1
|
Mousavi S, Qiu H, Heinis FI, Bredahl EC, Ridwan Abid MS, Clifton AD, Andrews MT, Checco JW. Effects of Anesthetic Administration on Rat Hypothalamus and Cerebral Cortex Peptidome. ACS Chem Neurosci 2023; 14:3986-3992. [PMID: 37879091 PMCID: PMC10872895 DOI: 10.1021/acschemneuro.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Prohormone-derived neuropeptides act as cell-cell signaling molecules to mediate a wide variety of biological processes in the animal brain. Mass spectrometry-based peptidomic experiments are valuable approaches to gain insight into the dynamics of individual peptides under different physiological conditions or experimental treatments. However, the use of anesthetics during animal procedures may confound experimental peptide measurements, especially in the brain, where anesthetics act. Here, we investigated the effects of the commonly used anesthetics isoflurane and sodium pentobarbital on the peptide profile in the rodent hypothalamus and cerebral cortex, as assessed by label-free quantitative peptidomics. Our results showed that neither anesthetic dramatically alters peptide levels, although extended isoflurane exposure did cause changes in a small number of prohormone-derived peptides in the cerebral cortex. Overall, our results demonstrate that acute anesthetic administration can be utilized in peptidomic experiments of the hypothalamus and cerebral cortex without greatly affecting the measured peptide profiles.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Frazer I. Heinis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Eric C. Bredahl
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE 68178, United States
| | - Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Ashley D. Clifton
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
2
|
Mousavi S, Qiu H, Heinis FI, Abid MSR, Andrews MT, Checco JW. Short-Term Administration of Common Anesthetics Does Not Dramatically Change the Endogenous Peptide Profile in the Rat Pituitary. ACS Chem Neurosci 2022; 13:2888-2896. [PMID: 36126283 PMCID: PMC9547841 DOI: 10.1021/acschemneuro.2c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cell-cell signaling peptides (e.g., peptide hormones, neuropeptides) are among the largest class of cellular transmitters and regulate a variety of physiological processes. To identify and quantify the relative abundances of cell-cell signaling peptides in different physiological states, liquid chromatography-mass spectrometry-based peptidomics workflows are commonly utilized on freshly dissected tissues. In such animal experiments, the administration of general anesthetics is an important step for many research projects. However, acute anesthetic administration may rapidly change the measured abundance of transmitter molecules and metabolites, especially in the brain and endocrine system, which would confound experimental results. The aim of this study was to evaluate the effect of short-term (<5 min) anesthetic administration on the measured abundance of cell-cell signaling peptides, as evaluated by a typical peptidomics workflow. To accomplish this goal, we compared endogenous peptide abundances in the rat pituitary following administration of 5% isoflurane, 200 mg/kg sodium pentobarbital, or no anesthetic administration. Label-free peptidomics analysis demonstrated that acute use of isoflurane changed the levels of a small number of peptides, primarily degradation products of the hormone somatotropin, but did not influence the levels of most other peptide hormones. Acute use of sodium pentobarbital had negligible impact on the relative abundance of all measured peptides. Overall, our results suggest that anesthetics used in pituitary peptidomics studies do not dramatically confound observed results.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Frazer I. Heinis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
3
|
Su J, Krock E, Barde S, Delaney A, Ribeiro J, Kato J, Agalave N, Wigerblad G, Matteo R, Sabbadini R, Josephson A, Chun J, Kultima K, Peyruchaud O, Hökfelt T, Svensson CI. Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain Behav Immun 2022; 101:214-230. [PMID: 35026421 DOI: 10.1016/j.bbi.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.
