1
|
Kosar M, Mach L, Carreira EM, Nazaré M, Pacher P, Grether U. Patent review of cannabinoid receptor type 2 (CB 2R) modulators (2016-present). Expert Opin Ther Pat 2024; 34:665-700. [PMID: 38886185 DOI: 10.1080/13543776.2024.2368745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cannabinoid receptor type 2 (CB2R), predominantly expressed in immune tissues, is believed to play a crucial role within the body's protective mechanisms. Its modulation holds immense therapeutic promise for addressing a wide spectrum of dysbiotic conditions, including cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, and autoimmune diseases, as well as lung disorders, cancer, and pain management. AREAS COVERED This review is an account of patents from 2016 up to 2023 which describes novel CB2R ligands, therapeutic applications, synthesis, as well as formulations of CB2R modulators. EXPERT OPINION The patents cover a vast, structurally diverse chemical space. The focus of CB2R ligand development has shifted from unselective dual-cannabinoid receptor type 1 (CB1R) and 2 agonists toward agonists with high selectivity over CB1R, particularly for indications associated with inflammation and tissue injury. Currently, there are at least eight CB2R agonists and one antagonist in active clinical development. A better understanding of the endocannabinoid system (ECS) and in particular of CB2R pharmacology is required to unlock the receptor's full therapeutic potential.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Leonard Mach
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
2
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2024:10.1038/s41380-024-02656-9. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
3
|
Zhang Q, Zhao Y, Wu J, Zhong W, Huang W, Pan Y. The progress of small molecules against cannabinoid 2 receptor (CB 2R). Bioorg Chem 2024; 144:107075. [PMID: 38218067 DOI: 10.1016/j.bioorg.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
The two subtypes of cannabinoid receptors (CBR), namely CB1R and CB2R, belong to the G protein-coupled receptor (GPCR) superfamily and are confirmed as potential therapeutic targets for a variety of diseases such as inflammation, neuropathic pain, and immune-related disorders. Since CB1R is mainly distributed in the central nervous system (CNS), it could produce severe psychiatric adverse reactions and addiction. In contrast, CB2R are predominantly distributed in the peripheral immune system with minimal CNS-related side effects. Therefore, more attention has been devoted to the discovery of CB2R ligands. In view of the favorable profile of CB2R, many high-binding affinity and selectivity CB2R ligands have been developed recently. This paper reviews recent research progress on CB2R ligands, including endogenous CB2R ligands, natural compounds, and novel small molecules, in order to provide a reference for subsequent CB2R ligand development.
Collapse
Affiliation(s)
| | - Ying Zhao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianan Wu
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Wenhai Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Youlu Pan
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Teodoro R, Gündel D, Deuther-Conrad W, Kazimir A, Toussaint M, Wenzel B, Bormans G, Hey-Hawkins E, Kopka K, Brust P, Moldovan RP. Synthesis, Structure-Activity Relationships, Radiofluorination, and Biological Evaluation of [ 18F]RM365, a Novel Radioligand for Imaging the Human Cannabinoid Receptor Type 2 (CB2R) in the Brain with PET. J Med Chem 2023; 66:13991-14010. [PMID: 37816245 PMCID: PMC10614203 DOI: 10.1021/acs.jmedchem.3c01035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/12/2023]
Abstract
The development of cannabinoid receptor type 2 (CB2R) PET radioligands has been intensively explored due to the pronounced CB2R upregulation under various pathological conditions. Herein, we report on the synthesis of a series of CB2R affine fluorinated indole-2-carboxamide ligands. Compound RM365 was selected for PET radiotracer development due to its high CB2R affinity (Ki = 2.1 nM) and selectivity over CB1R (factor > 300). Preliminary in vitro evaluation of [18F]RM365 indicated species differences in the binding to CB2R (KD of 2.32 nM for the hCB2R vs KD > 10,000 nM for the rCB2R). Metabolism studies in mice revealed a high in vivo stability of [18F]RM365. PET imaging in a rat model of local hCB2R(D80N) overexpression in the brain demonstrates the ability of [18F]RM365 to reach and selectively label the hCB2R(D80N) with a high signal-to-background ratio. Thus, [18F]RM365 is a very promising PET radioligand for the imaging of upregulated hCB2R expression under pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Daniel Gündel
