1
|
Pennington T, Eshima J, Smith BS. Identification of volatile metabolites produced from levodopa metabolism by different bacteria strains of the gut microbiome. BMC Microbiol 2024; 24:260. [PMID: 38997651 PMCID: PMC11245815 DOI: 10.1186/s12866-024-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Interspecies pathways in the gut microbiome have been shown to metabolize levodopa, the primary treatment for Parkinson's disease, and reduce its bioavailability. While the enzymatic reactions have been identified, the ability to establish the resulting macromolecules as biomarkers of microbial metabolism remains technically challenging. In this study, we leveraged an untargeted mass spectrometry-based approach to investigate volatile organic compounds (VOCs) produced during levodopa metabolism by Enterococcus faecalis, Clostridium sporogenes, and Eggerthella lenta. We cultured these organisms with and without their respective bioactive metabolites and detected levodopa-induced shifts in VOC profiles. We then utilized bioinformatics to identify significant differences in 2,6-dimethylpyrazine, 4,6-dimethylpyrimidine, and 4,5-dimethylpyrimidine associated with its biotransformation. Supplementing cultures with inhibitors of levodopa-metabolizing enzymes revealed specific modulation of levodopa-associated diazines, verifying their relationship to its metabolism. Furthermore, functional group analysis depicts strain-specific VOC profiles that reflect interspecies differences in metabolic activity that can be leveraged to assess microbiome functionality in individual patients. Collectively, this work identifies previously uncharacterized metabolites of microbe-mediated levodopa metabolism to determine potential indicators of this activity and further elucidate the metabolic capabilities of different gut bacteria.
Collapse
Affiliation(s)
- Taylor Pennington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Jarrett Eshima
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Xue Y, Hassan Q, Noroozifar M, Sullan RMA, Kerman K. Microfluidic flow injection analysis system for the electrochemical detection of dopamine using diazonium-grafted copper nanoparticles on multi-walled carbon nanotube-modified surfaces. Talanta 2024; 266:125030. [PMID: 37582331 DOI: 10.1016/j.talanta.2023.125030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
In this proof-of-concept study, a microfluidic flow injection analysis (FIA) system was developed using multi-walled carbon nanotube-modified screen-printed carbon electrodes (CNTSPEs) that were modified with copper nanoparticles (CuNPs) following the electrodeposition of the diazonium salt of 4-aminothiophenol to form 4-thiophenol-conjugated CuNPs (CuNPs-CNTSPE). Transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the size of CuNPs, morphology and elemental analysis of CuNPs-CNTSPE, respectively. Using electrochemical impedance spectroscopy (EIS), the charge-transfer resistance (Rct) of CuNPs-CNTSPE was found to be 20-fold lower than that of CNTSPE. The CuNPs-CNTSPE displayed an oxidation peak for dopamine at -0.08 V which is ∼80 mV lower than the one detected using CNTSPE. The modified electrode was used in microfluidic flow injection analysis and offline systems for sensitive detection of dopamine (DA). The pH, flow rate, loop volume, concentration, and type of surfactant were all optimized for on-chip detection. Under the optimal conditions, using phosphate electrolyte solution (pH 6) containing 0.05% (w/v) Tween 20® as the carrier at a flow rate of 0.6 mL min-1 and a loop volume of 50 μL, the calibration curve was linear from 1.5 to 500 nM with a limit of detection of 0.33 nM. This technique was used for the successful detection of DA in real samples with recovery ranging from 96.5% to 103.8%. The microfluidic FIA system described here has the potential to be used as an electrochemical point-of-care device for rapid DA detection with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Yilei Xue
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Qusai Hassan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
3
|
Pingle SC, Lin F, Anekoji MS, Patro CK, Datta S, Jones LD, Kesari S, Ashili S. Exploring the role of cerebrospinal fluid as analyte in neurologic disorders. Future Sci OA 2023; 9:FSO851. [PMID: 37090492 PMCID: PMC10116372 DOI: 10.2144/fsoa-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
The cerebrospinal fluid (CSF) is a clear ultrafiltrate of blood that envelopes and protects the central nervous system while regulating neuronal function through the maintenance of interstitial fluid homeostasis in the brain. Due to its anatomic location and physiological functions, the CSF can provide a reliable source of biomarkers for the diagnosis and treatment monitoring of different neurological diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and primary and secondary brain malignancies. The incorporation of CSF biomarkers into the drug discovery and development can improve the efficiency of drug development and increase the chances of success. This review aims to consolidate the current use of CSF biomarkers in clinical practice and explore future perspectives for the field.