Collapse
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ada Delaney
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nilesh Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Roger Sabbadini
- LPath Inc, San Diego, United States; Department of Biology, San Diego State University, 92182, United States
| | - Anna Josephson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
4
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Global Research on Neuropathic Pain Rehabilitation over the Last 20 Years. Neural Plast 2021; 2021:5594512. [PMID: 34306062 PMCID: PMC8282394 DOI: 10.1155/2021/5594512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/25/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
Background Neuropathic pain has long been a very popular and productive field of clinical research. Neuropathic pain is difficult to cure radically because of its complicated etiology and uncertain pathogenesis. As pain worsens and persists, pain recovery techniques become more important, and medication alone is insufficient. No summary of bibliometric studies on neuropathic pain rehabilitation is yet available. The purpose of the present study is to analyze in a systematic manner the trends of neuropathic pain rehabilitation research over the period of 2000–2019. Methods Studies related to neuropathic pain rehabilitation and published between January 2000 and December 2019 were obtained from the Science Citation Index-Expanded of Web of Science. No restrictions on language, literature type, or species were established. CiteSpace V and Microsoft Excel were used to capture basic information and highlights in the field. Results Linear regression analysis showed that the number of publications on neuropathic pain rehabilitation significantly increased over time (P < 0.001). The United States showed absolute strength in terms of number of papers published, influence, and cooperation with other countries. Based on the subject categories of the Web of Science, “Rehabilitation” had the highest number of published papers (446), the highest number of citations (10,954), and the highest number of open-access papers (151); moreover, this category and “Clinical Neurology” had the same H-index (i.e., 52). “Randomized Controlled Trials” revealed the largest cluster in the cocitation map of references. The latest burst keywords included “Exercise” (2014–2019), “Functional Recovery” (2015–2019), and “Questionnaire” (2015–2019). Conclusion This study provides valuable information for neuropathic pain rehabilitation researchers seeking fresh viewpoints related to collaborators, cooperative institutions, and popular topics in this field. Some new research trends are also highlighted.
Collapse
|
6
|
Abid MSR, Mousavi S, Checco JW. Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress. ACS Chem Biol 2021; 16:251-263. [PMID: 33539706 DOI: 10.1021/acschembio.0c00950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intercellular signaling events mediated by neuropeptides and peptide hormones represent important targets for both basic science and drug discovery. For many bioactive peptides, the protein receptors that transmit information across the receiving cell membrane are not known, severely limiting these signaling pathways as potential therapeutic targets. Identifying the receptor(s) for a given peptide of interest is complicated by several factors. Most notably, cell-cell signaling peptides are generated through dynamic biosynthetic pathways, can act on many different families of receptor proteins, and can participate in complex ligand-receptor interactions that extend beyond a simple one-to-one archetype. Here, we discuss recent methodological advances to identify signaling partners for bioactive peptides. Recent efforts have centered on methods to identify candidate receptors via transcript expression, methods to match peptide-receptor pairs through high throughput screening, and methods to capture direct ligand-receptor interactions using chemical probes. Future applications of the receptor identification approaches discussed here, as well as technical advancements to address their limitations, promise to lead to a greater understanding of how cells communicate to deliver complex physiologies. Importantly, such advancements will likely provide novel targets for the treatment of human diseases within the central nervous and endocrine systems.
Collapse
Affiliation(s)
- Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
7
|
Demircan S, Onalan E, Kuloğlu T, Aydın S, Yalçın MH, Gözel N, Dönder E. Effects of vitamin D on apoptosis and betatrophin in the kidney tissue of experimental diabetic rats. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020089. [PMID: 33525266 PMCID: PMC7927532 DOI: 10.23750/abm.v91i4.8944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023]
Abstract
The aim of this study is to investigate the effects of vitamin D on betatrophin and apoptosis in rats kidney tissue using an experimental diabetes model created with streptozotocin (STZ). 41 male Wistar-albino breed rats were assigned to 5 groups, which included 3 groups consisting of 7 animals each and 2 groups consisting of 10 animals each. The control group received no treatments. Single-dose 0.1 M sodium buffer was administered ip to the Buffer group. The Vitamin D group was orally administered 200 IU/day vitamin D. The Diabetes group was injected ip with single-dose 50 mg/kg STZ by dissolving the material in 0.1 M sodium buffer. Subjects with a glucose level exceeding 250 mg/dl were accepted to be diabetic. The Diabetes + Vitamin D group was injected ip with 50 mg/kg single-dose STZ by dissolving the material in 0.1 M sodium buffer. Once diabetes was established, 200 IU/day vitamin D was administered orally. Rats in all groups were decapitated in the end of the experiment, their kidney tissues were promptly extracted and TUNEL stained with immunohistochemistry. Additionally, serum samples acquired from all groups were evaluated with regard to total antioxidant status (TAS) and total oxidant status (TOS) levels. The histological and biochemical analyses of the Control, Buffer, and Vitamin D groups revealed similar serum TOS and TAS levels, and TUNEL positivity and betatrophin immunoreactivity. While the Diabetes group showed significantly higher TOS levels and TUNEL positivity compared to the Control group, their TAS levels and betatrophin immunoreactivity were significantly reduced. The Diabetes+Vitamin group demonstrated significantly lower TOS levels and TUNEL positivity compared to the Diabetic group, and their TAS levels and betatrophin immunoreactivity increased significantly. In conclusion; experimental diabetes was found to increase TOS and apoptotic cells and decrease TAS and betatrophin levels in kidney tissue in experimental diabetes, and that administering VitD as treatment caused a decrease in TOS and apoptotic cells and an increase in TAS and betatrophin levels. It was concluded that future studies needed to investigate various experimental diabetes times so that the role of diabetes in the pathophysiology of its effect on kidney tissue could be uncovered. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Selçuk Demircan
- Department of Internal Medicine, Ağrı State Hospital 23000, Ağrı, Turkey .
