1
|
Sun Y, Cai M, Liang Y, Zhang Y. Disruption of blood-brain barrier: effects of HIV Tat on brain microvascular endothelial cells and tight junction proteins. J Neurovirol 2023; 29:658-668. [PMID: 37899420 DOI: 10.1007/s13365-023-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Although the widespread use of antiretroviral therapy (ART) has prolonged the life span of people living with HIV (PLWH), the incidence of HIV-associated neurocognitive disorders (HAND) in PLWH is also gradually increasing, seriously affecting the quality of life for PLWH. However, the pathogenesis of HAND has not been elucidated, which leaves HAND without effective treatment. HIV protein transactivator of transcription (Tat), as an important regulatory protein, is crucial in the pathogenesis of HAND, and its mechanism of HAND has received widespread attention. The blood-brain barrier (BBB) and its cellular component brain microvascular endothelial cells (BMVECs) play a necessary role in protecting the central nervous system (CNS), and their damage associated with Tat is a potential therapeutic target of HAND. In this review, we will study the Tat-mediated damage mechanism of the BBB and present multiple lines of evidence related to BMVEC damage caused by Tat.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
3
|
Xu C, Yadav-Samudrala BJ, Xu C, Nath B, Mistry T, Jiang W, Niphakis MJ, Cravatt BF, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Expression in Transgenic Mice and Suppressed by the Fatty Acid Amide Hydrolase Enzyme Inhibitor PF3845 via Cannabinoid Type-1 Receptor Mechanisms. Cells 2022; 11:857. [PMID: 35269478 PMCID: PMC8909692 DOI: 10.3390/cells11050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Barkha J. Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Callie Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Bhupendra Nath
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Twisha Mistry
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Micah J. Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Aron H. Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| |
Collapse
|
4
|
Hong N, Park JS, Kim HJ. Synapto-protective effect of lithium on HIV-1 Tat-induced synapse loss in rat hippocampal cultures. Anim Cells Syst (Seoul) 2021; 26:1-9. [PMID: 35308128 PMCID: PMC8928815 DOI: 10.1080/19768354.2021.2018044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus type I (HIV-1) infection of the CNS produces synapse loss which correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). Lithium is mood stabilizer of unknown mechanism used to treat bipolar disorder and is known to exhibit neuroprotective properties. Here, we studied the effects of lithium on HIV-1 Tat-induced synapses between rat hippocampal neurons. The number of synapses was quantified to detect clusters of the scaffold protein postsynaptic density 95 (PSD95) which is clustered at glutamatergic synapses on cultured rat hippocampal neurons in vitro. Lithium protected synapses from HIV-1 Tat-induced synapse loss and subsequent neuronal death. This synaptic protection was prevented by both the activation of NMDA receptor leading to intracellular signaling and the regulatory pathway of lithium including inositol depletion and glycogen synthase kinase-3β (GSK-3β). These results suggest that mood stabilizers might be effective drugs to treat neurodegenerative disorders including HAND.