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Aleksandr Kazimir
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Magali Toussaint
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Barbara Wenzel
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Guy Bormans
- Radiopharmaceutical
Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Klaus Kopka
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
- The
Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| |
Collapse
|
5
|
Haider A, Wang L, Gobbi L, Li Y, Chaudhary A, Zhou X, Chen J, Zhao C, Rong J, Xiao Z, Hou L, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Ahmed H, Crowe R, Honer M, Rominger A, Grether U, Liang SH, Ametamey SM. Evaluation of [ 18F]RoSMA-18-d 6 as a CB2 PET Radioligand in Nonhuman Primates. ACS Chem Neurosci 2023; 14:3752-3760. [PMID: 37788055 DOI: 10.1021/acschemneuro.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 μM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Kallinen A, Mardon K, Lane S, Montgomery AP, Bhalla R, Stimson DHR, Ahamed M, Cowin GJ, Hibbs D, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and Preclinical Evaluation of Fluorinated 5-Azaindoles as CB2 PET Radioligands. ACS Chem Neurosci 2023; 14:2902-2921. [PMID: 37499194 DOI: 10.1021/acschemneuro.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Several classes of cannabinoid receptor type 2 radioligands have been evaluated for imaging of neuroinflammation, with successful clinical translation yet to take place. Here we describe the synthesis of fluorinated 5-azaindoles and pharmacological characterization and in vivo evaluation of 18F-radiolabeled analogues. [18F]2 (hCB2 Ki = 96.5 nM) and [18F]9 (hCB2 Ki = 7.7 nM) were prepared using Cu-mediated 18F-fluorination with non-decay-corrected radiochemical yields of 15 ± 6% and 18 ± 2% over 85 and 80 min, respectively, with high radiochemical purities (>97%) and molar activities (140-416 GBq/μmol). In PET imaging studies in rats, both [18F]2 and [18F]9 demonstrated specific binding in CB2-rich spleen after pretreatment with CB2-specific GW405833. Moreover, [18F]9 exhibited higher brain uptake at later time points in a murine model of neuroinflammation compared with a healthy control group. The results suggest further evaluation of azaindole based CB2 radioligands is warranted in other neuroinflammation models.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karine Mardon
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gary J Cowin
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Hibbs
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Ueberham L, Gündel D, Kellert M, Deuther-Conrad W, Ludwig FA, Lönnecke P, Kazimir A, Kopka K, Brust P, Moldovan RP, Hey-Hawkins E. Development of the High-Affinity Carborane-Based Cannabinoid Receptor Type 2 PET Ligand [ 18F]LUZ5- d8. J Med Chem 2023; 66:5242-5260. [PMID: 36944112 PMCID: PMC10782483 DOI: 10.1021/acs.jmedchem.3c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 03/23/2023]
Abstract
The development of cannabinoid receptor type 2 (CB2R) radioligands for positron emission tomography (PET) imaging was intensively explored. To overcome the low metabolic stability and simultaneously increase the binding affinity of known CB2R radioligands, a carborane moiety was used as a bioisostere. Here we report the synthesis and characterization of carborane-based 1,8-naphthyridinones and thiazoles as novel CB2R ligands. All tested compounds showed low nanomolar CB2R affinity, with (Z)-N-[3-(4-fluorobutyl)-4,5-dimethylthiazole-2(3H)-ylidene]-(1,7-dicarba-closo-dodecaboranyl)-carboxamide (LUZ5) exhibiting the highest affinity (0.8 nM). Compound [18F]LUZ5-d8 was obtained with an automated radiosynthesizer in high radiochemical yield and purity. In vivo evaluation revealed the improved metabolic stability of [18F]LUZ5-d8 compared to that of [18F]JHU94620. PET experiments in rats revealed high uptake in spleen and low uptake in brain. Thus, the introduction of a carborane moiety is an appropriate tool for modifying literature-known CB2R ligands and gaining access to a new class of high-affinity CB2R ligands, while the in vivo pharmacology still needs to be addressed.
