoding the inflammatory mediators TGFβ1, IL1β and IFNγ in the brain. Collectively, our behavioral and biochemical studies demonstrate that HLDF-6 peptides have a therapeutic potential for treating PD. We propose that HLDF-6 peptides may exert their neuroprotective mechanism, at least in part, by normalizing estradiol levels and modulating the expression of key factors involved in neurotrophic support and neuroinflammation.
Collapse
Affiliation(s)
- Yurii A Zolotarev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia.
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Aleksandr K Dadayan
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Oleg V Dolotov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Igor Yu Nagaev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | | | | | | | | |
Collapse
|
6
|
Gu C, Chen Y, Chen Y, Liu CF, Zhu Z, Wang M. Role of G Protein-Coupled Receptors in Microglial Activation: Implication in Parkinson's Disease. Front Aging Neurosci 2021; 13:768156. [PMID: 34867296 PMCID: PMC8635063 DOI: 10.3389/fnagi.2021.768156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yajing Chen
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
8
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
9
|
Stolero N, Frenkel D. The dialog between neurons and microglia in Alzheimer's disease: The neurotransmitters view. J Neurochem 2020; 158:1412-1424. [PMID: 33314073 DOI: 10.1111/jnc.15262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Microglia play a vital role in maintaining brain homeostasis. Their continuous sensing of surrounding micro-environments is crucial for their activity. Cross talk between specific neurons and microglia might occur through specific neurotransmitter receptors on microglia. Impairment with this interaction might result in pathological activity of microglia against potential insults. The reason for this activity in many neurodegenerative diseases such as Alzheimer's disease (AD) is not known. However, several papers report of the effects of different neurotransmitter agonists on microglial cells function that relate to their activity in AD. This review aims to summarize those works and to raise potential fundamental questions for future research.
Collapse
Affiliation(s)
- Nofar Stolero
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
11
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
12
|
Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today 2020; 25:1074-1085. [PMID: 32320851 DOI: 10.1016/j.drudis.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Microglia are an essential component of the central nervous system (CNS) and are involved in the primary response to microorganisms, neuroinflammation, homeostasis, and tissue regeneration, as well as contributing to the pathogenesis of neurodegenerative diseases. Research has shown that microglial diversity, multifunctionality, and their relationship with glutamate are crucial to determining their roles in these diseases. In this review, we focus on recent progress in determining microglial characteristics and the role of glutamate and its receptors in microglia regulation, which could be a novel therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Dan Wang
- Department of Ophthalmology, the First Hospital of Jilin University, Changchun, China.
| | - Bo Zhang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Zhulin Zhou
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Zhou YJ, Chen JM, Sapkota K, Long JY, Liao YJ, Jiang JJ, Liang BY, Wei JB, Zhou Y. Pananx notoginseng saponins attenuate CCL2-induced cognitive deficits in rats via anti-inflammation and anti-apoptosis effects that involve suppressing over-activation of NMDA receptors. Biomed Pharmacother 2020; 127:110139. [PMID: 32302948 DOI: 10.1016/j.biopha.2020.110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain, ultimately leading to progressive decline of cognitive abilities and memory. Chemokine CC motif ligand 2 (CCL2) is elevated in cerebrospinal fluid (CSF), and has been believed to contribute to HAND. Previous studies by our research team have shown that CCL2 enhances N-Methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) and causes nerve cell damage. However, there are few drugs currently available to treat nerve damage that is caused by CCL2. Panax notoginseng saponins (PNS) are isolated from Panax notoginseng and benefit the human body in various ways, including the neuroprotective effect. However, the protective effect of PNS on CCL2-induced neurotoxicity remains unknown. In this study, we found that PNS improved CCL2-induced learning and memory impairment, and inhibited CCL2-induced cell death. These effects may be due to inhibiting over-activation of NMDA receptors by alleviating the dysfunction of glutamate metabolism. Furthermore, PNS-modulated CCL2-inducd intracellular oxidative stress was found to attenuate cell inflammation. Additionally, PNS pretreatment evidently inhibited apoptotic pathways by reducing the Bax/BCL-2 ratio and caspase-3, 8, 9 expressions. In conclusion, this study demonstrates that PNS provides substantial neuroprotection against CCL2-induced neurotoxicity, and may be a novel therapeutic agent in CCL2-induced HAND or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian-Min Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, United States
