1
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
2
|
Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, Verschoor A, Multhoff G, Bashiri Dezfouli A, Wollenberg B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167:115467. [PMID: 37696087 DOI: 10.1016/j.biopha.2023.115467] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kathrin Werner
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | | | - Admar Verschoor
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
3
|
Xu Q, Wu H, Zhu H, Lu C, Tao J, Zhou Z, Zhang J. Grain-sized moxibustion at Zusanli (ST36) promotes hepatic autophagy in rats with hyperlipidemia by regulating the ULK1 and TFEB expression through the AMPK/mTOR signaling pathway. Heliyon 2023; 9:e15316. [PMID: 37144182 PMCID: PMC10151263 DOI: 10.1016/j.heliyon.2023.e15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Objective Grain-sized moxibustion is an effective treatment for hyperlipidemia, but how it regulates dyslipidemia and liver lipid deposits still needs to be fully understood. This study explored the molecular biological mechanism of grain-sized moxibustion to regulate hepatic autophagy in hyperlipidemic rats by affecting ULK1 and TFEB through the AMPK/mTOR signaling pathway. Methods Thirty male Sprague-Dawley (SD) rats were fed a high-fat diet for eight weeks to induce hyperlipidemia. Hyperlipidemic rats were divided into the HFD group, HFD + Statin group, HFD + CC + Moxi group, and grain-sized moxibustion intervention group (HFD + Moxi group). The control (Blank) group consisted of normal rats without any intervention. Grain-sized moxibustion and drug interventions were initiated eight weeks after high-fat diet induction and continued for ten weeks. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), as well as hepatic triglyceride (TG), were measured after treatment. Hepatic steatosis and the expression of LC3I, LC3II, p62, p-AMPK, AMPK, p-mTOR, mTOR, ULK1, p-ULK1, and TFEB in the liver were analyzed. Results Compared with the HFD group, grain-sized moxibustion improved hyperlipidemia and hepatocyte steatosis, increased the LC3, p-AMPK, p-ULK1, and nuclear TFEB expression in the liver, but decreased the p62 and p-mTOR expression. Conclusion Grain-sized moxibustion at ST36 acupoints could regulate the blood lipid level of SD rats with hyperlipidemia, increase the expression level of ULK1 and TFEB by activating the AMPK/mTOR signaling pathway in liver tissues, and initiate the transcription of autophagy genes such as LC3.
Collapse
Affiliation(s)
- Qian Xu
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Huanxi Wu
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Haibin Zhu
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Chengxuan Lu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, China
| | - Jiangjia Tao
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Ziqiu Zhou
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Jianbin Zhang
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
- Corresponding author.Jiangsu Second Hospital of Chinese Medicine, China
| |
Collapse
|
4
|
Li L, Li P, Guo J, Wu Y, Zeng Q, Li N, Huang X, He Y, Ai W, Sun W, Liu T, Xiong D, Xiao L, Sun Y, Zhou Q, Kuang H, Wang Z, Jiang C. Up-regulation of oxytocin receptors on peripheral sensory neurons mediates analgesia in chemotherapy-induced neuropathic pain. Br J Pharmacol 2023. [PMID: 36702458 DOI: 10.1111/bph.16042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced neuropathic pain (CINP) currently has limited effective treatment. Although the roles of oxytocin (OXT) and the oxytocin receptor (OXTR) in central analgesia have been well documented, the expression and function of OXTR in the peripheral nervous system remain unclear. Here, we evaluated the peripheral antinociceptive profiles of OXTR in CINP. EXPERIMENTAL APPROACH Paclitaxel (PTX) was used to establish CINP. Quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridization, and immunohistochemistry were used to observe OXTR expression in dorsal root ganglia (DRG). The antinociceptive effects of OXT were assessed by hot-plate and von Frey tests. Whole-cell patch clamp was performed to record sodium currents, excitability of DRG neurons, and excitatory synapse transmission. KEY RESULTS Expression of OXTR in DRG neurons was enhanced significantly after PTX treatment. Activation of OXTR exhibited antinociceptive effects, by decreasing the hyperexcitability of DRG neurons in PTX-treated mice. Additionally, OXTR activation up-regulated the phosphorylation of protein kinase C (pPKC) and, in turn, impaired voltage-gated sodium currents, particularly the voltage-gated sodium channel 1.7 (NaV 1.7) current, that plays an indispensable role in PTX-induced neuropathic pain. OXT suppressed excitatory transmission in the spinal dorsal horn as well as excitatory inputs from primary afferents in PTX-treated mice. CONCLUSION AND IMPLICATIONS The OXTR in small-sized DRG neurons is up-regulated in CINP and its activation relieved CINP by inhibiting the neural excitability by impairment of NaV 1.7 currents via pPKC. Our results suggest that OXTR on peripheral sensory neurons is a potential therapeutic target to relieve CINP.