Collapse
Affiliation(s)
- Namgue Hong
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Cirino TJ, Harden SW, McLaughlin JP, Frazier CJ. Region-specific effects of HIV-1 Tat on intrinsic electrophysiological properties of pyramidal neurons in mouse prefrontal cortex and hippocampus. J Neurophysiol 2020; 123:1332-1341. [PMID: 32101482 DOI: 10.1152/jn.00029.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 transactivator of transcription protein (Tat) is a viral protein that promotes transcription of the HIV genome and possesses cell-signaling properties. Long-term exposure of central nervous system (CNS) tissue to HIV-1 Tat is theorized to contribute to HIV-associated neurodegenerative disorder (HAND). In the current study, we sought to directly evaluate the effect of HIV-1 Tat expression on the intrinsic electrophysiological properties of pyramidal neurons located in layer 2/3 of the medial prefrontal cortex and in area CA1 of the hippocampus. Toward that end, we drove Tat expression with doxycycline (100 mg·kg-1·day-1 ip) in inducible Tat (iTat) transgenic mice for 7 days and then performed single-cell electrophysiological studies in acute tissue slices made through the prefrontal cortex and hippocampus. Control experiments were performed in doxycycline-treated G-tg mice, which retain the tetracycline-sensitive promoter but do not express Tat. Our results indicated that the predominant effects of HIV-1 Tat expression are excitatory in medial prefrontal cortical pyramidal neurons yet inhibitory in hippocampal pyramidal neurons. Notably, in these two populations, HIV-1 Tat expression produced differential effects on neuronal gain, membrane time constant, resting membrane potential, and rheobase. Similarly, we also observed distinct effects on action potential kinetics and afterhyperpolarization, as well as on the current-voltage relationship in subthreshold voltage ranges. Collectively, these data provide mechanistic evidence of complex and region-specific changes in neuronal physiology by which HIV-1 Tat protein may promote cognitive deficits associated with HAND.NEW & NOTEWORTHY We drove expression of human immunodeficiency virus (HIV)-1 transactivator of transcription protein (Tat) protein in inducible Tat (iTat) transgenic mice for 7 days and then examined the effects on the intrinsic electrophysiological properties of pyramidal neurons located in the medial prefrontal cortex (mPFC) and in the hippocampus. Our results reveal a variety of specific changes that promote increased intrinsic excitability of layer II/III mPFC pyramidal neurons and decreased intrinsic excitability of hippocampal CA1 pyramidal neurons, highlighting both cell type and region-specific effects.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Scott W Harden
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Charles J Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. J Neurosci 2020; 40:1778-1787. [PMID: 31953371 DOI: 10.1523/jneurosci.0969-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization. We report that mouse CNS endothelial NMDARs display the regulatory GluN3A subunit. This composition confers to NMDARs' unconventional properties: these receptors do not induce Ca2+ influx but rather show nonionotropic properties. In inflammatory conditions, costimulation of human brain endothelial cells by NMDA agonists (NMDA or glycine) and the serine protease tissue plasminogen activator, previously shown to potentiate NMDAR activity, induces metabotropic signaling via the Rho/ROCK pathway. This pathway leads to an increase in permeability via phosphorylation of myosin light chain and subsequent shrinkage of human brain endothelial cells. Together, these data draw a link between NMDARs and the cytoskeleton in brain endothelial cells that regulates BBB permeability in inflammatory conditions.SIGNIFICANCE STATEMENT The authors describe how NMDARs expressed on endothelial cells regulate blood-brain barrier function via myosin light chain phosphorylation and increase in permeability. They report that these non-neuronal NMDARs display distinct structural, functional, and pharmacological features than their neuronal counterparts.
Collapse
|
8
|
Faia C, Plaisance-Bonstaff K, Peruzzi F. In vitro models of HIV-1 infection of the Central Nervous System. DRUG DISCOVERY TODAY. DISEASE MODELS 2020; 32:5-11. [PMID: 33692833 PMCID: PMC7938360 DOI: 10.1016/j.ddmod.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neurocognitive disorders associated with HIV-1 infection affect more than half of persons living with HIV (PLWH) under retroviral therapy. Understanding the molecular mechanisms and the complex cellular network communication underlying neurological dysfunction is critical for the development of an effective therapy. As with other neurological disorders, challenges to studying HIV infection of the brain include limited access to clinical samples and proper reproducibility of the complexity of brain networks in cellular and animal models. This review focuses on cellular models used to investigate various aspects of neurological dysfunction associated with HIV infection.
Collapse
Affiliation(s)
- Celeste Faia
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
| | | | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
- Department of Medicine
- Corresponding author: Francesca Peruzzi, 1700 Tulane Ave, New Orleans, LA 70112, Tel: (504) 210-2978,
| |
Collapse
|
9
|
Wenzel ED, Avdoshina V, Mocchetti I. HIV-associated neurodegeneration: exploitation of the neuronal cytoskeleton. J Neurovirol 2019; 25:301-312. [PMID: 30850975 DOI: 10.1007/s13365-019-00737-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system damages synapses and promotes axonal injury, ultimately resulting in HIV-associated neurocognitive disorders (HAND). The mechanisms through which HIV causes damage to neurons are still under investigation. The cytoskeleton and associated proteins are fundamental for axonal and dendritic integrity. In this article, we review evidence that HIV proteins, such as the envelope protein gp120 and transactivator of transcription (Tat), impair the structure and function of the neuronal cytoskeleton. Investigation into the effects of viral proteins on the neuronal cytoskeleton may provide a better understanding of HIV neurotoxicity and suggest new avenues for additional therapies.
