1
|
Leontyev D, Olivos H, Shrestha B, Datta Roy PM, LaPlaca MC, Fernández FM. Desorption Electrospray Ionization Cyclic Ion Mobility-Mass Spectrometry Imaging for Traumatic Brain Injury Spatial Metabolomics. Anal Chem 2024; 96:13598-13606. [PMID: 39106040 PMCID: PMC11339727 DOI: 10.1021/acs.analchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Lipidomics focuses on investigating alterations in a wide variety of lipids that harness important information on metabolic processes and disease pathology. However, the vast structural diversity of lipids and the presence of isobaric and isomeric species creates serious challenges in feature identification, particularly in mass spectrometry imaging experiments that lack front-end separations. Ion mobility has emerged as a potential solution to address some of these challenges and is increasingly being utilized as part of mass spectrometry imaging platforms. Here, we present the results of a pilot mass spectrometry imaging study on rat brains subjected to traumatic brain injury (TBI) to evaluate the depth and quality of the information yielded by desorption electrospray ionization cyclic ion mobility mass spectrometry (DESI cIM MSI). Imaging data were collected with one and six passes through the cIM cell. Increasing the number of passes increased the ion mobility resolving power and the resolution of isobaric lipids, enabling the creation of more specific maps. Interestingly, drift time data enabled the recognition of multiply charged phosphoinositide species in the complex data set generated. These species have not been previously reported in TBI MSI studies and were found to decrease in the hippocampus region following injury. These changes were attributed to increased enzymatic activity after TBI, releasing arachidonic acid that is converted to eicosanoids to control inflammation. A substantial reduction in NAD and alterations in other adenine metabolites were also observed, supporting the hypothesis that energy metabolism in the brain is severely disrupted in TBI.
Collapse
Affiliation(s)
- Dmitry Leontyev
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United State
| | - Hernando Olivos
- Waters
Corporation, Milford, Massachusetts 01757, United State
| | | | - Pooja M. Datta Roy
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, Georgia 30332, United State
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, Georgia 30332, United State
- Parker
H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia 30332, United
States
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United State
- Parker
H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia 30332, United
States
| |
Collapse
|
2
|
Leontyev D, Pulliam AN, Ma X, Gaul DA, LaPlaca MC, Fernández FM. Spatial lipidomics maps brain alterations associated with mild traumatic brain injury. Front Chem 2024; 12:1394064. [PMID: 38873407 PMCID: PMC11169706 DOI: 10.3389/fchem.2024.1394064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI) is a global public health problem with 50-60 million incidents per year, most of which are considered mild (mTBI) and many of these repetitive (rmTBI). Despite their massive implications, the pathologies of mTBI and rmTBI are not fully understood, with a paucity of information on brain lipid dysregulation following mild injury event(s). To gain more insight on mTBI and rmTBI pathology, a non-targeted spatial lipidomics workflow utilizing high resolution mass spectrometry imaging was developed to map brain region-specific lipid alterations in rats following injury. Discriminant multivariate models were created for regions of interest including the hippocampus, cortex, and corpus callosum to pinpoint lipid species that differentiated between injured and sham animals. A multivariate model focused on the hippocampus region differentiated injured brain tissues with an area under the curve of 0.99 using only four lipid species. Lipid classes that were consistently discriminant included polyunsaturated fatty acid-containing phosphatidylcholines (PC), lysophosphatidylcholines (LPC), LPC-plasmalogens (LPC-P) and PC potassium adducts. Many of the polyunsaturated fatty acid-containing PC and LPC-P selected have never been previously reported as altered in mTBI. The observed lipid alterations indicate that neuroinflammation and oxidative stress are important pathologies that could serve to explain cognitive deficits associated with rmTBI. Therapeutics which target or attenuate these pathologies may be beneficial to limit persistent damage following a mild brain injury event.
Collapse
Affiliation(s)
- Dmitry Leontyev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alexis N. Pulliam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| | - Michelle C. LaPlaca
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA, United States
| |
Collapse
|
3
|
Fuentes JM, Morcillo P. The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases. Cells 2024; 13:609. [PMID: 38607048 PMCID: PMC11012098 DOI: 10.3390/cells13070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Patricia Morcillo
- Departmentof Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Leontyev D, Pulliam AN, Ma X, Gaul DA, LaPlaca MC, Fernandez FM. Spatial Lipidomics Maps Brain Alterations Associated with Mild Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577203. [PMID: 38328252 PMCID: PMC10849710 DOI: 10.1101/2024.01.25.577203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Traumatic brain injury (TBI) is a global public health problem with 50-60 million incidents per year, most of which are considered mild (mTBI) and many of these repetitive (rmTBI). Despite their massive implications, the pathologies of mTBI and rmTBI are not fully understood, with a paucity of information on brain lipid dysregulation following mild injury event(s). To gain more insight on mTBI and rmTBI pathology, a non-targeted spatial lipidomics workflow utilizing ultrahigh resolution mass spectrometry imaging was developed to map brain region-specific lipid alterations in rats following injury. Discriminant multivariate models were created for regions of interest including the hippocampus, cortex, and corpus callosum to pinpoint lipid species that differentiated between injured and sham animals. A multivariate model focused on the hippocampus region differentiated injured brain tissues with an area under the curve of 0.994 using only four lipid species. Lipid classes that were consistently discriminant included polyunsaturated fatty acid-containing phosphatidylcholines (PC), lysophosphatidylcholines (LPC), LPC-plasmalogens (LPC-P) and PC potassium adducts. Many of the polyunsaturated fatty acid-containing PC and LPC-P selected have never been previously reported as altered in mTBI. The observed lipid alterations indicate that neuroinflammation, oxidative stress and disrupted sodium-potassium pumps are important pathologies that could serve to explain cognitive deficits associated with rmTBI. Therapeutics which target or attenuate these pathologies may be beneficial to limit persistent damage following a mild brain injury event.
Collapse
|
5
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
6
|
Harris G, Stickland CA, Lim M, Goldberg Oppenheimer P. Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury. Cells 2023; 12:2589. [PMID: 37998324 PMCID: PMC10670390 DOI: 10.3390/cells12222589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.