Collapse
Affiliation(s)
- Lixuan Li
- Guangdong Medical University, Zhanjiang, Guangdong, China.,Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Pupu Li
- Department of Medical Oncology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Jing Guo
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Yifei Wu
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qian Zeng
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xiaoting Huang
- Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yongshen He
- Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Wen Ai
- Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yanyan Sun
- Department of Anesthesiology, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Qiming Zhou
- Department of Medical Oncology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zilong Wang
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.,Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
6
|
Wang G. Ligand-stereoselective allosteric activation of cold-sensing TRPM8 channels by an H-bonded homochiral menthol dimer with head-to-head or head-to-tail. Chirality 2021; 33:783-796. [PMID: 34596287 DOI: 10.1002/chir.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/07/2022]
Abstract
Both menthol and its analog WS-12 share the same hydrophobic intra-subunit binding pocket between a voltage-sensor-like domain and a TRP domain in a cold-sensing TRPM8 channel. However, unlike WS-12, menthol upregulates TRPM8 with a low efficacy but a high coefficient of a dose response at membrane hyperpolarization and with ligand stereoselectivity at membrane depolarization. The underlying mechanisms are unknown. Here, this in silico research suggested that the ligand-stereoselective sequential cooperativity between two menthol molecules in the WS-12 pocket is required for allosteric activation of TRPM8. Furthermore, two H-bonded homochiral menthol dimers with both head-to-head and head-to-tail can compete for the WS-12 site via non-covalent interactions. Although both dimers can form an H-bonding network with a voltage sensor S4 to disrupt a S3-S4 salt bridge in the voltage-sensor-like domain to release a "parking brake," only one dimer may drive channel opening by pushing a "gas pedal" in the TRP domain away from the S6 gate against S4. In this way, the efficacy is decreased, but the cooperativity is increased for the menthol effect at membrane hyperpolarization. Therefore, this review may extend a new pathway for ligand-stereoselective allosteric regulation of other voltage- and ligand-gated ion channels by menthol.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Drug Research and Development, Institute of Biophysical Medico-chemistry, Reno, NV, USA
| |
Collapse
|
7
|
Meng C, Zeng W, Lv J, Wang Y, Gao M, Chang R, Li Q, Wang X. 1,8-cineole ameliorates ischaemic brain damage via TRPC6/CREB pathways in rats. J Pharm Pharmacol 2021; 73:979-985. [PMID: 33877307 DOI: 10.1093/jpp/rgab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/12/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES A previous in vitro study reported that the monoterpene oxide 1,8-cineole (cineole) attenuates neuronal caused by oxygen-glucose deprivation/reoxygenation in culture. However, to date, there is no in vivo evidence showing neuroprotective effects of cineole against stroke. This study aimed to investigate whether cineole attenuates cerebral ischaemic damage in rats. METHODS A rat model of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion was applied. Male rats were treated with oral cineole (100 mg/kg) for 7 consecutive days, then subjected to MCAO surgery. Infarct volume, neurologic deficits, apoptosis and expression levels of all-spectrin breakdown products of 145 kDa (SBDP145), transient receptor potential canonical (subtype) 6 (TRPC6) and phosphorylated CREB (p-CREB) were measured in ischaemic brain tissues. KEY FINDINGS Cineole treatment significantly reduced infarct volume, neurological dysfunction, neuronal apoptosis, SBDP145 formation and TRPC6 degradation and enhanced p-CREB expression in MCAO rats compared with vehicle treatment. These neuroprotective effects were markedly suppressed by pharmacological inhibition of MEK or CaMKIV signalling. CONCLUSIONS Our study provides in vivo evidence demonstrating that cineole pretreatment attenuates ischaemic stroke-induced brain damage, mainly through blocking calpain-induced TRPC6 degradation and activating CREB via MEK/CREB and CaMKIV/CREB signalling pathways.