Collapse
Affiliation(s)
- Erin D Wenzel
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| |
Collapse
|
10
|
|
11
|
Diagnostic and prognostic biomarkers for HAND. J Neurovirol 2019; 25:686-701. [PMID: 30607890 DOI: 10.1007/s13365-018-0705-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
In 2007, the nosology for HIV-1-associated neurocognitive disorders (HAND) was updated to a primarily neurocognitive disorder. However, currently available diagnostic tools lack the sensitivity and specificity needed for an accurate diagnosis for HAND. Scientists and clinicians, therefore, have been on a quest for an innovative biomarker to diagnose (i.e., diagnostic biomarker) and/or predict (i.e., prognostic biomarker) the progression of HAND in the post-combination antiretroviral therapy (cART) era. The present review examined the utility and challenges of four proposed biomarkers, including neurofilament light (NFL) chain concentration, amyloid (i.e., sAPPα, sAPPβ, amyloid β) and tau proteins (i.e., total tau, phosphorylated tau), resting-state functional magnetic resonance imaging (fMRI), and prepulse inhibition (PPI). Although significant genotypic differences have been observed in NFL chain concentration, sAPPα, sAPPβ, amyloid β, total tau, phosphorylated tau, and resting-state fMRI, inconsistencies and/or assessment limitations (e.g., invasive procedures, lack of disease specificity, cost) challenge their utility as a diagnostic and/or prognostic biomarker for milder forms of neurocognitive impairment (NCI) in the post-cART era. However, critical evaluation of the literature supports the utility of PPI as a powerful diagnostic biomarker with high accuracy (i.e., 86.7-97.1%), sensitivity (i.e., 89.3-100%), and specificity (i.e., 79.5-94.1%). Additionally, the inclusion of multiple CSF and/or plasma markers, rather than a single protein, may provide a more sensitive diagnostic biomarker for HAND; however, a pressing need for additional research remains. Most notably, PPI may serve as a prognostic biomarker for milder forms of NCI, evidenced by its ability to predict later NCI in higher-order cognitive domains with regression coefficients (i.e., r) greater than 0.8. Thus, PPI heralds an opportunity for the development of a brief, noninvasive diagnostic and promising prognostic biomarker for milder forms of NCI in the post-cART era.
Collapse
|
12
|
Abstract
A defining feature of HIV-associated neurocognitive disorder (HAND) is the loss of excitatory synaptic connections. Synaptic changes that occur during exposure to HIV appear to result, in part, from a homeostatic scaling response. Here we discuss the mechanisms of these changes from the perspective that they might be part of a coping mechanism that reduces synapses to prevent excitotoxicity. In transgenic animals expressing the HIV proteins Tat or gp120, the loss of synaptic markers precedes changes in neuronal number. In vitro studies have shown that HIV-induced synapse loss and cell death are mediated by distinct mechanisms. Both in vitro and animal studies suggest that HIV-induced synaptic scaling engages new mechanisms that suppress network connectivity and that these processes might be amenable to therapeutic intervention. Indeed, pharmacological reversal of synapse loss induced by HIV Tat restores cognitive function. In summary, studies indicate that there are temporal, mechanistic and pharmacological features of HIV-induced synapse loss that are consistent with homeostatic plasticity. The increasingly well delineated signaling mechanisms that regulate synaptic scaling may reveal pharmacological targets suitable for normalizing synaptic function in chronic neuroinflammatory states such as HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jonathan D Raybuck