Collapse
Affiliation(s)
- Georgia Harris
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Clarissa A. Stickland
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Lim
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
7
|
Bessler S, Soltwisch J, Dreisewerd K. Visualization of Differential Cardiolipin Profiles in Murine Retinal Cell Layers by High-Resolution MALDI Mass Spectrometry Imaging. Anal Chem 2023; 95:11352-11358. [PMID: 37458700 DOI: 10.1021/acs.analchem.3c01465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The precise fatty acyl chain configuration of cardiolipin (CL), a tetrameric mitochondrial-specific membrane lipid, exhibits dependence on cell and tissue types. A powerful method to map CL profiles in tissue sections in a spatially resolved manner is matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). To build on and explore this potential, we employed a quadrupole time-of-flight mass spectrometer along with optimized sample preparation protocols. We imaged the CL profiles of individual murine retinal cell layers at a pixel size of 10 μm. In combination with tandem MS, we obtained detailed insights into the CL composition of individual retinal cell layers. In particular, we found differential expression of the polyunsaturated fatty acids (PUFA) linoleic, arachidonic, and docosahexaenoic acids. PUFAs are prone to peroxidation and hence regarded as critical factors in development and progression of retinal pathologies, such as age-related macular degeneration (AMD). The ability of MALDI-MSI to provide cues on the CL composition in neuronal tissue with close to single-cell resolution can provide important insights into retinal physiology in health and disease.
Collapse
Affiliation(s)
- Sebastian Bessler
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| |
Collapse
|
8
|
Yang D, Li J, Li Z, Zhao M, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. Cardiolipin externalization mediates prion protein (PrP) peptide 106-126-associated mitophagy and mitochondrial dysfunction. Front Mol Neurosci 2023; 16:1163981. [PMID: 37333615 PMCID: PMC10272765 DOI: 10.3389/fnmol.2023.1163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Proper mitochondrial performance is imperative for the maintenance of normal neuronal function to prevent the development of neurodegenerative diseases. Persistent accumulation of damaged mitochondria plays a role in prion disease pathogenesis, which involves a chain of events that culminate in the generation of reactive oxygen species and neuronal death. Our previous studies have demonstrated that PINK1/Parkin-mediated mitophagy induced by PrP106-126 is defective and leads to an accumulation of damaged mitochondria after PrP106-126 treatment. Externalized cardiolipin (CL), a mitochondria-specific phospholipid, has been reported to play a role in mitophagy by directly interacting with LC3II at the outer mitochondrial membrane. The involvement of CL externalization in PrP106-126-induced mitophagy and its significance in other physiological processes of N2a cells treated with PrP106-126 remain unknown. We demonstrate that the PrP106-126 peptide caused a temporal course of mitophagy in N2a cells, which gradually increased and subsequently decreased. A similar trend in CL externalization to the mitochondrial surface was seen, resulting in a gradual decrease in CL content at the cellular level. Inhibition of CL externalization by knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3 and NDPK-D, responsible for CL translocation to the mitochondrial surface, significantly decreased PrP106-126-induced mitophagy in N2a cells. Meanwhile, the inhibition of CL redistribution significantly decreased PINK1 and DRP1 recruitment in PrP106-126 treatment but had no significant decrease in Parkin recruitment. Furthermore, the inhibition of CL externalization resulted in impaired oxidative phosphorylation and severe oxidative stress, which led to mitochondrial dysfunction. Our results indicate that CL externalization induced by PrP106-126 on N2a cells plays a positive role in the initiation of mitophagy, leading to the stabilization of mitochondrial function.
Collapse
|
9
|
Mallah K, Zibara K, Kerbaj C, Eid A, Khoshman N, Ousseily Z, Kobeissy A, Cardon T, Cizkova D, Kobeissy F, Fournier I, Salzet M. Neurotrauma investigation through spatial omics guided by mass spectrometry imaging: Target identification and clinical applications. MASS SPECTROMETRY REVIEWS 2023; 42:189-205. [PMID: 34323300 DOI: 10.1002/mas.21719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) represents one of the major public health concerns worldwide due to the increase in TBI incidence as a result of injuries from daily life accidents such as sports and motor vehicle transportation as well as military-related practices. This type of central nervous system trauma is known to predispose patients to several neurological disorders such as Parkinson's disease, Alzheimer's disease, chronic trauamatic encephalopathy, and age-related Dementia. Recently, several proteomic and lipidomic platforms have been applied on different TBI studies to investigate TBI-related mechanisms that have broadened our understanding of its distinct neuropathological complications. In this study, we provide an updated comprehensive overview of the current knowledge and novel perspectives of the spatially resolved microproteomics and microlipidomics approaches guided by mass spectrometry imaging used in TBI studies and its applications in the neurotrauma field. In this regard, we will discuss the use of the spatially resolved microproteomics and assess the different microproteomic sampling methods such as laser capture microdissection, parafilm assisted microdissection, and liquid microjunction extraction as accurate and precise techniques in the field of neuroproteomics. Additionally, we will highlight lipid profiling applications and their prospective potentials in characterizing molecular processes involved in the field of TBI. Specifically, we will discuss the phospholipid metabolism acting as a precursor for proinflammatory molecules such as eicosanoids. Finally, we will survey the current state of spatial neuroproteomics and microproteomics applications and present the various studies highlighting their findings in these fields.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- PRASE, Lebanese University, Beirut, Lebanon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Coline Kerbaj
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nour Khoshman
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Zahraa Ousseily
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tristan Cardon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Center for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
10
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
11
|
Bayır H, Maguire JJ, Cadenas E. Redox Pioneer: Professor Valerian Kagan. Antioxid Redox Signal 2022; 36:813-823. [PMID: 35072541 PMCID: PMC9127833 DOI: 10.1089/ars.2021.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Professor Valerian Kagan (PhD, 1972, MV Lomonosov Moscow State University; DSci, 1981, USSR, Academy of Sciences, Moscow) is recognized as a Redox Pioneer because he has published 4 articles in the field of redox biology that have been cited >1000 times and 138 articles in this field have been cited between 100 and 924 times. The central and most important impact of Dr. Kagan's research is in the field of redox lipidomics-a term coined for the first time by Dr. Kagan in 2004-and consequently the definition of signaling pathways by oxidatively modified phospholipids; this acquires further significance considering that oxygenated phospholipids play multifunctional roles as essential signals coordinating metabolism and physiology. Some examples are the selective oxidation of cardiolipin (CL) by a cytochrome c peroxidase activity leading to the activation of the intrinsic apoptotic pathway; the hydroperoxy-arachidonoyl/adrenoyl phosphatidylethanolamine (PE) species, driven by 15-lipoxygenases (15-LOX), as death signals leading to ferroptotic cell death; the regulation of ferroptosis by iNOS/NO• in pro-inflammatory conditions by a novel mechanism (realized via interactions of 15-LOX reaction intermediates formed from arachidonoyl phosphatidylethanolamine [PE] species) and Ca2+-independent phospholipase A2 (iPLA2β; via elimination of peroxidized PE); the involvement of oxygenated (phospho)lipids in immunosuppression by myeloid cells in the tumor microenvironment; hydrolysis of peroxidized CL by Ca2+-independent phospholipase A2 (iPLA2γ) leading to pro- and anti-inflammatory signals and lipid mediators. Kagan continues his investigations to decipher the roles of enzyme-linked oxygenated phospholipids. Antioxid. Redox Signal. 36, 813-823.