| | - Jiang-Yi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuan-Jun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun-Jun Jiang
- Guangxi key laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bing-Yu Liang
- Guangxi key laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jin-Bin Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
14
|
Markitantova YV, Simirskii VN. Role of the Redox System in Initiation of a Regenerative Response of Neural Eye Tissues in Vertebrates. Russ J Dev Biol 2020. [DOI: 10.1134/s106236042001004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
16
|
Ionov ID, Pushinskaya II, Frenkel DD, Gorev NP, Shpilevaya LA. Neuroanatomical correlates of the inhibition of tremulous jaw movements in rats by a combination of memantine and Δ 9 -tetrahydrocannabinol. Br J Pharmacol 2020; 177:1514-1524. [PMID: 31696510 DOI: 10.1111/bph.14914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/06/2019] [Accepted: 10/14/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Memantine and marijuana smoking have been found to inhibit tremor in parkinsonian patients, although the observed effects were relatively weak. The tremorolytic effects of combinations of memantine and cannabinoids have not been studied. Here, we have evaluated the anti-tremor activity of memantine, Δ9 -tetrahydrocannabinol (THC) given alone and of their combination. The involvement of some neuroanatomical structures in the effects of the combination was evaluated. EXPERIMENTAL APPROACH Haloperidol-induced tremulous jaw movements (TJMs) in rats were used as a model of parkinsonian-like tremor. To evaluate the role of central receptor systems in the drug effects, receptor ligands were administered locally into certain brain areas. KEY RESULTS Memantine and THC alone were without effect, although co-administration of these drugs decreased the number of haloperidol-induced jaw movements. The anti-tremor activity of the combination was antagonized (a) by injections of l-glutamate into the dorsal striatum, entopeduncular nucleus, substantia nigra pars reticulata, globus pallidus, and supratrigeminal and trigeminal motor nuclei but not into the subthalamic and cuneiform nuclei; (b) by injections of CGS 21680 into the ventrolateral striatum; and (c) by injections of bicuculline into the rostral part of the parvicellular reticular nucleus. CONCLUSIONS AND IMPLICATIONS Memantine and THC supra-additively inhibit haloperidol-induced TJMs, suggesting that co-administration of these drugs might be a new approach to the treatment of tremor. Our results identified brain areas influencing parkinsonian-like tremor in rats and can help advance the development of novel treatments for repetitive involuntary movements.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
17
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
18
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
19
|
Haque ME, Kim IS, Jakaria M, Akther M, Choi DK. Importance of GPCR-Mediated Microglial Activation in Alzheimer's Disease. Front Cell Neurosci 2018; 12:258. [PMID: 30186116 PMCID: PMC6110855 DOI: 10.3389/fncel.2018.00258] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with impairment of cognition, memory deficits and behavioral abnormalities. Accumulation of amyloid beta (Aβ) is a characteristic hallmark of AD. Microglia express several GPCRs, which, upon activation by modulators, mediate microglial activation and polarization phenotype. This GPCR-mediated microglial activation has both protective and detrimental effects. Microglial GPCRs are involved in amyloid precursor protein (APP) cleavage and Aβ generation. In addition, microglial GPCRs are featured in the regulation of Aβ degradation and clearance through microglial phagocytosis and chemotaxis. Moreover, in response to Aβ binding on microglial Aβ receptors, they can trigger multiple inflammatory pathways. However, there is still a lack of insight into the mechanistic link between GPCR-mediated microglial activation and its pathological consequences in AD. Currently, the available drugs for the treatment of AD are mostly symptomatic and dominated by acetylcholinesterase inhibitors (AchEI). The selection of a specific microglial GPCR that is highly expressed in the AD brain and capable of modulating AD progression through Aβ generation, degradation and clearance will be a potential source of therapeutic intervention. Here, we have highlighted the expression and distribution of various GPCRs connected to microglial activation in the AD brain and their potential to serve as therapeutic targets of AD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| | - Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea.,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| |
Collapse
|
20
|