Collapse
Affiliation(s)
- Sandeep C Pingle
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Feng Lin
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
- Author for correspondence:
| | - Misa S Anekoji
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - C Pawan K Patro
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Souvik Datta
- Rhenix Lifesciences, 237 Vengal Rao Nagar, Hyderabad, TG, 500038, India
| | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Santosh Kesari
- Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center & Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| |
Collapse
|
4
|
Ayajuddin M, Phom L, Koza Z, Modi P, Das A, Chaurasia R, Thepa A, Jamir N, Neikha K, Yenisetti SC. Adult health and transition stage-specific rotenone-mediated Drosophila model of Parkinson’s disease: Impact on late-onset neurodegenerative disease models. Front Mol Neurosci 2022; 15:896183. [PMID: 36017079 PMCID: PMC9398202 DOI: 10.3389/fnmol.2022.896183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) affects almost 1% of the population worldwide over the age of 50 years. Exposure to environmental toxins like paraquat and rotenone is a risk factor for sporadic PD which constitutes 95% of total cases. Herbicide rotenone has been shown to cause Parkinsonian symptoms in multiple animal models. Drosophila is an excellent model organism for studying neurodegenerative diseases (NDD) including PD. The aging process is characterized by differential expression of genes during different life stages. Hence it is necessary to develop life-stage-matched animal models for late-onset human disease(s) such as PD. Such animal models are critical for understanding the pathophysiology of age-related disease progression and important to understand if a genotropic drug/nutraceutical can be effective during late stages. With this idea, we developed an adult life stage-specific (health and transition phase, during which late-onset NDDs such as PD sets in) rotenone-mediated Drosophila model of idiopathic PD. Drosophila is susceptible to rotenone in dose-time dependent manner. Rotenone-mediated fly model of sporadic PD exhibits mobility defects (independent of mortality), inhibited mitochondrial complex I activity, dopaminergic (DAergic) neuronal dysfunction (no loss of DAergic neuronal number; however, reduction in rate-limiting enzyme tyrosine hydroxylase (TH) synthesis), and alteration in levels of dopamine (DA) and its metabolites; 3,4-Dihydroxyphenylacetic acid (DOPAC) and Homovanilic acid (HVA) in brain-specific fashion. These PD-linked behaviors and brain-specific phenotypes denote the robustness of the present fly model of PD. This novel model will be of great help to decipher life stage-specific genetic targets of small molecule mediated DAergic neuroprotection; understanding of which is critical for formulating therapeutic strategies for PD.
Collapse
|
5
|
Pyrylium based derivatization imaging mass spectrometer revealed the localization of L-DOPA. PLoS One 2022; 17:e0271697. [PMID: 35917331 PMCID: PMC9345479 DOI: 10.1371/journal.pone.0271697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Simultaneous imaging of l-dihydroxyphenylalanine (l-DOPA), dopamine (DA) and norepinephrine (NE) in the catecholamine metabolic pathway is particularly useful because l-DOPA is a neurophysiologically important metabolic intermediate. In this study, we found that 2,4,6-trimethylpyrillium tetrafluoroborate (TMPy) can selectively and efficiently react with target catecholamine molecules. Specifically, simultaneous visualization of DA and NE as metabolites of l-DOPA with high steric hinderance was achieved by derivatized-imaging mass spectrometry (IMS). Interestingly, l-DOPA showed strong localization in the brainstem, in contrast to the pattern of DA and NE, which co-localized with tyrosine hydroxylase (TH). In addition, to identify whether the detected molecules were endogenous or exogenous l-DOPA, mice were injected with l-DOPA deuterated in three positions (D3-l-DOPA), which was identifiable by a mass shift of 3Da. TMPy-labeled l-DOPA, DA and NE were detected at m/z 302.1, 258.1 and 274.1, while their D3 versions were detected at 305.0, 261.1 and 277.1 in mouse brain, respectively. l-DOPA and D3-l-DOPA were localized in the BS. DA and NE, and D3-DA and D3-NE, all of which are metabolites of L-DOPA and D3-l-DOPA, were localized in the striatum (STR) and locus coeruleus (LC). These findings suggest a mechanism in the brainstem that allows l-DOPA to accumulate without being metabolized to monoamines downstream of the metabolic pathway.