| | - Erhan Onalan
- Department of Internal Medicine, Faculty of Medicine, Firat Univeristy, 23000, Elazig, Turkey.
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, 23000, Elazig, Turkey.
| | - Süleyman Aydın
- Department of Biochemistry, Faculty of Medicine, Firat University, 23000, Elazig, Turkey.
| | - Mehmet Hanifi Yalçın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Firat University, 23000, Elazig, Turkey.
| | - Nevzat Gözel
- Department of Internal Medicine, Faculty of Medicine, Firat Univeristy, 23000, Elazig, Turkey .
| | - Emir Dönder
- Department of Internal Medicine, Faculty of Medicine, Firat Univeristy, 23000, Elazig, Turkey .
| |
Collapse
|
8
|
Kudsi SQ, Antoniazzi CTDD, Camponogara C, Brum EDS, Brusco I, Peres DS, Fischer SPM, Dalenogare DP, Stein CDS, Zaccaron RP, Silveira PCL, Moresco RN, Oliveira SM, Trevisan G. Characterisation of nociception and inflammation observed in a traumatic muscle injury model in rats. Eur J Pharmacol 2020; 883:173284. [DOI: 10.1016/j.ejphar.2020.173284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
|
9
|
Katri A, Dąbrowska A, Löfvall H, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model. Osteoarthritis Cartilage 2019; 27:1339-1346. [PMID: 31176015 DOI: 10.1016/j.joca.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor agonist with antiresorptive and chondroprotective properties. In this study we investigated the effect of KBP in a rat model of osteoarthritis. METHODS Medial meniscectomy (MNX) was performed in 39 rats, while 10 underwent sham surgery. Rats were treated with KBP and/or naproxen. Nociception was assessed by mechanical and cold allodynia, weight bearing asymmetry, and burrowing behavior. Blood samples were collected for biomarker measurements, and knees for histology. Cartilage histopathology was evaluated according to the advanced Osteoarthritis Research International (OARSI) score and KBPs in vitro antiresorptive effects were assessed using human osteoclasts cultured on bone. RESULTS The MNX animals displayed an increased nociceptive behavior. Treatment with KBP attenuated the MNX-induced osteoarthritis-associated joint pain. The cartilage histopathology was significantly lower in rats treated with KBP than in MNX animals. Bone and cartilage degradation, assessed by CTX-I and CTX-II plasma levels, were decreased in all KBP-treated groups and KBP potently inhibited bone resorption in vitro. CONCLUSIONS Our study demonstrates the effectiveness of KBP in ameliorating osteoarthritis-associated joint pain and in protecting the articular cartilage, suggesting KBP as a potential drug candidate for osteoarthritis.