Novati A, Hentrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Déglon N, Nguyen HP, Schulze-Hentrich JM. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep 2018; 8:5803. [PMID: 29643462 PMCID: PMC5895842 DOI: 10.1038/s41598-018-24243-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene which results in progressive neurodegeneration in the striatum, cortex, and eventually most brain areas. Despite being a monogenic disorder, environmental factors influence HD characteristics. Both human and mouse studies suggest that mutant HTT (mHTT) leads to gene expression changes that harbor potential to be modulated by the environment. Yet, the underlying mechanisms integrating environmental cues into the gene regulatory program have remained largely unclear. To better understand gene-environment interactions in the context of mHTT, we employed RNA-seq to examine effects of maternal separation (MS) and environmental enrichment (EE) on striatal gene expression during development of BACHD rats. We integrated our results with striatal consensus modules defined on HTT-CAG length and age-dependent co-expression gene networks to relate the environmental factors with disease progression. While mHTT was the main determinant of expression changes, both MS and EE were capable of modulating these disturbances, resulting in distinctive and in several cases opposing effects of MS and EE on consensus modules. This bivalent response to maternal separation and environmental enrichment may aid in explaining their distinct effects observed on disease phenotypes in animal models of HD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicole Déglon
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. .,Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| | | |
Collapse
|
21
|
More SV, Choi DK. Emerging preclinical pharmacological targets for Parkinson's disease. Oncotarget 2018; 7:29835-63. [PMID: 26988916 PMCID: PMC5045437 DOI: 10.18632/oncotarget.8104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
22
|
Yu P, Jiao J, Chen G, Zhou W, Zhang H, Wu H, Li Y, Gu G, Zheng Y, Yu Y, Yu S. Effect of GRM7 polymorphisms on the development of noise-induced hearing loss in Chinese Han workers: a nested case-control study. BMC MEDICAL GENETICS 2018; 19:4. [PMID: 29301492 PMCID: PMC5755024 DOI: 10.1186/s12881-017-0515-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Background Noise-induced hearing loss (NIHL) is a complex, irreversible disease caused by the interaction of genetic and environmental factors. In recent years, a great many studies have been done to explore the NIHL susceptibility genes among humans. So far, high powerful detections have been founded that genes of potassium ion channel genes (KCNQ4 and KCNE1), catalase (CAT), protocadherin 15 (PCDH15), myosin 14 (MYH14) and heart shock protein (HSP70) which have been identified in more than one population may be associated with the susceptibility to NIHL. As for metabolic glutamate receptor7 gene (GRM7), a lot of researches mainly focus on age-related hearing loss (ARHL) and the results have shown that the polymorphisms of GRM7 are linked to the development of ARHL. However, little is known about the association of GRM7 and the susceptibility to NIHL. Therefore, the aim of this study was to explore the effect of GRM7 polymorphisms on the susceptibility to NIHL. Methods A nested case-control study based on the cohort in a Chinese steel factory was implemented in 292 cases and 584 controls matched with the same sex, the age difference ≤ 5 years old, the same type of work, duration of occupational noise exposure ≤2 years. Five single nucleotide polymorphisms (SNPs) of GRM7 were gained through selecting and genotyping SNPs. Conditional logistic regression analysis was used to assess the main effect of GRM7 polymorphisms on the susceptibility to NIHL and the gene-by-environment interaction. Furthermore, the gene-by-gene interactions were analyzed by generalized multiple dimensionality reduction (GMDR). Results This research discovered for the first time that the mutant allele C in rs1485175 of the GMR7 may decrease individuals’ susceptibility to NIHL. The interaction between rs1485175 and cumulative noise exposure (CNE) at high level was found after the stratification according to CNE (p/pbon = 0.014/0.007, OR = 0.550, 95% CI: 0.340–0.891). Permutation test of GMDR suggested that rs1920109, rs1485175 and rs9826579 in GRM7 might interact with each other in the process of developing NIHL (p = 0.037). Conclusions The results suggest that the mutant allele C of rs1485175 in GRM7 may reduce the susceptibility to NIHL in Chinese Han population. Electronic supplementary material The online version of this article (10.1186/s12881-017-0515-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peipei Yu
- Department of Occupational and Environmental Health Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China
| | - Jie Jiao
- Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wugang, Henan, People's Republic of China
| | - Wenhui Zhou
- Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wugang, Henan, People's Republic of China
| | - Hui Wu
- Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China
| | - Yanhong Li
- Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China
| | - Guizhen Gu
- Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China
| | - Yuxin Zheng
- College of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yue Yu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shanfa Yu
- Henan Provincial Institute for Occupational Health, No.3, Kangfu Mid. St, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
23
|
Orihara K, Odemuyiwa SO, Stefura WP, Ilarraza R, HayGlass KT, Moqbel R. Neurotransmitter signalling via NMDA receptors leads to decreased T helper type 1-like and enhanced T helper type 2-like immune balance in humans. Immunology 2017; 153:368-379. [PMID: 28940416 DOI: 10.1111/imm.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