Collapse
|
6
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
7
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
8
|
Kaiserova M, Chudackova M, Prikrylova Vranova H, Mensikova K, Kastelikova A, Stejskal D, Kanovsky P. Cerebrospinal Fluid Levels of 5-Hydroxyindoleacetic Acid in Parkinson's Disease and Atypical Parkinsonian Syndromes. NEURODEGENER DIS 2021; 21:30-35. [PMID: 34695830 DOI: 10.1159/000520302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various cerebrospinal fluid (CSF) biomarkers are studied in Parkinson's disease (PD) and atypical parkinsonian syndromes (APS). Several studies found reduced 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in PD. There is little evidence regarding its levels in APS. METHODS We measured 5-HIAA in the CSF of 90 PD patients, 16 MSA patients, 26 progressive supranuclear palsy (PSP) patients, 11 corticobasal syndrome (CBS) patients, and 31 controls. We also compared the values in depressed and nondepressed patients. RESULTS There was a statistically significant difference in CSF 5-HIAA in PD and MSA compared to the control group (median in PD 15.8 μg/L, in MSA 13.6 μg/L vs. 24.3 μg/L in controls; p = 0.0008 in PD, p = 0.006 in MSA). There was no statistically significant difference in CSF 5-HIAA in PSP and CBS compared to the control group (median in PSP 22.7 μg/L, in CBS 18.7 μg/L vs. 24.3 μg/L in controls; p = 1 in both PSP and CBS). CSF 5-HIAA levels were lower in PD patients with depression compared to PD patients without depression (median 8.34 vs. 18.48, p < 0.0001). CONCLUSIONS CSF 5-HIAA is decreased in PD and MSA. The CSF 5-HIAA levels in PSP and CBS did not differ from those of the control group. There was a tendency toward lower CSF 5-HIAA in MSA than in PD; however, the results did not reach statistical significance. These results may be explained by more severe damage of the serotonergic system in synucleinopathies (PD and MSA) than in tauopathies (PSP and CBS).
Collapse
Affiliation(s)
| | - Monika Chudackova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | | | - Katerina Mensikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Anetta Kastelikova
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - David Stejskal
- Institute of Biomedical Sciences, Faculty of Medicine, Ostrava University, Olomouc, Czechia.,Institute of Laboratory Diagnostics, University Hospital Ostrava, Ostrava, Czechia
| | - Petr Kanovsky
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
9
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
10
|
Scheffer DDL, Freitas FC, Aguiar AS, Ward C, Guglielmo LGA, Prediger RD, Cronin SJF, Walz R, Andrews NA, Latini A. Impaired dopamine metabolism is linked to fatigability in mice and fatigue in Parkinson's disease patients. Brain Commun 2021; 3:fcab116. [PMID: 34423297 PMCID: PMC8374980 DOI: 10.1093/braincomms/fcab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Fatigue is a common symptom of Parkinson’s disease that compromises significantly the patients’ quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson’s disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8–10 weeks; 35–45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson’s disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Fernando Cini Freitas
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Hospital Governador Celso Ramos, Florianópolis, SC 88015-270, Brazil
| | - Aderbal Silva Aguiar
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Catherine Ward
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Roger Walz
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Center for Applied Neuroscience, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Departament of Internal Medicine, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,The Salk in Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Wichit P, Thanprasertsuk S, Phokaewvarangkul O, Bhidayasiri R, Bongsebandhu-Phubhakdi S. Monoamine Levels and Parkinson's Disease Progression: Evidence From a High-Performance Liquid Chromatography Study. Front Neurosci 2021; 15:605887. [PMID: 34393700 PMCID: PMC8358115 DOI: 10.3389/fnins.2021.605887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is associated with dysfunction of monoamine neurotransmitter systems. We investigated changes in the levels of monoamine and their metabolites in PD patients, together with their association to clinical profiles. PD patients and age-matched control subjects (n = 40 per group) were enrolled. Using high-performance liquid chromatography (HPLC) with an electrochemical detector, levels of monoamines (dopamine, DA; norepinephrine, NE; epinephrine, EPI; and serotonin, 5-HT) were measured in plasma, while the metabolites (homovanillic acid, HVA; vanillylmandelic acid, VMA; and 5-hydroxyindoleacetic acid, 5-HIAA) were measured in urine. Plasma DA level was not significantly different between PD and control groups. PD patients had significantly higher plasma NE but lower EPI and 5-HT levels. PD patients had a significantly higher HVA/DA ratio and lower VMA/NE ratio than control subjects, while the 5-HIAA/5-HT ratio was not different between the groups. Regarding the association between monoamine levels and clinical profiles, the DA level had a negative relationship with disease duration and the 5-HT level had a negative relationship with severity of motor impairment. These findings emphasized the involvements of several neurotransmission systems and their association with clinical profiles in PD patients, demonstrated by quantification of monoamine levels in peripheral body fluids. This could benefit appropriate pharmacological treatment planning in respect of monoamine changes and might also help predict subsequent clinical symptoms.