Collapse
Affiliation(s)
- Lea Ueberham
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Daniel Gündel
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Martin Kellert
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Peter Lönnecke
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Aleksandr Kazimir
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
- The
Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
9
|
Huang J. Novel brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Front Immunol 2022; 13:1010946. [PMID: 36211392 PMCID: PMC9537554 DOI: 10.3389/fimmu.2022.1010946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with a concealed onset and continuous deterioration. Mild cognitive impairment (MCI) is the prodromal stage of AD. Molecule-based imaging with positron emission tomography (PET) is critical in tracking pathophysiological changes among AD and MCI patients. PET with novel targets is a promising approach for diagnostic imaging, particularly in AD patients. Our present review overviews the current status and applications of in vivo molecular imaging toward neuroinflammation. Although radiotracers can remarkably diagnose AD and MCI patients, a variety of limitations prevent the recommendation of a single technique. Recent studies examining neuroinflammation PET imaging suggest an alternative approach to evaluate disease progression. This review concludes that PET imaging towards neuroinflammation is considered a promising approach to deciphering the enigma of the pathophysiological process of AD and MCI.
Collapse
|
10
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
11
|
Preliminary Assessment of the Anti-inflammatory Activity of New Structural Honokiol Analogs with a 4'- O-(2-Fluoroethyl) Moiety and the Potential of Their 18F-Labeled Derivatives for Neuroinflammation Imaging. Molecules 2021; 26:molecules26216630. [PMID: 34771039 PMCID: PMC8587714 DOI: 10.3390/molecules26216630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 01/31/2023] Open
Abstract
Neolignans honokiol and 4′-O-methylhonokiol (MH) and their derivatives have pronounced anti-inflammatory activity, as evidenced by numerous pharmacological studies. Literature data suggested that cyclooxygenase type 2 (COX-2) may be a target for these compounds in vitro and in vivo. Recent studies of [11C]MPbP (4′-[11C]methoxy-5-propyl-1,1′-biphenyl-2-ol) biodistribution in LPS (lipopolysaccharide)-treated rats have confirmed the high potential of MH derivatives for imaging neuroinflammation. Here, we report the synthesis of four structural analogs of honokiol, of which 4′-(2-fluoroethoxy)-2-hydroxy-5-propyl-1, 1′-biphenyl (F-IV) was selected for labeling with fluorine-18 (T1/2 = 109.8 min) due to its high anti-inflammatory activity confirmed by enzyme immunoassays (EIA) and neuromorphological studies. The high inhibitory potency of F-IV to COX-2 and its moderate lipophilicity and chemical stability are favorable factors for the preliminary evaluation of the radioligand [18F]F-IV in a rodent model of neuroinflammation. [18F]F-IV was prepared with good radiochemical yield and high molar activity and radiochemical purity by 18F-fluoroethylation of the precursor with Boc-protecting group (15) with [18F]2-fluoro-1-bromoethane ([18F]FEB). Ex vivo biodistribution studies revealed a small to moderate increase in radioligand uptake in the brain and peripheral organs of LPS-induced rats compared to control animals. Pretreatment with celecoxib resulted in significant blocking of radioactivity uptake in the brain (pons and medulla), heart, lungs, and kidneys, indicating that [18F]F-IV is likely to specifically bind to COX-2 in a rat model of neuroinflammation. However, in comparison with [11C]MPbP, the new radioligand showed decreased brain uptake in LPS rats and high retention in the blood pool, which apparently could be explained by its high plasma protein binding. We believe that the structure of [18F]F-IV can be optimized by replacing the substituents in the biphenyl core to eliminate these disadvantages and develop new radioligands for imaging activated microglia.