Collapse
Affiliation(s)
- Hülya Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Maguire
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Bozelli JC, Epand RM. Interplay between cardiolipin and plasmalogens in Barth syndrome. J Inherit Metab Dis 2022; 45:99-110. [PMID: 34655242 DOI: 10.1002/jimd.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Barth syndrome (BTHS) is a rare inherited metabolic disease resulting from mutations in the gene of the enzyme tafazzin, which catalyzes the acyl chain remodeling of the mitochondrial-specific lipid cardiolipin (CL). Tissue samples of individuals with BTHS present abnormalities in the level and the molecular species of CL. In addition, in tissues of a tafazzin knockdown mouse as well as in cells derived from BTHS patients it has been shown that plasmalogens, a subclass of glycerophospholipids, also have abnormal levels. Likewise, administration of a plasmalogen precursor to cells derived from BTHS patients led to an increase in plasmalogen and to some extent CL levels. These results indicate an interplay between CL and plasmalogens in BTHS. This interdependence is supported by the concomitant loss in these lipids in different pathological conditions. However, currently the molecular mechanism linking CL and plasmalogens is not fully understood. Here, a review of the evidence showing the linkage between the levels of CL and plasmalogens is presented. In addition, putative mechanisms that might play a role in this interplay are proposed. Finally, the opportunity of therapeutic approaches based on the regulation of plasmalogens as new therapies for the treatment of BTHS is discussed.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Schnackenberg LK, Thorn DA, Barnette D, Jones EE. MALDI imaging mass spectrometry: an emerging tool in neurology. Metab Brain Dis 2022; 37:105-121. [PMID: 34347208 DOI: 10.1007/s11011-021-00797-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Neurological disease and disorders remain a large public health threat. Thus, research to improve early detection and/or develop more effective treatment approaches are necessary. Although there are many common techniques and imaging modalities utilized to study these diseases, existing approaches often require a label which can be costly and time consuming. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a label-free, innovative and emerging technique that produces 2D ion density maps representing the distribution of an analyte(s) across a tissue section in relation to tissue histopathology. One main advantage of MALDI IMS over other imaging modalities is its ability to determine the spatial distribution of hundreds of analytes within a single imaging run, without the need for a label or any a priori knowledge. Within the field of neurology and disease there have been several impactful studies in which MALDI IMS has been utilized to better understand the cellular pathology of the disease and or severity. Furthermore, MALDI IMS has made it possible to map specific classes of analytes to regions of the brain that otherwise may have been lost using more traditional methods. This review will highlight key studies that demonstrate the potential of this technology to elucidate previously unknown phenomenon in neurological disease.
Collapse
Affiliation(s)
- Laura K Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - David A Thorn
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - Dustyn Barnette
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - E Ellen Jones
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA.
| |
Collapse
|
14
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
16
|
Sparvero LJ, Tian H, Amoscato AA, Sun W, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He R, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB‐SIMS). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hua Tian
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Wan‐Yang Sun
- College of Pharmacy Jinan University Guangzhou Guangdong 510632 China
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Sabzali Javadov
- Department of Physiology School of Medicine University of Puerto Rico San Juan PR 00936-5067 USA
| | - Rong‐Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong 510632 China
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh Pittsburgh PA 15261 USA
| | - Nicholas Winograd
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
17
|
Sparvero LJ, Tian H, Amoscato AA, Sun WY, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He RR, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB-SIMS). Angew Chem Int Ed Engl 2021; 60:11784-11788. [PMID: 33684237 PMCID: PMC8243396 DOI: 10.1002/anie.202102001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 μm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol μmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.
Collapse
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hua Tian
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Wan-Yang Sun
- College of Pharmacy, Jinan University Guangzhou, Guangdong 510632 (China)
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine University of Puerto Rico, San Juan, PR 00936-5067 (USA)
| | - Rong-Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University, Guangzhou, Guangdong 510632 (China)
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| |
Collapse
|
18
|
Oemer G, Koch J, Wohlfarter Y, Alam MT, Lackner K, Sailer S, Neumann L, Lindner HH, Watschinger K, Haltmeier M, Werner ER, Zschocke J, Keller MA. Phospholipid Acyl Chain Diversity Controls the Tissue-Specific Assembly of Mitochondrial Cardiolipins. Cell Rep 2021; 30:4281-4291.e4. [PMID: 32209484 DOI: 10.1016/j.celrep.2020.02.115] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mohammad T Alam
- Warwick Medical School, The University of Warwick, Warwick, CV4 7AL Coventry, UK
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Neumann
- Department of Basic Sciences in Engineering Science, University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert H Lindner
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Haltmeier
- Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS. Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol Metab 2021; 32:224-237. [PMID: 33640250 PMCID: PMC8277580 DOI: 10.1016/j.tem.2021.01.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Over the past decade, it has become clear that lipid homeostasis is central to cellular metabolism. Lipids are particularly abundant in the central nervous system (CNS) where they modulate membrane fluidity, electric signal transduction, and synaptic stabilization. Abnormal lipid profiles reported in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and traumatic brain injury (TBI), are further support for the importance of lipid metablism in the nervous system. Cardiolipin (CL), a mitochondria-exclusive phospholipid, has recently emerged as a focus of neurodegenerative disease research. Aberrant CL content, structure, and localization are linked to impaired neurogenesis and neuronal dysfunction, contributing to aging and the pathogenesis of several neurodegenerative diseases, such as AD and PD. Furthermore, the highly tissue-specific acyl chain composition of CL confers it significant potential as a biomarker to diagnose and monitor the progression in several neurological diseases. CL also represents a potential target for pharmacological strategies aimed at treating neurodegeneration. Given the equipoise that currently exists between CL metabolism, mitochondrial function, and neurological disease, we review the role of CL in nervous system physiology and monogenic and neurodegenerative disease pathophysiology, in addition to its potential application as a biomarker and pharmacological target.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
20
|
Nessel I, Michael-Titus AT. Lipid profiling of brain tissue and blood after traumatic brain injury. Semin Cell Dev Biol 2021; 112:145-156. [DOI: 10.1016/j.semcdb.2020.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/15/2022]
|
21
|
Mamun A, Islam A, Eto F, Sato T, Kahyo T, Setou M. Mass spectrometry-based phospholipid imaging: methods and findings. Expert Rev Proteomics 2021; 17:843-854. [PMID: 33504247 DOI: 10.1080/14789450.2020.1880897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Imaging is a technique used for direct visualization of the internal structure or distribution of biomolecules of a living system in a two-dimensional or three-dimensional fashion. Phospholipids are important structural components of biological membranes and have been reported to be associated with various human diseases. Therefore, the visualization of phospholipids is crucial to understand the underlying mechanism of cellular and molecular processes in normal and diseased conditions. Areas covered: Mass spectrometry imaging (MSI) has enabled the label-free imaging of individual phospholipids in biological tissues and cells. The commonly used MSI techniques include matrix-assisted laser desorption ionization-MSI (MALDI-MSI), desorption electrospray ionization-MSI (DESI-MSI), and secondary ion mass spectrometry (SIMS) imaging. This special report described those methods, summarized the findings, and discussed the future development for the imaging of phospholipids. Expert opinion: Phospholipids imaging in complex biological samples has been significantly benefited from the development of MSI methods. In MALDI-MSI, novel matrix that produces homogenous crystals exclusively with polar lipids is important for phospholipids imaging with greater efficiency and higher spatial resolution. DESI-MSI has the potential of live imaging of the biological surface while SIMS is expected to image at the subcellular level in the near future.