Collapse
Affiliation(s)
- Patsorn Wichit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Faculty of Physical Therapy, Huachiew Chalermprakiet University, Bang Phli, Thailand
| | - Sekh Thanprasertsuk
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Chulalongkorn Cognitive Clinical and Computational Neuroscience Special Task Force Research Group, Chulalongkorn University, Bangkok, Thailand.,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Onanong Phokaewvarangkul
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Roongroj Bhidayasiri
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saknan Bongsebandhu-Phubhakdi
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
12
|
Goldstein DS, Sullivan P, Holmes C, Lamotte G, Lenka A, Sharabi Y. Differential abnormalities of cerebrospinal fluid dopaminergic versus noradrenergic indices in synucleinopathies. J Neurochem 2021; 158:554-568. [PMID: 33894018 DOI: 10.1111/jnc.15371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
The synucleinopathies Parkinson's disease (PD), multiple system atrophy (MSA), and pure autonomic failure (PAF) are characterized by intra-cytoplasmic deposition of the protein alpha-synuclein and by catecholamine depletion. PAF, which manifests with neurogenic orthostatic hypotension (nOH) and no motor signs of central neurodegeneration, can evolve into PD+nOH. The cerebrospinal fluid (CSF) levels of catecholamine metabolites may indicate central catecholamine deficiency in these synucleinopathies, but the literature is inconsistent and incomplete. In this retrospective cohort study we reviewed data about CSF catecholamines, the dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the norepinephrine metabolites 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG). The compounds were measured in 36 patients with PD, 37 patients with MSA, and 19 patients with PAF and in 38 controls. Compared to the control group, the PD, MSA, and PAF groups had decreased CSF MHPG (p < .0001 each by Dunnett's post hoc test), DHPG (p = .004; p < .0001; p < .0001) and norepinephrine (p = .017; p = .0003; p = .044). CSF HVA and DOPAC were decreased in PD (p < .0001 each) and MSA (p < .0001 each) but not in PAF. The three synucleinopathies therefore have in common in vivo evidence of central noradrenergic deficiency but differ in the extents of central dopaminergic deficiency-prominent in PD and MSA, less apparent in PAF. Data from putamen 18 F-DOPA and cardiac 18 F-dopamine neuroimaging in the same patients, post-mortem tissue catecholamines in largely separate cohorts, and review of the neuropathology literature fit with these distinctions. The results suggest a 'norepinephrine first' ascending pathogenetic sequence in synucleinopathies, with degeneration of pontine locus ceruleus noradrenergic neurons preceding the loss of midbrain substantia nigra dopaminergic neurons.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patti Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Courtney Holmes
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Guillaume Lamotte
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Abhishek Lenka
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yehonatan Sharabi
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Cheslow L, Snook AE, Waldman SA. Emerging targets for the diagnosis of Parkinson's disease: examination of systemic biomarkers. Biomark Med 2021; 15:597-608. [PMID: 33988462 DOI: 10.2217/bmm-2020-0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a highly prevalent and irreversible neurodegenerative disorder that is typically diagnosed in an advanced stage. Currently, there are no approved biomarkers that reliably identify PD patients before they have undergone extensive neuronal damage, eliminating the opportunity for future disease-modifying therapies to intervene in disease progression. This unmet need for diagnostic and therapeutic biomarkers has fueled PD research for decades, but these efforts have not yet yielded actionable results. Recently, studies exploring mechanisms underlying PD progression have offered insights into multisystemic contributions to pathology, challenging the classic perspective of PD as a disease isolated to the brain. This shift in understanding has opened the door to potential new biomarkers from multiple sites in the body. This review focuses on emerging candidates for PD biomarkers in the context of current diagnostic approaches and multiple organ systems that contribute to disease.