Collapse
Affiliation(s)
- A Katri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - A Dąbrowska
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - H Löfvall
- Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden.
| | - M A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K V Andreassen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - C S Thudium
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K Henriksen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| |
Collapse
|
10
|
Katri A, Dąbrowska A, Löfvall H, Ding M, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. Combining naproxen and a dual amylin and calcitonin receptor agonist improves pain and structural outcomes in the collagen-induced arthritis rat model. Arthritis Res Ther 2019; 21:68. [PMID: 30795801 PMCID: PMC6387482 DOI: 10.1186/s13075-019-1819-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pain is a debilitating symptom of rheumatoid arthritis (RA), caused by joint inflammation and cartilage and bone destruction. Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat pain and inflammation in RA, but are not disease-modifying and do not prevent joint destruction when administered alone. KBPs (Key Bioscience peptides) are synthetic peptides based on salmon calcitonin and are expected to inhibit bone resorption and to be chondroprotective. In this study, we investigated if combining a standard of care NSAID (naproxen) with a KBP resulted in improvement in pain scores, as well as disease activity and structural damage in a rat model of RA. Methods Collagen-induced arthritis (CIA) was induced in 40 female Lewis rats by immunization with porcine type II collagen; 10 rats were given sham injections. CIA rats were treated with KBP and/or naproxen. Health scores and joint scores were evaluated daily. Mechanical and cold allodynia tests and burrowing tests were used to assess pain-like behaviors. Blood samples were collected for biomarker testing, and paws were collected for histology and microcomputed tomography. Results Naproxen monotherapy increased the time until humane endpoints was reached, and improved health score, pain assessments, and trabecular thickness, while KBP monotherapy did not result in improvements. Combination therapy had improved efficacy over naproxen monotherapy; combination therapy resulted in improved health scores, and importantly reduced mechanical and cold allodynia assessment. Furthermore, protection of articular cartilage structure and preservation of bone structure and bone volume were also observed. Conclusions This study demonstrates that combining KBP and naproxen may be a relevant therapeutic strategy for RA, resulting in improvements to the overall health, pain, inflammation, and joint structure. Electronic supplementary material The online version of this article (10.1186/s13075-019-1819-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Katri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Aneta Dąbrowska
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Henrik Löfvall
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark.,Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden
| | - Ming Ding
- Department of Orthopaedics and Traumatology, Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Morten A Karsdal
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Kim V Andreassen
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Christian S Thudium
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Kim Henriksen
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
11
|
Sandor K, Krishnan S, Agalave NM, Krock E, Salcido JV, Fernandez-Zafra T, Khoonsari PE, Svensson CI, Kultima K. Spinal injection of newly identified cerebellin-1 and cerebellin-2 peptides induce mechanical hypersensitivity in mice. Neuropeptides 2018; 69:53-59. [PMID: 29705514 DOI: 10.1016/j.npep.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
By screening for neuropeptides in the mouse spinal cord using mass spectrometry (MS), we have previously demonstrated that one of the 78 peptides that is expressed predominantly (> 6-fold) in the dorsal horn compared to the ventral spinal cord is the atypical peptide desCER [des-Ser1]-cerebellin, which originates from the precursor protein cerebellin 1 (CBLN1). Furthermore, we found that intrathecal injection of desCER induces mechanical hypersensitivity in a dose dependent manner. The current study was designed to further investigate the relative expression of other CBLN derived peptides in the spinal cord and to examine whether they share similar nociceptive properties. In addition to the peptides cerebellin (CER) and desCER we identified and relatively quantified nine novel peptides originating from cerebellin precursor proteins CBLN1 (two peptides), CBLN2 (three peptides) and CBLN4 (four peptides). Ten out of eleven peptides displayed statistically significantly (p < 0.05) higher expression levels (200-350%) in the dorsal horn compared to the ventral horn. Intrathecal injection of three of the four CBLN1 and two of the three CBLN2 derived peptides induced mechanical hypersensitivity in response to von Frey filament testing in mice during the first 6 h post-injection compared to saline injected mice, while none of the four CBLN4 derived peptides altered withdrawal thresholds. This study demonstrates that high performance MS is an effective tool for detecting novel neuropeptides in CNS tissues. We show the presence of nine novel atypical peptides originating from CBLN1, CBLN2 and CBLN4 precursor proteins in the mouse dorsal horn, whereof five peptides induce pain-like behavior upon intrathecal injection. Further studies are required to investigate the mechanisms by which CBLN1 and CBLN2 derived peptides facilitate nociceptive signal transmission.