Collapse
Affiliation(s)
- Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Fumihiro Eto
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center , Hamamatsu, Shizuoka, Japan
| |
Collapse
|
22
|
Yang H, Jackson SN, Woods AS, Goodlett DR, Ernst RK, Scott AJ. Streamlined Analysis of Cardiolipins in Prokaryotic and Eukaryotic Samples Using a Norharmane Matrix by MALDI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2495-2502. [PMID: 32924474 PMCID: PMC8681877 DOI: 10.1021/jasms.0c00201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cardiolipins (CLs) are an important, regulated lipid class both in prokaryotic and eukaryotic cells, yet they remain largely unexplored by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in tissues. To date, no in-depth optimization studies of label-free visualization of CLs in complex biological samples have been reported. Here we report a streamlined modification to our previously reported MALDI-MSI method for detection of endogenous CLs in prokaryotic and eukaryotic cells based on preparation with norharmane (NRM) matrix. Notably, the use of NRM matrix permitted sensitive detection (4.7 pg/mm2) of spotted CL synthetic standards. By contrast, four other MALDI matrices commonly used for lipid analysis failed to generate CL ions. Using this NRM-based method, endogenous CLs were detected from two types of complex biological samples: dried bacterial arrays and mouse tissue sections. In both cases, using NRM resulted in a better signal/noise for CL ions than the other matrices. Furthermore, inclusion of a washing step improved CL detection from tissue and this combined tissue preparation method (washing and NRM matrix) was used to profile normal mouse lung. Mouse lung yielded 26 unique CLs that were mapped and identified. Consistent with previous findings, CLs containing polyunsaturated fatty acids (PUFAs) were found in abundance in the airway and vascular features of the lung. This work represents a comprehensive investigation of detection conditions for CL using MALDI-MSI in complex biological samples that resulted in a streamlined method that enables future studies of the biological role(s) of CL in tissue.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore 21201, MD, USA
| | | | - Amina S. Woods
- Structural Biology Core, NIDA IRP, NIH, Baltimore 21224, MD, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA
| | - David R. Goodlett
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore 21201, MD, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, 80-308, Poland, EU
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore 21201, MD, USA
| | - Alison J. Scott
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore 21201, MD, USA
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht 6229 ER, Netherlands, EU
| |
Collapse
|
23
|
An overview of peroxidation reactions using liposomes as model systems and analytical methods as monitoring tools. Colloids Surf B Biointerfaces 2020; 195:111254. [DOI: 10.1016/j.colsurfb.2020.111254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
|
24
|
Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans 2020; 48:993-1004. [PMID: 32453413 PMCID: PMC7329354 DOI: 10.1042/bst20190932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Monolysocardiolipin (MLCL) is a three-tailed variant of cardiolipin (CL), the signature lipid of mitochondria. MLCL is not normally found in healthy tissue but accumulates in mitochondria of people with Barth syndrome (BTHS), with an overall increase in the MLCL:CL ratio. The reason for MLCL accumulation remains to be fully understood. The effect of MLCL build-up and decreased CL content in causing the characteristics of BTHS are also unclear. In both cases, an understanding of the nature of MLCL interaction with mitochondrial proteins will be key. Recent work has shown that MLCL associates less tightly than CL with proteins in the mitochondrial inner membrane, suggesting that MLCL accumulation is a result of CL degradation, and that the lack of MLCL–protein interactions compromises the stability of the protein-dense mitochondrial inner membrane, leading to a decrease in optimal respiration. There is some data on MLCL–protein interactions for proteins involved in the respiratory chain and in apoptosis, but there remains much to be understood regarding the nature of MLCL–protein interactions. Recent developments in structural, analytical and computational approaches mean that these investigations are now possible. Such an understanding will be key to further insights into how MLCL accumulation impacts mitochondrial membranes. In turn, these insights will help to support the development of therapies for people with BTHS and give a broader understanding of other diseases involving defective CL content.
Collapse
|
25
|
Lamade AM, Anthonymuthu TS, Hier ZE, Gao Y, Kagan VE, Bayır H. Mitochondrial damage & lipid signaling in traumatic brain injury. Exp Neurol 2020; 329:113307. [PMID: 32289317 DOI: 10.1016/j.expneurol.2020.113307] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are essential for neuronal function because they serve not only to sustain energy and redox homeostasis but also are harbingers of death. A dysregulated mitochondrial network can cascade until function is irreparably lost, dooming cells. TBI is most prevalent in the young and comes at significant personal and societal costs. Traumatic brain injury (TBI) triggers a biphasic and mechanistically heterogenous response and this mechanistic heterogeneity has made the development of standardized treatments challenging. The secondary phase of TBI injury evolves over hours and days after the initial insult, providing a window of opportunity for intervention. However, no FDA approved treatment for neuroprotection after TBI currently exists. With recent advances in detection techniques, there has been increasing recognition of the significance and roles of mitochondrial redox lipid signaling in both acute and chronic central nervous system (CNS) pathologies. Oxidized lipids and their downstream products result from and contribute to TBI pathogenesis. Therapies targeting the mitochondrial lipid composition and redox state show promise in experimental TBI and warrant further exploration. In this review, we provide 1) an overview for mitochondrial redox homeostasis with emphasis on glutathione metabolism, 2) the key mechanisms of TBI mitochondrial injury, 3) the pathways of mitochondria specific phospholipid cardiolipin oxidation, and 4) review the mechanisms of mitochondria quality control in TBI with consideration of the roles lipids play in this process.