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Wassenberg T, Geurtz BPH, Monnens L, Wevers RA, Willemsen MA, Verbeek MM. Blood, urine and cerebrospinal fluid analysis in TH and AADC deficiency and the effect of treatment. Mol Genet Metab Rep 2021; 27:100762. [PMID: 33996491 PMCID: PMC8093927 DOI: 10.1016/j.ymgmr.2021.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background Aromatic L-amino acid decarboxylase (AADC) deficiency and tyrosine hydroxylase (TH) deficiency are rare inherited disorders of monoamine neurotransmitter synthesis which are typically diagnosed using cerebrospinal fluid examination of monoamine neurotransmitter metabolites. Until now, it has not been systematically studied whether analysis of monamine neurotransmitter metabolites in blood or urine has diagnostic value as compared to cerebrospinal fluid examination, or whether monoamine neurotransmitter metabolites in these peripheral body fluids is useful to monitor treatment efficacy. Methods Assessment, both by literature review and retrospective analysis of our local university hospital database, of monoamine neurotransmitter metabolites in urine, blood and cerebrospinal fluid, and serum prolactin levels, before and during treatment in patients with AADC and TH deficiency. Results In AADC deficiency, 3-O-methyldopa in serum or dried blood spots was reported in 34 patients and found to be (strongly) increased in all, serotonin in serum was decreased in 7/7 patients. Serum prolactin was increased in 34/37 and normal in 3 untreated patients. In urine, dopamine was normal or increased in 21/24 patients, 5-hydroxyindoleacetic acid was decreased in 9/10 patients, and vanillactic acid was increased in 19/20 patients. No significant changes were seen in monoamine neurotransmitter metabolites after medical treatment, except for an increase of homovanillic acid in urine and cerebrospinal fluid after levodopa therapy, sometimes even in absence of a clinical response. After gene therapy, cerebrospinal fluid homovanillic acid increased in most patients (8/12), but 5-hydroxyindoleacetic acid remained unchanged in 9/12 patients. In TH deficiency, serum prolactin was increased in 12/14 and normal in the remaining untreated patients. Urinary dopamine was decreased in 2/8 patients and normal in 6. Homovanillic acid concentrations in cerebrospinal fluid increased upon levodopa treatment, even in the absence of a clear treatment response. Conclusions This study confirms that cerebrospinal fluid is the most informative body fluid to measure monoamine neurotransmitter metabolites when AADC or TH deficiency is suspected, and that routine follow-up of cerebrospinal fluid measurements to estimate treatment response is not needed. 3-O-methyldopa in dried blood spots and vanillactic acid in urine are promising peripheral biomarkers for diagnosis of AADC deficiency. However, in many patients with TH or AADC deficiency dopamine in urine is normal or increased thereby not reflecting the metabolic block. The value of serum prolactin for follow-up of AADC and TH deficiency should be further studied.
Collapse
Key Words
- 3-OMD, 3-O-methyldopa
- 5-HIAA, 5-Hydroxyindoleacetic acid
- 5-HTP, 5-Hydroxytryptophan
- AADC deficiency
- AADC, Aromatic L-amino acid decarboxylase
- Aromatic L-amino acid decarboxylase deficiency
- Biomarkers
- CSF, Cerebrospinal fluid
- HVA, Homovanillic acid
- MHPG, 3-methoxy 4-hydroxyphenylglycol
- Monoamine neurotransmitter deficiency
- TH deficiency
- TH, Tyrosine hydroxylase
- TML, Translational Metabolic Laboratory
- Tyrosine hydroxylase deficiency
- VLA, Vanillactic acid
- VMA, Vanillylmandelic acid
Collapse
Affiliation(s)
- Tessa Wassenberg
- Radboud university medical center, Department of Neurology (943), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.,Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Pediatrics, Pediatric Neurology Unit, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ben P H Geurtz
- Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Leo Monnens
- Radboud university medical center, Department of Physiology (392), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Ron A Wevers
- Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Michèl A Willemsen
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatric Neurology (801), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marcel M Verbeek