Collapse
Affiliation(s)
- Katalin Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Shibu Krishnan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Nilesh Mohan Agalave
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Abstract
Neuropeptides are the largest class of intercellular signaling molecules, contributing to a wide variety of physiological processes. Neuropeptide receptors are therapeutic targets for a broad range of drugs, including medications to treat pain, addiction, sleep disorders, and nausea. In addition to >100 peptides with known functions, many peptides have been identified in mammalian brain for which the cognate receptors have not been identified. Similarly, dozens of "orphan" G protein-coupled receptors have been identified in the mammalian genome. While it would seem straightforward to match the orphan peptides and receptors, this is not always easily accomplished. In this review we focus on peptides named PEN and big LEN, which are among the most abundant neuropeptides in mouse brain, and their recently identified receptors: GPR83 and GPR171. These receptors are co-expressed in some brain regions and are able to interact. Because PEN and big LEN are produced from the same precursor protein and co-secreted, the interaction of GPR83 and GPR171 is physiologically relevant. In addition to interactions of these two peptides/receptors, PEN and LEN are co-localized with neuropeptide Y and Agouti-related peptide in neurons that regulate feeding. In this review, using these peptide receptors as an example, we highlight the multiple modes of regulation of receptors and present the emerging view that neuropeptides function combinatorially to generate a network of signaling messages. The complexity of neuropeptides, receptors, and their signaling pathways is important to consider both in the initial deorphanization of peptides and receptors, and in the subsequent development of therapeutic applications.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
13
|
Sui P, Watanabe H, Artemenko K, Sun W, Bakalkin G, Andersson M, Bergquist J. Neuropeptide imaging in rat spinal cord with MALDI-TOF MS: Method development for the application in pain-related disease studies. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:105-115. [PMID: 28657437 DOI: 10.1177/1469066717703272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spinal cord as a connection between brain and peripheral nervous system is an essential material for studying neural transmission, especially in pain-related research. This study was the first to investigate pain-related neuropeptide distribution in rat spinal cord using a matrix-assisted laser desorption ionization-time of flight imaging mass spectrometry (MALDI TOF MS) approach. The imaging workflow was evaluated and showed that MALDI TOF MS provides efficient resolution and robustness for neuropeptide imaging in rat spinal cord tissue. The imaging result showed that in naive rat spinal cord the molecular distribution of haeme, phosphatidylcholine, substance P and thymosin beta 4 were well in line with histological features. Three groups of pain-related neuropeptides, which are cleaved from prodynorphin, proenkephalin and protachykinin-1 proteins were detected. All these neuropeptides were found predominantly localized in the dorsal spinal cord and each group had unique distribution pattern. This study set the stage for future MALDI TOF MS application to elucidate signalling mechanism of pain-related diseases in small animal models.
Collapse
Affiliation(s)
- Ping Sui
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Wei Sun
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Malin Andersson
- 3 Drug Safety and Toxicology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Smith-Anttila CJA, Bensing S, Alimohammadi M, Dalin F, Oscarson M, Zhang MD, Perheentupa J, Husebye ES, Gustafsson J, Björklund P, Fransson A, Nordmark G, Rönnblom L, Meloni A, Scott RJ, Hökfelt T, Crock PA, Kämpe O. Identification of endothelin-converting enzyme-2 as an autoantigen in autoimmune polyendocrine syndrome type 1. Autoimmunity 2017; 50:223-231. [PMID: 28557628 DOI: 10.1080/08916934.2017.1332183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autoimmune polyendocrine syndrome type 1 (APS1) is a rare monogenic autoimmune disorder caused by mutations in the autoimmune regulator (AIRE) gene. High titer autoantibodies are a characteristic feature of APS1 and are often associated with particular disease manifestations. Pituitary deficits are reported in up to 7% of all APS1 patients, with immunoreactivity to pituitary tissue frequently reported. We aimed to isolate and identify specific pituitary autoantigens in patients with APS1. Immunoscreening of a pituitary cDNA expression library identified endothelin-converting enzyme (ECE)-2 as a potential candidate autoantigen. Immunoreactivity against ECE-2 was detected in 46% APS1 patient sera, with no immunoreactivity detectable in patients with other autoimmune disorders or healthy controls. Quantitative-PCR showed ECE-2 mRNA to be most abundantly expressed in the pancreas with high levels also in the pituitary and brain. In the pancreas ECE-2 was co-expressed with insulin or somatostatin, but not glucagon and was widely expressed in GH producing cells in the guinea pig pituitary. The correlation between immunoreactivity against ECE-2 and the major recognized clinical phenotypes of APS1 including hypopituitarism was not apparent. Our results identify ECE-2 as a specific autoantigen in APS1 with a restricted neuroendocrine distribution.