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary E Hier
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Gao
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Institute for Regenerative Medicine, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Kagan VE, Tyurina YY, Sun WY, Vlasova II, Dar H, Tyurin VA, Amoscato AA, Mallampalli R, van der Wel PCA, He RR, Shvedova AA, Gabrilovich DI, Bayir H. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radic Biol Med 2020; 147:231-241. [PMID: 31883467 PMCID: PMC7037592 DOI: 10.1016/j.freeradbiomed.2019.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023]
Abstract
High fidelity and effective adaptive changes of the cell and tissue metabolism to changing environments require strict coordination of numerous biological processes. Multicellular organisms developed sophisticated signaling systems of monitoring and responding to these different contexts. Among these systems, oxygenated lipids play a significant role realized via a variety of re-programming mechanisms. Some of them are enacted as a part of pro-survival pathways that eliminate harmful or unnecessary molecules or organelles by a variety of degradation/hydrolytic reactions or specialized autophageal processes. When these "partial" intracellular measures are insufficient, the programs of cells death are triggered with the aim to remove irreparably damaged members of the multicellular community. These regulated cell death mechanisms are believed to heavily rely on signaling by a highly diversified group of molecules, oxygenated phospholipids (PLox). Out of thousands of detectable individual PLox species, redox phospholipidomics deciphered several specific molecules that seem to be diagnostic of specialized death programs. Oxygenated cardiolipins (CLs) and phosphatidylethanolamines (PEs) have been identified as predictive biomarkers of apoptosis and ferroptosis, respectively. This has led to decoding of the enzymatic mechanisms of their formation involving mitochondrial oxidation of CLs by cytochrome c and endoplasmic reticulum-associated oxidation of PE by lipoxygenases. Understanding of the specific biochemical radical-mediated mechanisms of these oxidative reactions opens new avenues for the design and search of highly specific regulators of cell death programs. This review emphasizes the usefulness of such selective lipid peroxidation mechanisms in contrast to the concept of random poorly controlled free radical reactions as instruments of non-specific damage of cells and their membranes. Detailed analysis of two specific examples of phospholipid oxidative signaling in apoptosis and ferroptosis along with their molecular mechanisms and roles in reprogramming has been presented.
Collapse
Affiliation(s)
- V E Kagan
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA; Department of Chemistry, University of Pittsburgh, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department of Radiation Oncology, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation.
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - W Y Sun
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - I I Vlasova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation
| | - H Dar
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - V A Tyurin
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - A A Amoscato
- Center for Free Radical and Antioxidant Heath, USA; Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | | | - P C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - R R He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - A A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, WV, USA
| | | | - H Bayir
- Center for Free Radical and Antioxidant Heath, USA; Department of Critical Care Medicine, University of Pittsburgh, USA.
| |
Collapse
|
27
|
Acaz-Fonseca E, Ortiz-Rodriguez A, Garcia-Segura LM, Astiz M. Sex differences and gonadal hormone regulation of brain cardiolipin, a key mitochondrial phospholipid. J Neuroendocrinol 2020; 32:e12774. [PMID: 31323169 DOI: 10.1111/jne.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) is a phospholipid that is almost exclusively located in the inner mitochondrial membrane of eukaryotic cells. As a result of its unique structure and distribution, CL establishes non-covalent bonds with a long list of proteins involved in ATP production, mitochondria biogenesis, mitophagy and apoptosis. Thus, the amount of CL, as well as its fatty acid composition and location, strongly impacts upon mitochondrial-dependent functions and therefore the metabolic homeostasis of different tissues. The brain is particularly sensitive to mitochondrial dysfunction as a result of its high metabolic demand. Several mitochondrial related-neurodegenerative disorders, as well as physiological ageing, show altered CL metabolism. Furthermore, mice lacking enzymes involved in CL synthesis show cognitive impairments. CL content and metabolism are regulated by gonadal hormones in the developing and adult brain. In neuronal cultures, oestradiol increases CL content, whereas adult ovariectomy decreases CL content and alters CL metabolism in the hippocampal mitochondria. Transient sex differences in brain CL metabolism have been detected during development. At birth, brain CL has a higher proportion of unsaturated fatty acids in the brain of male mice than in the brain of females. In addition, the expression of enzymes involved in CL de novo and recycling synthetic pathways is higher in males. Most of these sex differences are abolished by the neonatal androgenisation of females, suggesting a role for testosterone in the generation of sex differences in brain CL. The regulation of brain CL by gonadal hormones may be linked to their homeostatic and protective actions in neural cells, as well as the manifestation of sex differences in neurodegenerative disorders.
Collapse
Affiliation(s)
- Estefania Acaz-Fonseca
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis Miguel Garcia-Segura
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Kawashima M, Tokiwa M, Nishimura T, Kawata Y, Sugimoto M, Kataoka TR, Sakurai T, Iwaisako K, Suzuki E, Hagiwara M, Harris AL, Toi M. High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer. Br J Cancer 2020; 122:245-257. [PMID: 31819188 PMCID: PMC7051979 DOI: 10.1038/s41416-019-0662-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The fatty acid (FA) composition of phosphatidylinositols (PIs) is tightly regulated in mammalian tissue since its disruption impairs normal cellular functions. We previously found its significant alteration in breast cancer by using matrix-assisted laser desorption and ionisation imaging mass spectrometry (MALDI-IMS). METHODS We visualised the histological distribution of PIs containing different FAs in 65 primary breast cancer tissues using MALDI-IMS and investigated its association with clinicopathological features and gene expression profiles. RESULTS Normal ductal cells (n = 7) predominantly accumulated a PI containing polyunsaturated FA (PI-PUFA), PI(18:0/20:4). PI(18:0/20:4) was replaced by PIs containing monounsaturated FA (PIs-MUFA) in all non-invasive cancer cells (n = 12). While 54% of invasive cancer cells (n = 27) also accumulated PIs-MUFA, 46% of invasive cancer cells (n = 23) accumulated the PIs-PUFA, PI(18:0/20:3) and PI(18:0/20:4). The accumulation of PI(18:0/20:3) was associated with higher incidence of lymph node metastasis and activation of the PD-1-related immune checkpoint pathway. Fatty acid-binding protein 7 was identified as a putative molecule controlling PI composition. CONCLUSIONS MALDI-IMS identified PI composition associated with invasion and nodal metastasis of breast cancer. The accumulation of PI(18:0/20:3) could affect the PD-1-related immune checkpoint pathway, although its precise mechanism should be further validated.
Collapse
Affiliation(s)
- Masahiro Kawashima
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507, Japan.