- Radboud university medical center, Department of Neurology (943), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.,Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Wilbraham D, Biglan KM, Svensson KA, Tsai M, Kielbasa W. Safety, Tolerability, and Pharmacokinetics of Mevidalen (LY3154207), a Centrally Acting Dopamine D1 Receptor-Positive Allosteric Modulator (D1PAM), in Healthy Subjects. Clin Pharmacol Drug Dev 2021; 10:393-403. [PMID: 33029934 PMCID: PMC8048550 DOI: 10.1002/cpdd.874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Activation of the brain dopamine D1 receptor has attracted attention because of its promising role in neuropsychiatric diseases. Although efforts to develop D1 agonists have been challenging, a positive allosteric modulator (PAM), represents an attractive approach with potential better drug-like properties. Phase 1 single-ascending-dose (SAD; NCT03616795) and multiple-ascending-dose (MAD; NCT02562768) studies with the D1PAM mevidalen (LY3154207) were conducted with healthy subjects. There were no treatment-related serious adverse events (AEs) in these studies. In the SAD study, 25-200 mg administered orally showed dose-proportional pharmacokinetics (PK) and acute dose-related increases in systolic blood pressure (SBP) and diastolic blood pressure DBP) and pulse rate at doses ≥ 75 mg. AE related to central activation were seen at doses ≥ 75 mg. At 25 and 75 mg, central penetration of mevidalen was confirmed by measurement of mevidalen in cerebrospinal fluid. In the MAD study, once-daily doses of mevidalen at 15-150 mg for 14 days showed dose-proportional PK. Acute dose-dependent increases in SBP, DBP, and PR were observed on initial administration, but with repeated dosing the effects diminished and returned toward baseline levels. Overall, these findings support further investigation of mevidalen as a potential treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Max Tsai
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | |
Collapse
|
16
|
Comprehensive metabolic profiling of Parkinson's disease by liquid chromatography-mass spectrometry. Mol Neurodegener 2021; 16:4. [PMID: 33485385 PMCID: PMC7825156 DOI: 10.1186/s13024-021-00425-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Parkinson’s disease (PD) is a prevalent neurological disease in the elderly with increasing morbidity and mortality. Despite enormous efforts, rapid and accurate diagnosis of PD is still compromised. Metabolomics defines the final readout of genome-environment interactions through the analysis of the entire metabolic profile in biological matrices. Recently, unbiased metabolic profiling of human sample has been initiated to identify novel PD metabolic biomarkers and dysfunctional metabolic pathways, however, it remains a challenge to define reliable biomarker(s) for clinical use. Methods We presented a comprehensive metabolic evaluation for identifying crucial metabolic disturbances in PD using liquid chromatography-high resolution mass spectrometry-based metabolomics approach. Plasma samples from 3 independent cohorts (n = 460, 223 PD, 169 healthy controls (HCs) and 68 PD-unrelated neurological disease controls) were collected for the characterization of metabolic changes resulted from PD, antiparkinsonian treatment and potential interferences of other diseases. Unbiased multivariate and univariate analyses were performed to determine the most promising metabolic signatures from all metabolomic datasets. Multiple linear regressions were applied to investigate the associations of metabolites with age, duration time and stage of PD. The combinational biomarker model established by binary logistic regression analysis was validated by 3 cohorts. Results A list of metabolites including amino acids, acylcarnitines, organic acids, steroids, amides, and lipids from human plasma of 3 cohorts were identified. Compared with HC, we observed significant reductions of fatty acids (FFAs) and caffeine metabolites, elevations of bile acids and microbiota-derived deleterious metabolites, and alterations in steroid hormones in drug-naïve PD. Additionally, we found that L-dopa treatment could affect plasma metabolome involved in phenylalanine and tyrosine metabolism and alleviate the elevations of bile acids in PD. Finally, a metabolite panel of 4 biomarker candidates, including FFA 10:0, FFA 12:0, indolelactic acid and phenylacetyl-glutamine was identified based on comprehensive discovery and validation workflow. This panel showed favorable discriminating power for PD. Conclusions This study may help improve our understanding of PD etiopathogenesis and facilitate target screening for therapeutic intervention. The metabolite panel identified in this study may provide novel approach for the clinical diagnosis of PD in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00425-8.