Collapse
|
12
|
Beaino W, Janssen B, Vugts DJ, de Vries HE, Windhorst AD. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol 2021; 206:282-300. [PMID: 34331705 PMCID: PMC8561701 DOI: 10.1111/cei.13649] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing the heterogeneity of microglia activation in neuroinflammatory and neurodegenerative diseases. It has been hypothesized that pro‐inflammatory microglia are detrimental and contribute to disease progression, while anti‐inflammatory microglia play a role in damage repair and remission. The development of therapeutics targeting the deleterious glial activity and modulating it into a regenerative phenotype relies heavily upon a clearer understanding of the microglia dynamics during disease progression and the ability to monitor therapeutic outcome in vivo. To that end, molecular imaging techniques are required to assess microglia dynamics and study their role in disease progression as well as to evaluate the outcome of therapeutic interventions. Positron emission tomography (PET) is such a molecular imaging technique, and provides unique capabilities for non‐invasive quantification of neuroinflammation and has the potential to discriminate between microglia phenotypes and define their role in the disease process. However, several obstacles limit the possibility for selective in vivo imaging of microglia phenotypes mainly related to the poor characterization of specific targets that distinguish the two ends of the microglia activation spectrum and lack of suitable tracers. PET tracers targeting translocator protein 18 kDa (TSPO) have been extensively explored, but despite the success in evaluating neuroinflammation they failed to discriminate between microglia activation statuses. In this review, we highlight the current knowledge on the microglia phenotypes in the major neuroinflammatory and neurodegenerative diseases. We also discuss the current and emerging PET imaging targets, the tracers and their potential in discriminating between the pro‐ and anti‐inflammatory microglia activation states.
Collapse
Affiliation(s)
- Wissam Beaino
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Bieneke Janssen
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
13
|
|
14
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2020; 64:123-149. [PMID: 33379862 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College Street, Toronto, M5T 1R8 ON, Canada
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, and Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States.,Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College Street, Toronto, M5T 1R8 ON, Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, and Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China.,Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
16
|
Haider A, Gobbi L, Kretz J, Ullmer C, Brink A, Honer M, Woltering TJ, Muri D, Iding H, Bürkler M, Binder M, Bartelmus C, Knuesel I, Pacher P, Herde AM, Spinelli F, Ahmed H, Atz K, Keller C, Weber M, Schibli R, Mu L, Grether U, Ametamey SM. Identification and Preclinical Development of a 2,5,6-Trisubstituted Fluorinated Pyridine Derivative as a Radioligand for the Positron Emission Tomography Imaging of Cannabinoid Type 2 Receptors. J Med Chem 2020; 63:10287-10306. [PMID: 32787079 DOI: 10.1021/acs.jmedchem.0c00778] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the broad implications of the cannabinoid type 2 receptor (CB2) in neuroinflammatory processes, a suitable CB2-targeted probe is currently lacking in clinical routine. In this work, we synthesized 15 fluorinated pyridine derivatives and tested their binding affinities toward CB2 and CB1. With a sub-nanomolar affinity (Ki for CB2) of 0.8 nM and a remarkable selectivity factor of >12,000 over CB1, RoSMA-18-d6 exhibited outstanding in vitro performance characteristics and was radiofluorinated with an average radiochemical yield of 10.6 ± 3.8% (n = 16) and molar activities ranging from 52 to 65 GBq/μmol (radiochemical purity > 99%). [18F]RoSMA-18-d6 showed exceptional CB2 attributes as demonstrated by in vitro autoradiography, ex vivo biodistribution, and positron emission tomography (PET). Further, [18F]RoSMA-18-d6 was used to detect CB2 upregulation on postmortem human ALS spinal cord tissues. Overall, these results suggest that [18F]RoSMA-18-d6 is a promising CB2 PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Ahmed Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julian Kretz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Christoph Ullmer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Andreas Brink
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Thomas J Woltering
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Dieter Muri
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Hans Iding