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A. An Overview of Human Immunodeficiency Virus Type 1-Associated Common Neurological Complications: Does Aging Pose a Challenge? J Alzheimers Dis 2017; 60:S169-S193. [PMID: 28800335 PMCID: PMC6152920 DOI: 10.3233/jad-170473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With increasing survival of patients infected with human immunodeficiency virus type 1 (HIV-1), the manifestation of heterogeneous neurological complications is also increasing alarmingly in these patients. Currently, more than 30% of about 40 million HIV-1 infected people worldwide develop central nervous system (CNS)-associated dysfunction, including dementia, sensory, and motor neuropathy. Furthermore, the highly effective antiretroviral therapy has been shown to increase the prevalence of mild cognitive functions while reducing other HIV-1-associated neurological complications. On the contrary, the presence of neurological disorder frequently affects the outcome of conventional HIV-1 therapy. Although, both the children and adults suffer from the post-HIV treatment-associated cognitive impairment, adults, especially depending on the age of disease onset, are more prone to CNS dysfunction. Thus, addressing neurological complications in an HIV-1-infected patient is a delicate balance of several factors and requires characterization of the molecular signature of associated CNS disorders involving intricate cross-talk with HIV-1-derived neurotoxins and other cellular factors. In this review, we summarize some of the current data supporting both the direct and indirect mechanisms, including neuro-inflammation and genome instability in association with aging, leading to CNS dysfunction after HIV-1 infection, and discuss the potential strategies addressing the treatment or prevention of HIV-1-mediated neurotoxicity.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College of Cornell University, NY, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
14
|
NMDARs Adapt to Neurotoxic HIV Protein Tat Downstream of a GluN2A-Ubiquitin Ligase Signaling Pathway. J Neurosci 2016; 36:12640-12649. [PMID: 27810933 DOI: 10.1523/jneurosci.2980-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
HIV-associated neurocognitive disorder (HAND) affects approximately half of HIV-infected patients. Infected non-neuronal cells release neurotoxic factors such as the viral protein transactivator of transcription (Tat) that potentiate NMDAR function. NMDARs regulate synaptic changes observed after exposure to HIV proteins, which may underlie cognitive impairment in HAND patients. Here, we used patch-clamp recording to measure NMDAR-mediated currents in rat hippocampal cultures after exposure to Tat. Tat (4-16 h) potentiated NMDA-evoked whole-cell current and increased the NMDAR:AMPAR ratio of evoked EPSCs. Potentiated currents adapted back to baseline amplitudes after 24 h of exposure to Tat. Pharmacological inhibition of GluN2A-containing NMDARs prevented adaptation, but inhibition of GluN2B-containing NMDARs did not. Pharmacological and genetic approaches determined that potentiated NMDARs activated the kinase Akt, which then activated the E3 ubiquitin ligase Mdm2. Inhibition of protein synthesis prevented adaptation, suggesting that Mdm2 altered gene expression, possibly through its well known target p53. Expression of GFP-tagged GluN1 subunits resulted in fluorescent puncta that colocalized with synaptic markers. Tat (24 h) caused an Mdm2-dependent loss of NMDAR puncta on a timescale similar to adaption of NMDAR function. Activation of the Mdm2 pathway degrades PSD-95, a scaffolding protein that clusters NMDARs at the synapse and enhances their function. Adaptation to the continued presence of excitotoxins that potentiate NMDARs such as HIV Tat may protect from excessive NMDAR activation while also contributing to the synaptic loss that correlates with cognitive decline in HAND. SIGNIFICANCE STATEMENT Synaptodendritic damage correlates with cognitive decline in HIV-associated neurocognitive disorder (HAND). In a cell culture model, we show that the HIV protein transactivator of transcription (Tat) initially potentiates NMDARs that then adapt to the presence of the toxin. Adaptation of NMDAR function was mediated by a GluN2A/Akt/Mdm2 pathway not previously linked to neuroinflammatory disorders such as HAND. Activation of this pathway caused a loss of synaptic NMDAR clusters. Decreased NMDAR function may result from a homeostatic response gone awry and underlie impaired synaptic function in HAND.