Collapse
|
17
|
Senel M, Dervisevic E, Alhassen S, Dervisevic M, Alachkar A, Cadarso VJ, Voelcker NH. Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson’s Disease. Anal Chem 2020; 92:12347-12355. [DOI: 10.1021/acs.analchem.0c02032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| |
Collapse
|
18
|
Figueroa CA, Bajgain P, Stohn JP, Hernandez A, Brooks DJ, Houseknecht KL, Rosen CJ. Deletion of α-Synuclein in Prrx1-positive cells causes partial loss of function in the central nervous system (CNS) but does not affect ovariectomy induced bone loss. Bone 2020; 137:115428. [PMID: 32417536 PMCID: PMC8260189 DOI: 10.1016/j.bone.2020.115428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
α-Synuclein is a small 140 amino acid polypeptide encoded by the Snca gene that is highly expressed in neural tissue, but it is also found in osteoblasts, erythroblasts, macrophages, and adipose tissue. Previously, using co-expression network analysis we found that Snca was a key regulator of skeletal homeostasis, and its deletion partially prevented bone loss after ovariectomy (OVX). Here we tested the hypothesis that Snca deletion in mesenchymal progenitors using the Prrx1Cre (Prrx1, Paired-related homeobox 1) limb enhancer would protect bone mass after OVX. Prrx1Cre;Sncafl/fl and littermate controls (Sncafl/fl) were sham operated or ovariectomized (OVX) at 8 weeks of age and sacrificed at 20 weeks. Independently, eight-week female and male Prrx1Cre;Sncafl/fl mice and littermate controls were administered a high fat (60% fat) or low fat (10% fat) diet for 15 weeks. Bone loss was not prevented in either genotype after ovariectomy, but the Prrx1Cre;Sncafl/fl. mice were partially protected from weight gain after OVX and high fat diet (HFD). Serum catecholamine levels were lower in the Prrx1Cre;Sncafl/fl both on a low fat diet (LFD) and HFD versus fl/fl controls. Importantly, mutant mice exhibited a number of physical and behavioral phenotypes that were associated with conditional deletion of Snca in several brain regions. Cells labeled with Prrx1 were noted throughout the central nervous system (CNS). These data support earlier preliminary reports of Prrx1 expression in neural progenitors, and raise a cautionary note about the evaluation of skeletal and body composition phenotypes when using this Cre driver to study osteoprogenitor development.
Collapse
Affiliation(s)
| | - Pratima Bajgain
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - J Patrizia Stohn
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA.
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA..
| | - Clifford J Rosen
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| |
Collapse
|
19
|
Monoaminergic and Kynurenergic Characterization of Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Cerebrospinal Fluid and Serum. Neurochem Res 2020; 45:1191-1201. [PMID: 32130630 PMCID: PMC7162843 DOI: 10.1007/s11064-020-03002-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/30/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Exploring the neurochemical continuum between frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) with respect to monoamines and kynurenines in cerebrospinal fluid (CSF) and serum, may be useful to identify possible new research/therapeutic targets. Hence, we analysed monoamines and kynurenines in CSF and serum derived from patients with FTD (n = 39), ALS (n = 23), FTD-ALS (n = 4) and age-matched control subjects (n = 26), using reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) with electrochemical detection (ECD) and liquid chromatography tandem mass spectrometry, respectively. We noted a shared dopaminergic disturbance in FTD and ALS when compared to CONTR, with significantly increased serum DA levels and decreased DOPAC concentrations, as well as decreased DOPAC/DA ratios in both disease groups. In CSF, significantly reduced DOPAC concentrations in FTD and ALS were observed as well. Here, a significant increase in DA levels and decrease in DOPAC/DA ratios was only found in FTD relative to CONTR. With respect to the kynurenine pathway (KP), we only found decreased HK/XA ratios, indicative for vitamin B6 status, in serum of ALS subjects compared to FTD. The dopaminergic commonalities observed in FTD and ALS might relate to a disturbance of dopaminergic nerve terminals in projection areas of the substantia nigra and/or ventral tegmental area, although these findings should first be confirmed in brain tissue. Lastly, based on the results of this work, the KP does not hold promise as a research/therapeutic target in FTD and ALS.