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Markus Bürkler
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martin Binder
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Christian Bartelmus
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Irene Knuesel
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, 5625 Fishers Lane, Rockville, 20852 Maryland, United States
| | - Adrienne Müller Herde
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Francesco Spinelli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Kenneth Atz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Basagni F, Rosini M, Decker M. Functionalized Cannabinoid Subtype 2 Receptor Ligands: Fluorescent, PET, Photochromic and Covalent Molecular Probes. ChemMedChem 2020; 15:1374-1389. [PMID: 32578963 PMCID: PMC7497013 DOI: 10.1002/cmdc.202000298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Cannabinoid subtype 2 receptors (CB2 Rs) are G protein-coupled receptors (GPCRs) belonging to the endocannabinoid system, a complex network of signalling pathways leading to the regulation of key physiological processes. Interestingly, CB2 Rs are strongly up-regulated in pathological conditions correlated with the onset of inflammatory events like cancer and neurodegenerative diseases. Therefore, CB2 Rs represent an important biological target for therapeutic as well as diagnostic purposes. No CB2 R-selective drugs are yet on the market, thus underlining a that deeper comprehension of CB2 Rs' complex activation pathways and their role in the regulation of diseases is needed. Herein, we report an overview of pharmacological and imaging tools such as fluorescent, positron emission tomography (PET), photochromic and covalent selective CB2 R ligands. These molecular probes can be used in vitro as well as in vivo to investigate and explore the unravelled role(s) of CB2 Rs, and they can help to design suitable CB2 R-targeted drugs.
Collapse
Affiliation(s)
- Filippo Basagni
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
- Department of Pharmacy and BiotechnologyUniversity of BolognaVia Belmeloro 640126BolognaItaly
| | - Michela Rosini
- Department of Pharmacy and BiotechnologyUniversity of BolognaVia Belmeloro 640126BolognaItaly
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
18
|
Kiseleva MM, Vaulina DD, Sivak KV, Alexandrov AG, Kuzmich NN, Viktorov NB, Kuznetsova OF, Gomzina NA. Radiosynthesis of a Novel
11
C‐Labeled Derivative of 4’‐
O
‐Methylhonokiol and Its Preliminary Evaluation in an LPS Rat Model of Neuroinflammation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariia M Kiseleva
- Research Center of the University Hospital Centre of Québec CityLaval University 2705, boulevard Laurier Québec, QC Canada G1 V 4G2
- Department of Science and Engineering, Mineral, Metallurgical, and Materials EngineeringLaval University 2325 Rue de l'Université Québec, QC Canada QC G1 V 0 A6
| | - Daria D Vaulina
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| | - Konstantin V Sivak
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
| | - Andrey G Alexandrov
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
| | - Nikolay N Kuzmich
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
- Institute of Biotechnology and Translational medicine, I. M. SechenovFirst Moscow State Medical University, 8 build.2 Trubetskaya street Moscow 119991 Russian Federation
| | - Nikolai B Viktorov
- Department of organic chemistry, Faculty of chemical and biotechnologiesSaint-Petersburg State Institute of Technology, 26 Moskovsky prospect Saint-Petersburg 190013 Russian Federation
| | - Olga F Kuznetsova
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| | - Natalia A Gomzina
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| |
Collapse
|
19
|
Kallinen A, Boyd R, Lane S, Bhalla R, Mardon K, Stimson DHR, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and in vitro evaluation of fluorine-18 benzimidazole sulfones as CB2 PET-radioligands. Org Biomol Chem 2019; 17:5086-5098. [PMID: 31070218 DOI: 10.1039/c9ob00656g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabinoid type 2 receptor (CB2) is up-regulated on activated microglial cells and can potentially be used as a biomarker for PET-imaging of neuroinflammation. In this study the synthesis and pharmacological evaluation of novel fluorinated pyridyl and ethyl sulfone analogues of 2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(2-methylpentyl)-1H-benzo[d]imidazole (rac-1a) are described. In general, the ligands showed low nanomolar potency (CB2 EC50 < 10 nM) and excellent selectivity over the CB1 subtype (>10 000×). Selected ligands 1d, 1e, 1g and 3l showing high CB2 binding affinity (Ki < 10 nM) were radiolabelled with fluorine-18 from chloropyridyl and alkyl tosylate precursors with good to high isolated radioactive yields (25-44%, non-decay corrected, at the end of synthesis). CB2-specific binding of the radioligand candidates [18F]-1d and [18F]-3l was assessed on rat spleen cryosections using in vitro autoradiography. The results warrant further in vivo evaluation of the tracer candidates as prospective CB2 PET-imaging agents.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Rochelle Boyd