Collapse
|
15
|
Hu XT. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 2016; 17:4-14. [PMID: 26028040 DOI: 10.2174/1389450116666150531162212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca(2+) dysregulation, indicated by abnormal and excessive Ca(2+) influx and increased intracellular Ca(2+) release that consequentially elevate cytosolic free Ca(2+) levels ([Ca(2+)]in). Such alterations in intracellular Ca(2+) homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca(2+) channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca(2+)), which may underlie the deleterious effects of Tat on intracellular Ca(2+) homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, Rm. 414, 1735 W. Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Calcium Imaging to Study NMDA Receptor-mediated Cellular Responses. IONOTROPIC GLUTAMATE RECEPTOR TECHNOLOGIES 2016. [DOI: 10.1007/978-1-4939-2812-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Mediouni S, Marcondes MCG, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 2015; 6:1164. [PMID: 26557111 PMCID: PMC4615951 DOI: 10.3389/fmicb.2015.01164] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| | | | - Courtney Miller
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA ; Department of Neuroscience, The Scripps Research Institute , Jupiter, FL, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida , Gainesville, FL, USA
| | - Susana T Valente
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
18
|
Krogh KA, Green MV, Thayer SA. HIV-1 Tat-induced changes in synaptically-driven network activity adapt during prolonged exposure. Curr HIV Res 2015; 12:406-14. [PMID: 25613136 DOI: 10.2174/1570162x13666150121110402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/13/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV-infected patients. The HIV-1 transactivator of transcription (Tat) protein is released by infected cells and contributes to the pathogenesis of HAND, but many of the underlying mechanisms remain poorly understood. Here we used fura-2-based Ca(2+) imaging and whole-cell patch-clamp recording to study the effects of Tat on the spontaneous synaptic activity that occurs in networked rat hippocampal neurons in culture. Tat triggered aberrant network activity that exhibited a decrease in the frequency of spontaneous action potential bursts and Ca(2+) spikes with a simultaneous increase in burst duration and Ca(2+) spike amplitude. These network changes were apparent after 4 h treatment with Tat and required the low-density lipoprotein receptor-related protein (LRP). Interestingly, Tat-induced changes in network activity adapted during 24 h exposure. The activity returned to control levels in the maintained presence of Tat for 24 h. These observations indicate that Tat causes aberrant network activity, which is dependent on LRP, and adapts following prolonged exposure. Changes in network excitability may contribute to Tat-induced neurotoxicity in vitro and seizure disorders in vivo. Adaptation of neural networks may be a neuroprotective response to the sustained presence of the neurotoxic protein Tat and could underlie the behavioral and electrophysiological changes observed in HAND.
Collapse
Affiliation(s)
| | | | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Bertrand SJ, Hu C, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat and cocaine mediated synaptopathy in cortical and midbrain neurons is prevented by the isoflavone Equol. Front Microbiol 2015; 6:894. [PMID: 26441850 PMCID: PMC4561964 DOI: 10.3389/fmicb.2015.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
Illicit drugs, such as cocaine, are known to increase the likelihood and severity of HIV-1 associated neurocognitive disorders (HAND). In the current studies synaptic integrity was assessed following exposure to low concentrations of the HIV-1 viral protein Tat 1-86B, with or without cocaine, by quantifying filamentous actin (F-actin) rich structures (i.e., puncta and dendritic spines) on neuronal dendrites in vitro. In addition, the synapse-protective effects of either R-Equol (RE) or S-Equol (SE; derivatives of the soy isoflavone, daidzein) were determined. Individually, neither low concentrations of HIV-1 Tat (10 nM) nor low concentrations of cocaine (1.6 μM) had any significant effect on F-actin puncta number; however, the same low concentrations of HIV-1 Tat + cocaine in combination significantly reduced dendritic synapses. This synaptic reduction was prevented by pre-treatment with either RE or SE, in an estrogen receptor beta dependent manner. In sum, targeted therapeutic intervention with SE may prevent HIV-1 + drug abuse synaptopathy, and thereby potentially influence the development of HAND.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Calvin Hu
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Marina V Aksenova
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Charles F Mactutus
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Rosemarie M Booze
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| |
Collapse
|