Collapse
Affiliation(s)
- Chen Meng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenjing Zeng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Lv
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meiling Gao
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruijie Chang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xianyu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Anesthesiology, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
8
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
9
|
Yu C, Zhang J, Wang T. Star anise essential oil:chemical compounds, antifungal and antioxidant activities: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1813213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- CaiYun Yu
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| | - JingFei Zhang
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Howes MR, Perry NS, Vásquez‐Londoño C, Perry EK. Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. Br J Pharmacol 2020; 177:1294-1315. [PMID: 31650528 PMCID: PMC7056459 DOI: 10.1111/bph.14898] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cognitive decline can occur with normal ageing and in age-related brain disorders, such as mild cognitive impairment and dementia, including Alzheimer's disease, with limited pharmacological therapies available. Other approaches to reduce cognitive decline are urgently needed, and so, the role of dietary interventions or nutraceuticals has received much attention in this respect. In this review, we examine the evidence for dietary plants and their chemical constituents as nutraceuticals, relevant to both cognitive decline in normal ageing and in dementia. Pharmacological (in vitro and in vivo), clinical and epidemiological evidence is assessed for both frequently consumed plants and their dietary forms, including tea, coffee, cocoa (chocolate), red wine, grapes, citrus and other fruits; in addition to plants used less frequently in certain diets and those that cross the blurred boundaries between foods, nutraceuticals and medicinal plants. For the latter, turmeric, saffron, sage, rosemary and lemon balm are examples of those discussed. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Melanie‐Jayne R. Howes
- Natural Capital and Plant Health DepartmentRoyal Botanic Gardens, KewSurreyUK
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | | | | | - Elaine K. Perry
- Dilston Physic GardenCorbridgeUK
- Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
11
|
Luo Y, Sun W, Feng X, Ba X, Liu T, Guo J, Xiao L, Jiang J, Hao Y, Xiong D, Jiang C. (-)-menthol increases excitatory transmission by activating both TRPM8 and TRPA1 channels in mouse spinal lamina II layer. Biochem Biophys Res Commun 2019; 516:825-830. [PMID: 31262448 DOI: 10.1016/j.bbrc.2019.06.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/23/2019] [Indexed: 11/15/2022]
Abstract
(-)-menthol, a major form of menthol, is one of the most commonly used chemicals. Many studies have demonstrated that (-)-menthol produces analgesic action through peripheral mechanisms which are mainly mediated by activation of TRPM8. Moreover, intrathecal injection of menthol induces analgesia as well. However, the central actions and mechanisms of (-)-menthol remain unclear. Here, we have investigated the action of (-)-menthol on excitatory synaptic transmission in spinal lamina II layer which plays a pivotal role in modulating nociceptive transmission from the periphery by using patch-clamp technique in mice spinal cord. We found that (-)-menthol increased miniature excitatory postsynaptic current frequency. The frequency increases which (-)-menthol induced were in a dose-dependent manner (EC50: 0.1079 mM). However, neither genetic knockout nor pharmacological inhibition of TRPM8 could block (-)-menthol-induced effects entirely. Furthermore, this increase was also impaired by TRPA1 antagonist HC030031, but abolished utterly by co-application of TRPM8 and TRPA1 antagonist. Our results indicate that (-)-menthol increases the excitatory synaptic transmission by activating either TRPA1 or TRPM8 channels in spinal lamina II layer.
Collapse
Affiliation(s)
- Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Xiaojin Feng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiyuan Ba
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Tao Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jing Guo
- Department of Endocrinology & Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Jin Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Wang C, Yu T, Fujita T, Kumamoto E. Moieties of plant-derived compounds responsible for outward current production and TRPA1 activation in rat spinal substantia gelatinosa. Pharmacol Rep 2018; 71:67-72. [PMID: 30471518 DOI: 10.1016/j.pharep.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Transient receptor potential ankyrin-1 (TRPA1) channels expressed in the central terminal of dorsal root ganglion neurons in the spinal substantia gelatinosa (SG) play a role in modulating nociceptive transmission. Although plant-derived compounds exhibiting antinociception (such as eugenol, carvacrol and thymol) activate TRPA1 channels to enhance spontaneous excitatory transmission while hyperpolarizing membranes in SG neurons without TRPA1 activation, specific chemical moieties involved in synaptic modulation are unknown. METHODS We examined the effects of other plant-derived compounds (guaiacol, vanillin, vanillic acid and p-cymene) on holding current and spontaneous excitatory transmission at -70 mV by applying the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. RESULTS None of the compounds affected the frequency or amplitude of spontaneous excitatory postsynaptic current. Guaiacol and vanillic acid had no effect on holding currents, while vanillin and p-cymene produced an inward and outward current, respectively, in some neurons tested. Synaptic modulation was also observed within the same neuron as the activities of eugenol, carvacrol, thymol, and the chemically-related plant-derived compound zingerone occurred. CONCLUSION A substituted group in eugenol and zingerone, but not in guaiacol, vanillin or vanillic acid, as well as an OH bound to the benzene ring of carvacrol and thymol, but not p-cymene, play a role in producing outward current and TRPA1 activation. Thus, the binding of such chemical moeties to the benzene ring of plant-derived compounds appears necessary to modulate nociceptive transmission in the SG. This information provides insight for the development of new analgesics based on plant-derived compounds.
Collapse
Affiliation(s)
- Chong Wang
- Department of Physiology, Saga Medical School, Nabeshima, Saga, Japan
| | - Ting Yu
- Department of Physiology, Saga Medical School, Nabeshima, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Nabeshima, Saga, Japan
| | - Eiichi Kumamoto
- Department of Physiology, Saga Medical School, Nabeshima, Saga, Japan.
| |
Collapse
|
13
|
1,8-Cineole blocks voltage-gated L-type calcium channels in tracheal smooth muscle. Pflugers Arch 2018; 470:1803-1813. [DOI: 10.1007/s00424-018-2201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
14
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
15
|
Piao LH, Fujita T, Yu T, Kumamoto E. Presynaptic facilitation by tetracaine of glutamatergic spontaneous excitatory transmission in the rat spinal substantia gelatinosa – Involvement of TRPA1 channels. Brain Res 2017; 1657:245-252. [DOI: 10.1016/j.brainres.2016.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022]
|
16
|
Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals. Pharmaceuticals (Basel) 2016; 9:ph9030046. [PMID: 27483289 PMCID: PMC5039499 DOI: 10.3390/ph9030046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/19/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (-)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain.
Collapse
|