- Molecular Oncology Laboratories, Wheaterall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| | - Mariko Tokiwa
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507, Japan
| | - Yukiko Kawata
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507, Japan
| | - Masahiro Sugimoto
- Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Sinjuku-ku, Tokyo, 160-8402, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keiko Iwaisako
- Department of Target Therapy Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Adrian L Harris
- Molecular Oncology Laboratories, Wheaterall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507, Japan
| |
Collapse
|
29
|
Li N, Wang P, Liu X, Han C, Ren W, Li T, Li X, Tao F, Zhao Z. Developing IR-780 as a Novel Matrix for Enhanced MALDI MS Imaging of Endogenous High-Molecular-Weight Lipids in Brain Tissues. Anal Chem 2019; 91:15873-15882. [PMID: 31718156 DOI: 10.1021/acs.analchem.9b04315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The matrix plays a prominent role in expanding the ability of matrix assisted laser desorption/ionization mass spectrometry (MALDI MS). However, on account of the unclarity of necessary properties of the matrix in MALDI MS, development of a new matrix is still in the exploratory stage and lacks systematic theoretical guidance. Meanwhile, most of the existing matrices are unable to simultaneously detect various high-molecular-weight (high-MW) lipids including (poly-)phosphoinositides, cardiolipins, and gangliosides. In this study, we have successfully screened and optimized the application of commercially available IR-780 as a novel matrix for simultaneously profiling and imaging high-MW lipids in brain tissues by MALDI MS for the first time. The properties of IR-780 related to the matrix of MALDI MS, mainly including the optical properties (UV absorption, fluorescence emission, and photothermal efficiency), proton affinity, collision cross-sections (CCSs), salt-tolerance ability, and homogeneity, were comprehensively characterized, which demonstrated that high photothermal ability and large CCSs might guarantee the superior performance of IR-780 as matrix for the analysis of high-MW lipids in biological samples. This work provided some references for the development of a novel matrix, and especially, the concept of CCS was first introduced as a parameter for the development of a matrix. In addition, the simultaneous identification and imaging of endogenous high-MW lipids in rat brain tissues subjected to traumatic brain injury were successfully performed.
Collapse
Affiliation(s)
- Na Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Peng Wang
- College of Biochemistry Engineering , Beijing Union University , Beijing 100023 , China
| | - Xiaolong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Chao Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Ren
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fengyun Tao
- College of Biochemistry Engineering , Beijing Union University , Beijing 100023 , China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
30
|
Mallah K, Quanico J, Raffo-Romero A, Cardon T, Aboulouard S, Devos D, Kobeissy F, Zibara K, Salzet M, Fournier I. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Lipids in Experimental Model of Traumatic Brain Injury Detecting Acylcarnitines as Injury Related Markers. Anal Chem 2019; 91:11879-11887. [DOI: 10.1021/acs.analchem.9b02633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Khalil Mallah
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
- ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, P. O. Box 6573/14 Badaro, Museum, Beirut, Lebanon
| | - Jusal Quanico
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Antonella Raffo-Romero
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Tristan Cardon
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Soulaimane Aboulouard
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - David Devos
- Department of Neurology, Expert Center for Parkinson’s Disease, Department of Pharmacology, University of Lille, CHU Lille, INSERM UMR_S 1171, LICEND, F-59000 Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Kazem Zibara
- ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, P. O. Box 6573/14 Badaro, Museum, Beirut, Lebanon
| | - Michel Salzet
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Isabelle Fournier
- Université de Lille, INSERM, U1192 - Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| |
Collapse
|
31
|
Tyurina YY, Tyurin VA, Anthonymuthu T, Amoscato AA, Sparvero LJ, Nesterova AM, Baynard ML, Sun W, He R, Khaitovich P, Vladimirov YA, Gabrilovich DI, Bayır H, Kagan VE. "Redox lipidomics technology: Looking for a needle in a haystack". Chem Phys Lipids 2019; 221:93-107. [PMID: 30928338 PMCID: PMC6714565 DOI: 10.1016/j.chemphyslip.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Anastasiia M Nesterova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Matthew L Baynard
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Wanyang Sun
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | - RongRong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | | | - Yuri A Vladimirov
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Pharmacology and Chemical Biology, Pittsburgh, PA, USA; Radiation Oncology, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
32
|
Secondary‐Ion Mass Spectrometry Images Cardiolipins and Phosphatidylethanolamines at the Subcellular Level. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814256] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Tian H, Sparvero LJ, Blenkinsopp P, Amoscato AA, Watkins SC, Bayır H, Kagan VE, Winograd N. Secondary-Ion Mass Spectrometry Images Cardiolipins and Phosphatidylethanolamines at the Subcellular Level. Angew Chem Int Ed Engl 2019; 58:3156-3161. [PMID: 30680861 DOI: 10.1002/anie.201814256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 12/22/2022]
Abstract
Millions of diverse molecules constituting the lipidome act as important signals within cells. Of these, cardiolipin (CL) and phosphatidylethanolamine (PE) participate in apoptosis and ferroptosis, respectively. Their subcellular distribution is largely unknown. Imaging mass spectrometry is capable of deciphering the spatial distribution of multiple lipids at subcellular levels. Here we report the development of a unique 70 keV gas-cluster ion beam that consists of (CO2 )n + (n>10 000) projectiles. Coupled with direct current beam buncher-time-of-flight secondary-ion mass spectrometry, it is optimized for sensitivity towards high-mass species (up to m/z 3000) at high spatial resolution (1 μm). In combination with immunohistochemistry, phospholipids, including PE and CL, have been assessed in subcellular compartments of mouse hippocampal neuronal cells and rat brain tissue.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, USA
| | - Paul Blenkinsopp
- Ionoptika Ltd., Unit B6, Millbrook Cl, Chandler's Ford, Eastleigh, SO53 4BZ, UK
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, USA
| | | | - Hülya Bayır
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA.,Departments of Environmental and Occupational Health, Radiation Oncology, Critical Care Medicine, Center for Free Radical and Antioxidant Health and Safar Center for Resuscitation Research, University of Pittsburgh, USA.,Children's Neuroscience Institute, UPMC Children's Hospital, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Valerian E Kagan
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA.,Departments of Environmental and Occupational Health, Chemistry, Radiation Oncology, Center for Free Radical and Antioxidant Health, University of Pittsburgh, USA.,Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow Medical State University, Russia
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA
| |
Collapse
|
34
|
Distinguishing core from penumbra by lipid profiles using Mass Spectrometry Imaging in a transgenic mouse model of ischemic stroke. Sci Rep 2019; 9:1090. [PMID: 30705295 PMCID: PMC6355923 DOI: 10.1038/s41598-018-37612-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 02/01/2023] Open
Abstract
Detecting different lipid profiles in early infarct development may give an insight on the fate of compromised tissue. Here we used Mass Spectrometry Imaging to identify lipids at 4, 8 and 24 hours after ischemic stroke in mice, induced by transient middle cerebral artery occlusion (tMCAO). Combining linear transparency overlay, a clustering pipeline and spatial segmentation, we identified three regions: infarct core, penumbra (i.e. comprised tissue that is not yet converted to core), and surrounding healthy tissue. Phosphatidylinositol 4-phosphate (m/z = 965.5) became visible in the penumbra 24 hours after tMCAO. Infarct evolution was shown by 2D-renderings of multiple phosphatidylcholine (PC) and Lyso-PC isoforms. High-resolution Secondary Ion Mass Spectrometry, to evaluate sodium/potassium ratios, revealed a significant increase in sodium and a decrease in potassium species in the ischemic area (core and penumbra) compared to healthy tissue at 24 hours after tMCAO. In a transgenic mouse model with an enhanced susceptibility to ischemic stroke, we found a more pronounced discrimination in sodium/potassium ratios between penumbra and healthy regions. Insight in changes in lipid profiles in the first hours of stroke may guide the development of new prognostic biomarkers and novel therapeutic targets to minimize infarct progression.