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Samuel Lane
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Rajiv Bhalla
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Karine Mardon
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Damion H R Stimson
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Ni R, Mu L, Ametamey S. Positron emission tomography of type 2 cannabinoid receptors for detecting inflammation in the central nervous system. Acta Pharmacol Sin 2019; 40:351-357. [PMID: 29921889 PMCID: PMC6460366 DOI: 10.1038/s41401-018-0035-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Cannabinoid receptor CB2 (CB2R) is upregulated on activated microglia and astrocytes in the brain under inflammatory conditions and plays important roles in many neurological diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. The advent of positron emission tomography (PET) using CB2R radiotracers has enabled the visualization of CB2R distribution in vivo in animal models of central nervous system inflammation, however translation to humans has been less successful. Several novel CB2R radiotracers have been developed and evaluated to quantify microglial activation. In this review, we summarize the recent preclinical and clinical imaging results of CB2R PET tracers and discuss the prospects of CB2R imaging using PET.
Collapse
Affiliation(s)
- Ruiqing Ni
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093, Switzerland.
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Simon Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
21
|
Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:371-399. [DOI: 10.1016/bs.pmbts.2019.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Edison P, Brooks DJ. Role of Neuroinflammation in the Trajectory of Alzheimer’s Disease and in vivo Quantification Using PET. J Alzheimers Dis 2018; 64:S339-S351. [DOI: 10.3233/jad-179929] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| | - David J. Brooks
- Department of Nuclear Medicine, Aarhus University, Denmark
- Institute of Neuroscience, University of Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Abstract
Neuroinflammation, which involves microglial activation, is thought to play a key role in the development and progression of neurodegenerative diseases and other brain pathologies. Positron emission tomography is an ideal imaging technique for studying biochemical processes in vivo, and particularly for studying the living brain. Neuroinflammation has been traditionally studied using radiotracers targeting the translocator protein 18 kDa, but this comes with certain limitations. The current review describes alternative biological targets that have gained interest for the imaging of microglial activation over recent years, such as the cannabinoid receptor type 2, cyclooxygenase-2, the P2X₇ receptor and reactive oxygen species, and some promising radiotracers for these targets. Although many advances have been made in the field of neuroinflammation imaging, current radiotracers all target the pro-inflammatory (M1) phenotype of activated microglia, since the number of known biological targets specific for the anti-inflammatory (M2) phenotype that are also suited as a target for radiotracer development is still limited. Next to proceeding the currently available tracers for M1 microglia into the clinic, the development of a suitable radiotracer for M2 microglia would mean a great advance in the field, as this would allow for imaging of the dynamics of microglial activation in different diseases.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Optimization of the metabolic stability of a fluorinated cannabinoid receptor subtype 2 (CB2) ligand designed for PET studies. Eur J Med Chem 2018; 146:409-422. [DOI: 10.1016/j.ejmech.2018.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/16/2023]
|
25
|
Haider A, Spinelli F, Herde AM, Mu B, Keller C, Margelisch M, Weber M, Schibli R, Mu L, Ametamey SM. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur J Med Chem 2018; 145:746-759. [DOI: 10.1016/j.ejmech.2017.12.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023]
|
26
|
Zachleder V, Vítová M, Hlavová M, Moudříková Š, Mojzeš P, Heumann H, Becher JR, Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol Adv 2018; 36:784-797. [PMID: 29355599 DOI: 10.1016/j.biotechadv.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.