Given the pivotal roles that CD4+ T cell imbalance plays in human immune disorders, much interest centres on better understanding influences that regulate human helper T-cell subset dominance in vivo. Here, using primary CD4+ T cells and short-term T helper type 1 (Th1) and Th2-like lines, we investigated roles and mechanisms by which neurotransmitter receptors may influence human type 1 versus type 2 immunity. We hypothesized that N-methyl-d-aspartate receptors (NMDA-R), which play key roles in memory and learning, can also regulate human CD4+ T cell function through induction of excitotoxicity. Fresh primary CD4+ T cells from healthy donors express functional NMDA-R that are strongly up-regulated upon T cell receptor (TCR) mediated activation. Synthetic and physiological NMDA-R agonists elicited Ca2+ flux and led to marked inhibition of type 1 but not type 2 or interleukin-10 cytokine responses. Among CD4+ lines, NMDA and quinolinic acid preferentially reduced cytokine production, Ca2+ flux, proliferation and survival of Th1-like cells through increased induction of cell death whereas Th2-like cells were largely spared. Collectively, the findings demonstrate that (i) NMDA-R is rapidly up-regulated upon CD4+ T cell activation in humans and (ii) Th1 versus Th2 cell functions such as proliferation, cytokine production and cell survival are differentially affected by NMDA-R agonists. Differential cytokine production and proliferative capacity of Th1 versus Th2 cells is attributable in part to increased physiological cell death among fully committed Th1 versus Th2 cells, leading to increased Th2-like dominance. Hence, excitotoxicity, beyond its roles in neuronal plasticity, may contribute to ongoing modulation of human T cell responses.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Solomon O Odemuyiwa
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William P Stefura
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Ramses Ilarraza
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kent T HayGlass
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Redwan Moqbel
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Hernandez-Encinas E, Aguilar-Morante D, Morales-Garcia JA, Gine E, Sanz-SanCristobal M, Santos A, Perez-Castillo A. Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ. J Neuroinflammation 2016; 13:276. [PMID: 27769255 PMCID: PMC5073972 DOI: 10.1186/s12974-016-0742-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells. Methods Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3. Results In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo. Conclusions Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Present Address: Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla, IBiS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013, Sevilla, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Elena Gine
- Departamento de Biología Celular, Facultad de Medicina, UCM, 28040, Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
25
|
Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:117-26. [PMID: 27046518 DOI: 10.1016/j.pnpbp.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel glutamatergic agents are needed.
Collapse
|
26
|
Bellaver B, Bobermin LD, Souza DG, Rodrigues MDN, de Assis AM, Wajner M, Gonçalves CA, Souza DO, Quincozes-Santos A. Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1827-38. [DOI: 10.1016/j.bbadis.2016.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022]
|
27
|
Ding Y, Zhang Z, Ma J, Xia H, Wang Y, Liu Y, Ma Q, Sun T, Liu J. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related‑1 protein‑ and tyrosine hydroxylase‑expressing cells. Mol Med Rep 2016; 14:1993-9. [PMID: 27432537 PMCID: PMC4991738 DOI: 10.3892/mmr.2016.5489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder. Although the detailed underlying molecular mechanism remains to be elucidated, the major pathological feature of PD is the loss of dopaminergic (DA) neurons of the substantia nigra. The use of donor stem cells to replace DA neurons may be a key breakthrough in the treatment of PD. In the present study, the growth kinetics of hippocampal neural stem cells (Hip-NSCs) isolated from postnatal mice and cultured in vitro were observed, specifically the generation of cells expressing DA neuronal markers nuclear receptor related-1 protein (Nurr1) and tyrosine hydroxylase (TH). It was revealed that Hip-NSCs differentiated primarily into astrocytes when cultured in serum-containing medium. However, in low serum conditions, the number of βIII tubulin-positive neurons increased markedly. The proportion of Nurr1-positive cells and TH-positive neurons, significantly increased with increasing duration of directed differentiation of Hip-NSCs (P=0.0187 and 0.0254, respectively). The results of the present study reveal that Hip-NSCs may be induced to differentiate in vitro into neurons expressing Nurr1 and TH, known to be critical regulators of DA neuronal fate. Additionally, their expression may be necessary to facilitate neuronal maturation in vitro. These data suggest that Hip-NSCs may serve as a source of DA neurons for cell therapy in patients diagnosed with PD.
