1
|
Macur K, Roszkowska A, Czaplewska P, Miękus-Purwin N, Klejbor I, Moryś J, Bączek T. Pressure Cycling Technology Combined With MicroLC-SWATH Mass Spectrometry for the Analysis of Sex-Related Differences Between Male and Female Cerebella: A Promising Approach to Investigating Proteomics Differences in Psychiatric and Neurodegenerative Diseases. Proteomics Clin Appl 2024:e202400001. [PMID: 39205462 DOI: 10.1002/prca.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Pressure cycling technology (PCT) coupled with data-independent sequential window acquisition of all theoretical mass spectra (SWATH-MS) can be a powerful tool for identifying and quantifying biomarkers (e.g., proteins) in complex biological samples. Mouse models are frequently used in brain studies, including those focusing on different neurodevelopmental and psychiatric disorders. More and more pieces of evidence have suggested that sex-related differences in the brain impact the rates, clinical manifestations, and therapy outcomes of these disorders. However, sex-based differences in the proteomic profiles of mouse cerebella have not been widely investigated. EXPERIMENTAL DESIGN In this pilot study, we evaluate the applicability of coupling PCT sample preparation with microLC-SWATH-MS analysis to map and identify differences in the proteomes of two female and two male mice cerebellum samples. RESULTS We identified and quantified 174 proteins in mice cerebella. A comparison of the proteomic profiles revealed that the levels of 11 proteins in the female and male mice cerebella varied significantly. CONCLUSIONS AND CLINICAL RELEVANCE Although this study utilizes a small sample, our results indicate that the studied male and female mice cerebella possessed differing proteome compositions, mainly with respect to energy metabolism processes.
Collapse
Affiliation(s)
- Katarzyna Macur
- Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Paulina Czaplewska
- Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Miękus-Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Janusz Moryś
- Department of Normal Anatomy, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
2
|
Wynkoop MR, Cooper-Mullin CM, Jimenez AG. Plasma lactate dehydrogenase and pyruvate kinase activity changes with body mass and age across birds and mammals. ANIM BIOL 2022. [DOI: 10.1163/15707563-bja10087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Birds and mammals produce most adenosine triphosphate (ATP) through mitochondrial oxidative phosphorylation, but when oxygen is not present in sufficient levels, ATP can be produced through anaerobic glycolysis. Pyruvate kinase (PK) catalyzes the final step of glycolysis by converting phosphoenolpyruvate and adenosine diphosphate (ADP) into pyruvate and ATP. Lactate dehydrogenase (LDH) is important for anaerobic glycolysis by catalyzing the conversion of pyruvate into lactate. In this study, we measured LDH and PK activities in plasma from birds and mammals in order to determine the relationship between LDH and PK with respect to body mass and age. Our results show that birds had a higher LDH and PK activity compared with mammals. There is a positive relationship between body mass and plasma LDH activity in birds only. However, this relationship disappears when the data are phylogenetically corrected. We did not observe a significant relationship between plasma LDH and age in birds or mammals. Plasma PK activity was negatively correlated with body mass in birds but not in mammals and positively associated with age in both birds and mammals. The relationship between LDH and PK with respect to body mass and age may be complex due to differences in metabolism in birds and mammals. Increases in LDH and PK activity with body mass in birds may be linked to anaerobic demands of flight, especially in larger birds. A decrease in LDH activity with age/MLSP (maximum lifespan) in mammals may reflect a differing metabolic shift as compared with birds. Increases in PK with age in both mammals and birds may help them cope with greater energetic needs as cells age.
Collapse
Affiliation(s)
- Morgan R. Wynkoop
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY 13346, USA
| | - Clara M. Cooper-Mullin
- University of Rhode Island, Natural Resources Science, 1 Greenhouse Drive, Kingston, RI 02881, USA
| | | |
Collapse
|
3
|
Shepard A, Kissil JL. The use of non-traditional models in the study of cancer resistance-the case of the naked mole rat. Oncogene 2020; 39:5083-5097. [PMID: 32535616 DOI: 10.1038/s41388-020-1355-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Non-traditional model organisms are typically defined as any model the deviates from the typical laboratory animals, such as mouse, rat, and worm. These models are becoming increasingly important in human disease research, such as cancer, as they often display unusual biological features. Naked mole rats (NMRs) are currently one of the most popular non-traditional model, particularly in the longevity and cancer research fields. NMRs display an exceptionally long lifespan (~30 years), yet have been observed to display a low incidence of cancer, making them excellent candidates for understanding endogenous cancer resistance mechanisms. Over the past decade, many potential resistance mechanisms have been characterized. These include unique biological mechanisms involved in genome stability, protein stability, oxidative metabolism, and other cellular mechanisms such as cell cycle regulation and senescence. This review aims to summarize the many identified cancer resistance mechanisms to understand some of the main hypotheses that have thus far been generated. Many of these proposed mechanisms remain to be fully characterized or confirmed in vivo, giving the field a direction to grow and further understand the complex biology displayed by the NMR.