Collapse
|
35
|
Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol 2018; 527:2158-2169. [DOI: 10.1002/cne.24571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Guang Xu
- Hubei Education Cloud Service Engineering Technology Research CenterHubei University of Education Wuhan China
| | - Jianjun Li
- Human Health TherapeuticsNational Research Council Canada Ottawa Ontario
| |
Collapse
|
36
|
Chao H, Anthonymuthu TS, Kenny EM, Amoscato AA, Cole LK, Hatch GM, Ji J, Kagan VE, Bayır H. Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 2018; 3:97677. [PMID: 30385716 DOI: 10.1172/jci.insight.97677] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioenergetics as well as intra- and extracellular signaling and cell death. Assuming the essentiality of a mitochondria-unique phospholipid, cardiolipin (CL), for the structural and functional organization of mitochondria, here we applied global (phospho) lipidomics and redox lipidomics to reveal and identify CL modifications during controlled cortical impact (CCI). We revealed 2 major pathways activated in the CCI-injured brain as time-specific responses: early accumulation of oxidized CL (CLox) products was followed by hydrolytic reactions yielding monolyso-CLs (mCLs) and free fatty acids. To quantitatively assess possible specific roles of peroxidation and hydrolysis of mitochondrial CL, we performed comparative studies of CL modifications using an animal model of Barth syndrome where deficiency of CL reacylation (Tafazzin [Taz] deficiency) was associated exclusively with the accumulation of mCLs (but not CLox). By comparing the in vitro and in vivo results with genetic manipulation of major CL-, CLox-, and mCL-metabolizing enzymes, calcium-independent phospholipase A2γ and Taz, we concluded that the 2 processes - CL oxidation and CL hydrolysis - act as mutually synergistically enhancing components of the pathogenic mechanism of mitochondrial injury in traumatic brain injury. This emphasizes the need for combined therapeutic approaches preventing the formation of both CLox and mCL.
Collapse
Affiliation(s)
- Honglu Chao
- The Safar Center for Resuscitation Research and the Neuroscience Institute of Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tamil S Anthonymuthu
- The Safar Center for Resuscitation Research and the Neuroscience Institute of Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Kenny
- The Safar Center for Resuscitation Research and the Neuroscience Institute of Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Jing Ji
- The Safar Center for Resuscitation Research and the Neuroscience Institute of Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Laboratory of Navigational Redox Lipidomics, Institute of Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Hülya Bayır
- The Safar Center for Resuscitation Research and the Neuroscience Institute of Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Diabetes Research Envisioned and Accomplished in Manitoba, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
37
|
Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 2018; 124:493-503. [PMID: 29964171 PMCID: PMC6098726 DOI: 10.1016/j.freeradbiomed.2018.06.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a major contributor to secondary injury signaling cascades following traumatic brain injury (TBI). The role of lipid peroxidation in the pathophysiology of a traumatic insult to neural tissue is increasingly recognized. As the methods to quantify lipid peroxidation have gradually improved, so has the understanding of mechanistic details of lipid peroxidation and related signaling events in the injury pathogenesis. While free-radical mediated, non-enzymatic lipid peroxidation has long been studied, recent advances in redox lipidomics have demonstrated the significant contribution of enzymatic lipid peroxidation to TBI pathogenesis. Complex interactions between inflammation, phospholipid peroxidation, and hydrolysis define the engagement of different cell death programs and the severity of injury and outcome. This review focuses on enzymatic phospholipid peroxidation after TBI, including the mechanism of production, signaling roles in secondary injury pathology, and temporal course of production with respect to inflammatory response. In light of the newly identified phospholipid oxidation mechanisms, we also discuss possible therapeutic targets to improve neurocognitive outcome after TBI. Finally, we discuss current limitations in identifying oxidized phospholipids and possible methodologic improvements that can offer a deeper insight into the region-specific distribution and subcellular localization of phospholipid oxidation after TBI.
Collapse
Affiliation(s)
- Tamil S Anthonymuthu
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Elizabeth M Kenny
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Andrew M Lamade
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, United States.
| |
Collapse
|
38
|
Winograd N. Gas Cluster Ion Beams for Secondary Ion Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:29-48. [PMID: 29490191 DOI: 10.1146/annurev-anchem-061516-045249] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gas cluster ion beams (GCIBs) provide new opportunities for bioimaging and molecular depth profiling with secondary ion mass spectrometry (SIMS). These beams, consisting of clusters containing thousands of particles, initiate desorption of target molecules with high yield and minimal fragmentation. This review emphasizes the unique opportunities for implementing these sources, especially for bioimaging applications. Theoretical aspects of the cluster ion/solid interaction are developed to maximize conditions for successful mass spectrometry. In addition, the history of how GCIBs have become practical laboratory tools is reviewed. Special emphasis is placed on the versatility of these sources, as size, kinetic energy, and chemical composition can be varied easily to maximize lateral resolution, hopefully to less than 1 micron, and to maximize ionization efficiency. Recent examples of bioimaging applications are also presented.
Collapse
Affiliation(s)
- Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| |
Collapse
|
39
|
Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K, Shrivastava IH, Kenny EM, Yang Q, Rosenbaum JC, Sparvero LJ, Emlet DR, Wen X, Minami Y, Qu F, Watkins SC, Holman TR, VanDemark AP, Kellum JA, Bahar I, Bayır H, Kagan VE. PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell 2017; 171:628-641.e26. [PMID: 29053969 PMCID: PMC5683852 DOI: 10.1016/j.cell.2017.09.044] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a form of programmed cell death that is pathogenic to several acute and chronic diseases and executed via oxygenation of polyunsaturated phosphatidylethanolamines (PE) by 15-lipoxygenases (15-LO) that normally use free polyunsaturated fatty acids as substrates. Mechanisms of the altered 15-LO substrate specificity are enigmatic. We sought a common ferroptosis regulator for 15LO. We discovered that PEBP1, a scaffold protein inhibitor of protein kinase cascades, complexes with two 15LO isoforms, 15LO1 and 15LO2, and changes their substrate competence to generate hydroperoxy-PE. Inadequate reduction of hydroperoxy-PE due to insufficiency or dysfunction of a selenoperoxidase, GPX4, leads to ferroptosis. We demonstrated the importance of PEBP1-dependent regulatory mechanisms of ferroptotic death in airway epithelial cells in asthma, kidney epithelial cells in renal failure, and cortical and hippocampal neurons in brain trauma. As master regulators of ferroptotic cell death with profound implications for human disease, PEBP1/15LO complexes represent a new target for drug discovery.