Collapse
Affiliation(s)
- Yinxiu Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zixin Zhang
- Department of Radiotherapy, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiangbo Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hechun Xia
- Department of Cerebral Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yinming Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Quanrui Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
28
|
Sako W, Abe T, Izumi Y, Harada M, Kaji R. The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis. J Clin Neurosci 2016; 27:110-3. [DOI: 10.1016/j.jocn.2015.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 12/12/2022]
|
29
|
Hikima T, Garcia-Munoz M, Arbuthnott GW. Presynaptic D1 heteroreceptors and mGlu autoreceptors act at individual cortical release sites to modify glutamate release. Brain Res 2016; 1639:74-87. [PMID: 26944299 DOI: 10.1016/j.brainres.2016.02.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
The aim of this work was to study release of glutamic acid (GLU) from one-axon terminal or bouton at-a-time using cortical neurons grown in vitro to study the effect of presynaptic auto- and heteroreceptor stimulation. Neurons were infected with release reporters SypHx2 or iGluSnFR at 7 or 3 days-in-vitro (DIV) respectively. At 13-15 DIV single synaptic boutons were identified from images obtained from a confocal scanning microscope before and after field electrical stimulation. We further stimulated release by raising intracellular levels of cAMP with forskolin (10µM). Forskolin-mediated effects were dependent on protein kinase A (PKA) and did not result from an increase in endocytosis, but rather from an increase in the size of the vesicle readily releasable pool. Once iGluSnFR was confirmed as more sensitive than SypHx2, it was used to study the participation of presynaptic auto- and heteroreceptors on GLU release. Although most receptor agonizts (carbamylcholine, nicotine, dopamine D2, BDNF) did not affect electrically stimulated GLU release, a significant increase was observed in the presence of metabotropic D1/D5 heteroreceptor agonist (SKF38393 10µM) that was reversed by PKA inhibitors. Interestingly, stimulation of group II metabotropic mGLU2/3 autoreceptors (LY379268 50nM) induced a decrease in GLU release that was reversed by the specific mGLU2/3 receptor antagonist (LY341495 1µM) and also by PKA inhibitors (KT5720 200nM and PKI14-22 400nM). These changes in release probability at individual release sites suggest another level of control of the distribution of transmitter substances in cortical tissue.
Collapse
Affiliation(s)
- Takuya Hikima
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Marianela Garcia-Munoz
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Gordon William Arbuthnott
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
30
|
Feligioni M, Mango D, Piccinin S, Imbriani P, Iannuzzi F, Caruso A, De Angelis F, Blandini F, Mercuri NB, Pisani A, Nisticò R. Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1-deficient mice. Synapse 2016; 70:223-30. [PMID: 26850695 DOI: 10.1002/syn.21894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Homozygous or heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene have been linked to early-onset Parkinson's disease (PD). Several neurophysiological studies have demonstrated alterations in striatal synaptic plasticity along with impaired dopamine release in PINK1-deficient mice. Using electrophysiological methods, here we show that PINK1 loss of function causes a progressive increase of spontaneous glutamate-mediated synaptic events in the hippocampus, without influencing long-term potentiation. Moreover, fluorescence analysis reveals increased neurotrasmitter release although our biochemical results failed to detect which presynaptic proteins might be engaged. This study provides a novel role for PINK1 beyond the physiology of nigrostriatal dopaminergic circuit. Specifically, PINK1 might contribute to preserve synaptic function and glutamatergic homeostasis in the hippocampus, a brain region underlying cognition. The subtle changes in excitatory transmission here observed might be a pathogenic precursor to excitotoxic neurodegeneration and cognitive decline often observed in PD. Using electrophysiological and fluorescence techniques, we demonstrate that lack of PINK1 causes increased excitatory transmission and neurotransmitter release in the hippocampus, which might lead to the cognitive decline often observed in Parkinson's disease.