Collapse
Affiliation(s)
- Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
4
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
5
|
Lee BP, Smith M, Buffenstein R, Harries LW. Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience 2020; 42:633-651. [PMID: 31927681 PMCID: PMC7205774 DOI: 10.1007/s11357-019-00150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Naked mole-rats (NMRs) have amongst the longest lifespans relative to body size of any known, non-volant mammalian species. They also display an enhanced stress resistance phenotype, negligible senescence and very rarely are they burdened with chronic age-related diseases. Alternative splicing (AS) dysregulation is emerging as a potential driver of senescence and ageing. We hypothesised that the expression of splicing factors, important regulators of patterns of AS, may differ in NMRs when compared to other species with relatively shorter lifespans. We designed assays specific to NMR splicing regulatory factors and also to a panel of pre-selected brain-expressed genes known to demonstrate senescence-related alterations in AS in other species, and measured age-related changes in the transcript expression levels of these using embryonic and neonatal developmental stages through to extreme old age in NMR brain samples. We also compared splicing factor expression in both young mouse and NMR spleen and brain samples. Both NMR tissues showed approximately double the expression levels observed in tissues from similarly sized mice. Furthermore, contrary to observations in other species, following a brief period of labile expression in early life stages, adult NMR splicing factors and patterns of AS for functionally relevant brain genes remained remarkably stable for at least two decades. These findings are consistent with a model whereby the conservation of splicing regulation and stable patterns of AS may contribute to better molecular stress responses and the avoidance of senescence in NMRs, contributing to their exceptional lifespan and prolonged healthspan.
Collapse
Affiliation(s)
- B P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - M Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - R Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA.
| | - L W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
6
|
Tombline G, Gigas J, Macoretta N, Zacher M, Emmrich S, Zhao Y, Seluanov A, Gorbunova V. Proteomics of Long-Lived Mammals. Proteomics 2020; 20:e1800416. [PMID: 31737995 PMCID: PMC7117992 DOI: 10.1002/pmic.201800416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Mammalian species differ up to 100-fold in their aging rates and maximum lifespans. Long-lived mammals appear to possess traits that extend lifespan and healthspan. Genomic analyses have not revealed a single pro-longevity function that would account for all longevity effects. In contrast, it appears that pro-longevity mechanisms may be complex traits afforded by connections between metabolism and protein functions that are impossible to predict by genomic approaches alone. Thus, metabolomics and proteomics studies will be required to understand the mechanisms of longevity. Several examples are reviewed that demonstrate the naked mole rat (NMR) shows unique proteomic signatures that contribute to longevity by overcoming several hallmarks of aging. SIRT6 is also discussed as an example of a protein that evolves enhanced enzymatic function in long-lived species. Finally, it is shown that several longevity-related proteins such as Cip1/p21, FOXO3, TOP2A, AKT1, RICTOR, INSR, and SIRT6 harbor posttranslational modification (PTM) sites that preferentially appear in either short- or long-lived species and provide examples of crosstalk between PTM sites. Prospects of enhancing lifespan and healthspan of humans by altering metabolism and proteoforms with drugs that mimic changes observed in long-lived species are discussed.