Collapse
Affiliation(s)
- Sally E Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinming Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Haider H Dar
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gaowei Mao
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karolina Mikulska-Ruminska
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA, USA; Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| | - Indira H Shrivastava
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth M Kenny
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qin Yang
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Emlet
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoyan Wen
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoshinori Minami
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Feng Qu
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayır
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, Center for Critical Care Nephrology, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Ercole A, Magnoni S, Vegliante G, Pastorelli R, Surmacki J, Bohndiek SE, Zanier ER. Current and Emerging Technologies for Probing Molecular Signatures of Traumatic Brain Injury. Front Neurol 2017; 8:450. [PMID: 28912750 PMCID: PMC5582086 DOI: 10.3389/fneur.2017.00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) is understood as an interplay between the initial injury, subsequent secondary injuries, and a complex host response all of which are highly heterogeneous. An understanding of the underlying biology suggests a number of windows where mechanistically inspired interventions could be targeted. Unfortunately, biologically plausible therapies have to-date failed to translate into clinical practice. While a number of stereotypical pathways are now understood to be involved, current clinical characterization is too crude for it to be possible to characterize the biological phenotype in a truly mechanistically meaningful way. In this review, we examine current and emerging technologies for fuller biochemical characterization by the simultaneous measurement of multiple, diverse biomarkers. We describe how clinically available techniques such as cerebral microdialysis can be leveraged to give mechanistic insights into TBI pathobiology and how multiplex proteomic and metabolomic techniques can give a more complete description of the underlying biology. We also describe spatially resolved label-free multiplex techniques capable of probing structural differences in chemical signatures. Finally, we touch on the bioinformatics challenges that result from the acquisition of such large amounts of chemical data in the search for a more mechanistically complete description of the TBI phenotype.
Collapse
Affiliation(s)
- Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Sandra Magnoni
- Department of Anesthesiology and Intensive Care, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gloria Vegliante
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Roberta Pastorelli
- Unit of Gene and Protein Biomarkers, Laboratory of Mass Spectrometry, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jakub Surmacki
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Elizabeth Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
41
|
Ermini L, Morganti E, Post A, Yeganeh B, Caniggia I, Leadley M, Faria CC, Rutka JT, Post M. Imaging mass spectrometry identifies prognostic ganglioside species in rodent intracranial transplants of glioma and medulloblastoma. PLoS One 2017; 12:e0176254. [PMID: 28463983 PMCID: PMC5413052 DOI: 10.1371/journal.pone.0176254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/08/2017] [Indexed: 11/30/2022] Open
Abstract
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MALDI-MSI) allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were the main types of glycolipids. Both gangliosides were absent in both intracranial transplants. The ganglioside GM3 was not present in the healthy adult brain but was highly expressed in rat glioma allografts. In combination with tandem mass spectrometry GM3 (d18:1/C24:0) was identified as the most abundant ganglioside species in the glioma allotransplant. By contrast, mouse xenografts of human medulloblastoma were characterized by prominent expression of the ganglioside GM2 (d18:0/C18:0). Together, these data demonstrate that tissue-based MALDI-MSI of gangliosides is able to discriminate between different brain tumors and may be a useful clinical tool for their classification and grading.
Collapse
Affiliation(s)
- Leonardo Ermini
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elena Morganti
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Post
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Behzad Yeganeh
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Michael Leadley
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudia C. Faria
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - James T. Rutka
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Tian H, Sparvero LJ, Amoscato AA, Bloom A, Bayır H, Kagan VE, Winograd N. Gas Cluster Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry High-Resolution Imaging of Cardiolipin Speciation in the Brain: Identification of Molecular Losses after Traumatic Injury. Anal Chem 2017; 89:4611-4619. [PMID: 28306235 PMCID: PMC5856236 DOI: 10.1021/acs.analchem.7b00164] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gas cluster ion beam-secondary ion mass spectrometry (GCIB-SIMS) has shown the full potential of mapping intact lipids in biological systems with better than 10 μm lateral resolution. This study investigated further the capability of GCIB-SIMS in imaging high-mass signals from intact cardiolipin (CL) and gangliosides in normal brain and the effect of a controlled cortical impact model (CCI) of traumatic brain injury (TBI) on their distribution. A combination of enzymatic and chemical treatments was employed to suppress the signals from the most abundant phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) and enhance the signals from the low-abundance CLs and gangliosides to allow their GCIB-SIMS detection at 8 and 16 μm spatial resolution. Brain CLs have not been observed previously using other contemporary imaging mass spectrometry techniques at better than 50 μm spatial resolution. High-resolution images of naive and injured brain tissue facilitated the comparison of CL species across three multicell layers in the CA1, CA3, and DG regions of the hippocampus. GCIB-SIMS also reliably mapped losses of oxidizable polyunsaturated CL species (but not the oxidation-resistant saturated and monounsaturated gangliosides) to regions including the CA1 and CA3 of the hippocampus after CCI. This work extends the detection range for SIMS measurements of intact lipids to above m/z 2000, bridging the mass range gap compared with MALDI. Further advances in high-resolution SIMS of CLs, with the potential for single cell or supra-cellular imaging, will be essential for the understanding of CL's functional and structural organization in normal and injured brain.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Louis J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anna Bloom
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Departments of Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
43
|
Grabowski GA, Whitley C. Ten plus one challenges in diseases of the lysosomal system. Mol Genet Metab 2017; 120:38-46. [PMID: 27923545 DOI: 10.1016/j.ymgme.2016.11.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
The advent of the first effective specific therapy for a lysosomal storage disease (LSDs), Gaucher disease type 1, by Roscoe O. Brady was foundational for development of additional treatments for this group of rare diseases. The past 26years, since the approval of enzyme therapy for Gaucher disease type 1, have witnessed a burgeoning understanding of LSDs at genetic, molecular, biochemical, cell biologic, and clinical levels. Simultaneously, this expansion of knowledge has exposed our incomplete understanding of the individual pathophysiologies of LSDs as well as difficult challenges for improvement in therapy and therapeutic outcomes for afflicted individuals. Here, 10 such challenges/problems representing major impediments, which need to be overcome, to move forward toward the goals of more effective and complete therapies for these devastating diseases.
Collapse
Affiliation(s)
- Gregory A Grabowski
- Children's Hospital Medical Center, Cincinnati, OH, United States; Kiniksa Pharmaceuticals, Ltd., Wellesley, MA, United States.
| | - Chester Whitley
- Department of Pediatrics, University of Minnesota, School of Medicine, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, School of Medicine, Minneapolis, MN, United States
| |
Collapse
|