Collapse
Affiliation(s)
- Marco Feligioni
- EBRI-European Brain Research Institute, Rome, Italy.,Casa Cura Policlinico, Milan, Italy
| | - Dalila Mango
- EBRI-European Brain Research Institute, Rome, Italy
| | | | | | | | | | | | - Fabio Blandini
- IRCSS "C. Mondino", National Neurological Institute, Pavia, Italy
| | - Nicola B Mercuri
- University of Rome "Tor Vergata", Rome, Italy.,IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Robert Nisticò
- EBRI-European Brain Research Institute, Rome, Italy.,University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
31
|
Abstract
Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
32
|
New Insights for Oxidative Stress and Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:875961. [PMID: 26064426 PMCID: PMC4443788 DOI: 10.1155/2015/875961] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
The release of reactive oxygen species (ROS) and the generation of oxidative stress are considered critical factors for the pathogenesis of diabetes mellitus (DM), a disorder that is growing in prevalence and results in significant economic loss. New therapeutic directions that address the detrimental effects of oxidative stress may be especially warranted to develop effective care for the millions of individuals that currently suffer from DM. The mechanistic target of rapamycin (mTOR), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein 1 (WISP1) are especially justified to be considered treatment targets for DM since these pathways can address the complex relationship between stem cells, trophic factors, impaired glucose tolerance, programmed cell death pathways of apoptosis and autophagy, tissue remodeling, cellular energy homeostasis, and vascular biology that greatly impact the biology and disease progression of DM. The translation and development of these pathways into viable therapies will require detailed understanding of their proliferative nature to maximize clinical efficacy and limit adverse effects that have the potential to lead to unintended consequences.
Collapse
|
33
|
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10:518-28. [PMID: 26170801 PMCID: PMC4424733 DOI: 10.4103/1673-5374.155427] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|
34
|
Spampinato SF, Merlo S, Chisari M, Nicoletti F, Sortino MA. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Front Cell Neurosci 2015; 8:462. [PMID: 25642169 PMCID: PMC4294134 DOI: 10.3389/fncel.2014.00462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022] Open
Abstract
Group III metabotropic glutamate (mGlu) receptors mediate important neuroprotective and anti-inflammatory effects. Stimulation of mGlu4 receptor reduces neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) whereas mGlu4 knockout mice display exacerbated EAE clinical scores. We now show that mGlu4 receptors are expressed in oligodendrocytes, astrocytes and microglia in culture. Oligodendrocytes express mGlu4 receptors only at early stages of maturation (O4 positive), but not when more differentiated (myelin basic protein, MBP positive). Treatment of immature oligodendrocytes with the mGlu4 receptor agonist L-2-Amino-4-phosphonobutyrate (L-AP4; 50 μM for 48 h) accelerates differentiation with enhanced branching and earlier appearance of MBP staining. Oligodendrocyte death induced by exposure to 1 mM kainic acid for 24 h is significantly reduced by a 30-min pretreatment with L-AP4 (50 μM), an effect observed only in the presence of astrocytes, mimicked by the specific mGlu4 receptor positive allosteric modulator N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) (30 μM) and prevented by pretreatment with the mGlu4 receptor antagonist, cyclopropyl-4-phosphonophenylglycine (CPPG) (100 μM). In astrocytes, mGlu4 receptor is the most expressed among group III mGlu receptors, as by Quantitative real time PCR (QRT-PCR), and its silencing prevents protective effects. Protection is also observed when conditioned medium (CM) from L-AP4-pretreated astrocytes is transferred to oligodendrocytes challenged with kainic acid. Transforming growth factor β (TGF-β) mediates the increased oligodendrocyte survival as the effect of L-AP4 is mimicked by addition of 10 ng/ml TGF-β and prevented by incubation with a neutralizing anti-TGF-β antibody. In contrast, despite the expression of mGlu4 receptor in resting and activated microglia, CM from L-AP4-stimulated microglia does not modify kainate-induced oligodendrocyte toxicity. Our results suggest that mGlu4 receptors expressed in astrocytes mediate enhanced survival of oligodendrocytes under conditions of excitotoxicity.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome Sapienza Rome, Italy ; IRCSS Neuromed Pozzilli, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania Catania, Italy
| |
Collapse
|
35
|
Metabotropic glutamate receptors as drug targets: what's new? Curr Opin Pharmacol 2014; 20:89-94. [PMID: 25506748 DOI: 10.1016/j.coph.2014.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022]
Abstract
The question in the title: 'what's new?' has two facets. First, are 'clinical' expectations met with success? Second, is the number of CNS disorders targeted by mGlu drugs still increasing? The answer to the first question is 'no', because development program with promising drugs in the treatment of schizophrenia, Parkinson's disease, and Fragile X syndrome have been discontinued. Nonetheless, we continue to be optimistic because there is still the concrete hope that some of these drugs are beneficial in targeted subpopulations of patients. The answer to the second question is 'yes', because mGlu ligands are promising targets for 'new' disorders such as type-1 spinocerebellar ataxia and absence epilepsy. In addition, the increasing availability of pharmacological tools may push mGlu7 and mGlu8 receptors into the clinical scenario. After almost 30 years from their discovery, mGlu receptors are still alive.
Collapse
|