Collapse
Affiliation(s)
- Gregory Tombline
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Jonathan Gigas
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Nicholas Macoretta
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Max Zacher
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Stephan Emmrich
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Yang Zhao
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Andrei Seluanov
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| |
Collapse
|
7
|
Butterfield DA. Phosphoproteomics of Alzheimer disease brain: Insights into altered brain protein regulation of critical neuronal functions and their contributions to subsequent cognitive loss. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2031-2039. [PMID: 31167728 PMCID: PMC6602546 DOI: 10.1016/j.bbadis.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the major locus of dementia worldwide. In the USA there are nearly 6 million persons with this disorder, and estimates of 13-20 million AD cases in the next three decades. The molecular bases for AD remain unknown, though processes involving amyloid beta-peptide as small oligomeric forms are gaining attention as known agents to both lead to oxidative stress and synaptic dysfunction associated with cognitive dysfunction in AD and its earlier forms, including amnestic mild cognitive impairment (MCI) and possibly preclinical Alzheimer disease (PCAD). Altered brain protein phosphorylation is a hallmark of AD, and phosphoproteomics offers an opportunity to identify these altered phosphoproteins in order to gain more insights into molecular mechanisms of neuronal dysfunction and death that lead to cognitive loss. This paper reviews what, to this author, are believed to be the known phosphoproteomics studies related to in vitro and in vivo models of AD as well as phosphoproteomics studies of brains from subjects with AD, and in at least one case in MCI and PCAD as well. The results of this review are discussed with relevance to new insights into AD brain protein dysregulation in critical neuronal functions and to potential therapeutic targets to slow, or in favorable cases, halt progression of this dementing disorder that affects millions of persons and their families worldwide.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
8
|
Guest PC. Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:1-24. [PMID: 31493219 DOI: 10.1007/978-3-030-25650-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The quest for increased human longevity has been a goal of mankind throughout recorded history. Recent molecular studies are now providing potentially useful insights into the aging process which may help to achieve at least some aspects of this quest. This chapter will summarize the main findings of these studies with a focus on long-lived mutant mice and worms, and the longest living natural species including Galapagos giant tortoises, bowhead whales, Greenland sharks, quahog clams and the immortal jellyfish.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
9
|
Skulachev MV, Skulachev VP. Programmed aging of mammals: Proof of concept and prospects of biochemical approaches for anti-aging therapy. BIOCHEMISTRY (MOSCOW) 2017; 82:1403-1422. [DOI: 10.1134/s000629791712001x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Grimes KM, Barefield DY, Kumar M, McNamara JW, Weintraub ST, de Tombe PP, Sadayappan S, Buffenstein R. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflugers Arch 2017; 469:1603-1613. [PMID: 28780592 PMCID: PMC5856255 DOI: 10.1007/s00424-017-2046-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/27/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Rochelle Buffenstein
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Calico Life Sciences, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
11
|
Skulachev VP, Holtze S, Vyssokikh MY, Bakeeva LE, Skulachev MV, Markov AV, Hildebrandt TB, Sadovnichii VA. Neoteny, Prolongation of Youth: From Naked Mole Rats to “Naked Apes” (Humans). Physiol Rev 2017; 97:699-720. [DOI: 10.1152/physrev.00040.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that highly social mammals, such as naked mole rats and humans, are long-lived due to neoteny (the prolongation of youth). In both species, aging cannot operate as a mechanism facilitating natural selection because the pressure of this selection is strongly reduced due to 1) a specific social structure where only the “queen” and her “husband(s)” are involved in reproduction (naked mole rats) or 2) substituting fast technological progress for slow biological evolution (humans). Lists of numerous traits of youth that do not disappear with age in naked mole rats and humans are presented and discussed. A high resistance of naked mole rats to cancer, diabetes, cardiovascular and brain diseases, and many infections explains why their mortality rate is very low and almost age-independent and why their lifespan is more than 30 years, versus 3 years in mice. In young humans, curves of mortality versus age start at extremely low values. However, in the elderly, human mortality strongly increases. High mortality rates in other primates are observed at much younger ages than in humans. The inhibition of the aging process in humans by specific drugs seems to be a promising approach to prolong our healthspan. This might be a way to retard aging, which is already partially accomplished via the natural physiological phenomenon neoteny.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Susanne Holtze
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Mikhail Y. Vyssokikh
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Lora E. Bakeeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Maxim V. Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Alexander V. Markov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Thomas B. Hildebrandt
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Viktor A. Sadovnichii
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| |
Collapse
|
12
|
Triplett JC, Swomley AM, Kirk J, Grimes KM, Lewis KN, Orr ME, Rodriguez KA, Cai J, Klein JB, Buffenstein R, Butterfield DA. Reaching Out to Send a Message: Proteins Associated with Neurite Outgrowth and Neurotransmission are Altered with Age in the Long-Lived Naked Mole-Rat. Neurochem Res 2016; 41:1625-34. [DOI: 10.1007/s11064-016-1877-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/06/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|