Collapse
Affiliation(s)
- Vilém Zachleder
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Monika Hlavová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | | | | | - Kateřina Bišová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic.
| |
Collapse
|
27
|
Spinelli F, Mu L, Ametamey SM. Radioligands for positron emission tomography imaging of cannabinoid type 2 receptor. J Labelled Comp Radiopharm 2017; 61:299-308. [PMID: 29110331 DOI: 10.1002/jlcr.3579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 01/11/2023]
Abstract
The cannabinoid type 2 (CB2) receptor is an immunomodulatory receptor mainly expressed in peripheral cells and organs of the immune system. The expression level of CB2 in the central nervous system under physiological conditions is negligible, however under neuroinflammatory conditions an upregulation of CB2 protein or mRNA mainly colocalized with activated microglial cells has been reported. Consequently, CB2 agonists have been confirmed to play a role in neuroprotective and anti-inflammatory processes. A suitable positron emission tomography radioligand for imaging CB2 would provide an invaluable research tool to explore the role of CB2 receptor expression in inflammatory disorders. In this review, we provide a summary of so far published CB2 radioligands as well as their in vitro and in vivo binding characteristics.
Collapse
Affiliation(s)
- Francesco Spinelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "A. Moro", Bari, Italy.,Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, University Hospital Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
29
|
Spinelli F, Capparelli E, Abate C, Colabufo NA, Contino M. Perspectives of Cannabinoid Type 2 Receptor (CB2R) Ligands in Neurodegenerative Disorders: Structure-Affinity Relationship (SAfiR) and Structure-Activity Relationship (SAR) Studies. J Med Chem 2017; 60:9913-9931. [PMID: 28608697 DOI: 10.1021/acs.jmedchem.7b00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Up-regulation of CB2R on activated microglial cells, the first step in neurodegeneration, has been widely demonstrated, and this finding makes the receptor a promising target in the early diagnosis and treatment of several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS). The development of CB2R PET ligands could help demonstrate the neurodegenerative pathogenesis, thus providing useful tools for characterizing the role of neuroinflammation in the progression of these disorders. CB2R agonists and inverse agonists have emerged as neuroprotective agents, and CB2R agonists have entered several clinical trials. CB2R ligands have therefore received great attention, and different molecular scaffolds have been selected to target CB2R subtypes. This review is focused on structure-activity relationship (SAR) and structure-affinity relationship (SAfiR) studies performed on different scaffolds with the aim to identify the molecular features useful for the design of both therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Francesco Spinelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy
| | - Elena Capparelli
- Biofordrug srl, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.,Catholic University "Our Lady of Good Counsel", Kompleksi Spitalor Universitar "Zoja e Këshillit të Mirë" , Rr. Dritan Hoxha, Laprakë, 1000, Tirana, Albania
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy.,Biofordrug srl, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
30
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
31
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
32
|
Meletta R, Slavik R, Mu L, Rancic Z, Borel N, Schibli R, Ametamey SM, Krämer SD, Müller Herde A. Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: Evaluation of the novel radiotracer [ 11 C]RS-016 targeting CB2 in atherosclerosis. Nucl Med Biol 2017; 47:31-43. [DOI: 10.1016/j.nucmedbio.2017.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
|
33
|
Ahamed M, van Veghel D, Ullmer C, Van Laere K, Verbruggen A, Bormans GM. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [ 11C]MA2 and [ 18F]MA3. Front Neurosci 2016; 10:431. [PMID: 27713686 PMCID: PMC5031696 DOI: 10.3389/fnins.2016.00431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.
Collapse
Affiliation(s)
- Muneer Ahamed
- Laboratory for Radiopharmacy, KU Leuven Leuven, Belgium
| | | | - Christoph Ullmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd Basel, Switzerland
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospital and KU Leuven Leuven, Belgium
| | | | - Guy M Bormans
- Laboratory for Radiopharmacy, KU Leuven Leuven, Belgium
| |
Collapse
|