Collapse
Affiliation(s)
- Casey J. A. Smith-Anttila
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Paediatric Endocrinology and Diabetes, John Hunter Children’s Hospital and Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Sophie Bensing
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Frida Dalin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medicine (Solna), Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Oscarson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jaakko Perheentupa
- Hospital for Children and Adolescents, Helsinki University Hospital, Helsinki, Finland
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan Gustafsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anette Fransson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Antonella Meloni
- Department of Biomedical Biotechnological Sciences, University of Cagliari, Cagliari, Italy
| | - Rodney J. Scott
- Information Based Medicine, Hunter Medical Research Institute and School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Australia
- Division of Molecular Medicine, Hunter Area Pathology Service, Newcastle, NSW, Australia
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Patricia A. Crock
- Department of Paediatric Endocrinology and Diabetes, John Hunter Children’s Hospital and Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Division of Molecular Medicine, Hunter Area Pathology Service, Newcastle, NSW, Australia
| | - Olle Kämpe
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medicine (Solna), Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study. Brain Struct Funct 2015; 221:3521-46. [PMID: 26462664 DOI: 10.1007/s00429-015-1117-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.
Collapse
|
16
|
Neurochemical characterization of pERK-expressing spinal neurons in histamine-induced itch. Sci Rep 2015; 5:12787. [PMID: 26248539 PMCID: PMC4650701 DOI: 10.1038/srep12787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022] Open
Abstract
Acute itch is divided into histamine- and non-histamine-dependent subtypes, and our previous study has shown that activation of ERK signaling in the spinal dorsal horn (SDH) is required selectively for histamine-induced itch sensation. Morphological characteristics of pERK-expressing neurons are required for exploring the mechanism underlying spinal itch sensation. To investigate whether pERK-expressing neurons are supraspinally-projecting neurons, we injected Fluorogold (FG) into the ventrobasal thalamic complex (VB) and parabrachial region, the two major spinal ascending sites in rodents. A small number (1%) of pERK-positive neurons were labeled by FG, suggesting that histamine-induced activation of ERK is primarily located in local SDH neurons. We then examined the co-localization of pERK with Calbindin and Lmx1b, which are expressed by excitatory neurons, and found that more than half (58%) of pERK-positive neurons expressed Lmx1b, but no co-expression with Calbindin was observed. On the other hand, approximately 7% of pERK-positive neurons expressed GAD67, and 27% of them contained Pax2. These results support the idea that pERK-expressing neurons serve as a component of local neuronal circuits for processing itch sensation in the spinal cord.
Collapse
|
17
|
Thermal inactivation of enzymes and pathogens in biosamples for MS analysis. Bioanalysis 2015; 7:1885-99. [DOI: 10.4155/bio.15.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.
Collapse
|
18
|
Abstract
In this chapter we discuss the many recent discoveries of the mechanisms by which itch is transmitted: the neurotransmitters and the responses they trigger, the mechanisms by which specific neuronal targets are activated, and the specificity of the pathways. Current data reveal that DRG neurons and spinal cord cells use a remarkably selective set of transmitters to convey pruritic information from the periphery to the brain: glutamate and Nppb are released from primary itch-sensory cells; these molecules activate secondary spinal cord pruriceptive-specific neurons, which in turn utilize Grp to activate tertiary pruriceptive-selective neurons. Intersecting this basic linear excitatory pathway, inhibitory input from dynorphin and neurons that express the somatostatin receptor modify itch sensation. Cumulatively, these studies paint an elegantly simple picture of how itch signals are transformed and integrated in the spinal cord and open new avenues for research efforts aimed at understanding and better treating itch.
Collapse
|