Collapse
|
20
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
21
|
Nolan RA, Reeb KL, Rong Y, Matt SM, Johnson HS, Runner K, Gaskill PJ. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain Behav Immun Health 2019; 2. [PMID: 33665636 PMCID: PMC7929492 DOI: 10.1016/j.bbih.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of innate immune genes in the brain is thought to be a major factor in the development of addiction to substances of abuse. As the major component of the innate immune system in the brain, aberrant activation of myeloid cells such as macrophages and microglia due to substance use may mediate neuroinflammation and contribute to the development of addiction. All addictive drugs modulate the dopaminergic system and our previous studies have identified dopamine as a pro-inflammatory modulator of macrophage function. However, the mechanism that mediates this effect is currently unknown. Inflammatory activation of macrophages and induction of cytokine production is often mediated by the transcription factor NF-κB, and prior studies have shown that dopamine can modulate NF-κB activity in T-cells and other non-immune cell lines. Here we demonstrated that dopamine can activate NF-κB in primary human macrophages, resulting in the induction of its downstream targets including the NLRP3 inflammasome and the inflammatory cytokine IL-1β. These data also indicate that dopamine primes but does not activate the NLRP3 inflammasome in human macrophages. Activation of NF-κB was required for dopamine-mediated increases in IL-1β, as an inhibitor of NF-κB was able to abrogate the effects of dopamine on production of these cytokines. Connecting an increase in extracellular dopamine to NF-κB activation and inflammation suggests specific intracellular targets that could be used to ameliorate the inflammatory impact of dopamine in neuroinflammatory conditions associated with myeloid cell activation such as addiction. Dopamine exposure primes, but does not activate the NLRP3 inflammasome. Inflammasome priming can be mediated, at least partially, by a dopamine-induced increase in the activation and nuclear translocation of NF-κB in primary human macrophages. Dopamine additively increases the impact of cytomegalovirus on NF-κB activation in macrophages. Dopamine priming increases IL-1β release in response to inflammasome activation.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Y Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H S Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
22
|
Kalita J, Kumar V, Misra UK, Bora HK. Movement Disorder in Copper Toxicity Rat Model: Role of Inflammation and Apoptosis in the Corpus Striatum. Neurotox Res 2019; 37:904-912. [PMID: 31811585 DOI: 10.1007/s12640-019-00140-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
The pattern of copper (Cu) toxicity in humans is similar to Wilson disease, and they have movement disorders and frequent involvement of corpus striatum. The extent of cell deaths in corpus striatum may be the basis of movement disorder and may be confirmed in the experimental study. To evaluate the extent of apoptosis and glial activation in corpus striatum following Cu toxicity in a rat model, and correlate these with spontaneous locomotor activity (SLA), six male Wistar rats were fed normal saline (group I) and another six were fed copper sulfate 100 mg/kgBWt/daily orally (group II). At 1 month, neurobehavioral studies including SLA, rotarod, and grip strength were done. Corpus striatum was removed and was subjected to glial fibrillary acidic protein (GFAP) and caspase-3 immunohistochemistry. The concentration of tissue Cu, total antioxidant capacity (TAC), glutathione (GSH), malondialdehyde (MDA), and glutamate were measured. Group II rats had higher expression of caspase-3 (Mean ± SEM 32.67 ± 1.46 vs 4.47 ± 1.08; p < 0.01) and GFAP (41.81 ± 1.68 vs 31.82 ± 1.27; p < 0.01) compared with group I. Neurobehavioral studies revealed reduced total distance traveled, time moving, the number of rearing, latency to fall on the rotarod, grip strength, and increased resting time compared with group I. The expression of GFAP and caspase-3 correlated with SLA parameters, tissue Cu, GSH, MDA, TAC, and glutamate levels. The impaired locomotor activity in Cu toxicity rats is due to apoptotic and inflammatory-mediated cell death in the corpus striatum because of Cu-mediated oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Raebareily Road, Lucknow, 226014, India.
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Usha K Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Raebareily Road, Lucknow, 226014, India
| | - Himangsu K Bora
- National Laboratory Animal Centre, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
23
|
Higher cerebrospinal fluid to plasma ratio of p-cresol sulfate and indoxyl sulfate in patients with Parkinson's disease. Clin Chim Acta 2019; 501:165-173. [PMID: 31726035 DOI: 10.1016/j.cca.2019.10.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), impairment of brain to blood barrier and/or blood-cerebrospinal fluid (CSF) barrier is described. It can increase the level of uremic toxins in CSF. So far, role of these compounds in neurological disorders has not been completely understood. However, a link has been observed between chronic kidney disease and neurological disorders. We measured the concentrations of uremic toxins (i.e. indoxyl sulfate (IS), p-cresol sulfate (pCS), symmetric dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA), and trimethylamine N-oxide (TMAO)) in CSF and plasma, and correlated them with inflammation and oxidative stress biomarkers. METHODS Plasma and CSF samples were collected from 27 volunteers (18 with PD and 9 controls). The level of toxins was determined using liquid chromatography coupled with tandem mass spectrometry. RESULTS In PD, for IS and pCS, CSF-plasma ratio was higher. Concentration of pCS in CSF was higher in PD compared to controls. TMAO level was also higher in plasma of that group. Patients with motor fluctuations had higher level of uremic toxins in CSF, but not in plasma. CONCLUSIONS The level of pCS and IS in CSF of PD is higher than expected, based on their blood level. It can influence pathogenesis and progression of PD.
Collapse
|
24
|
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148:68-145. [PMID: 30710594 DOI: 10.1016/j.addr.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Lucia Rebelo
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
25
|
Shao Y, Le W. Recent advances and perspectives of metabolomics-based investigations in Parkinson's disease. Mol Neurodegener 2019; 14:3. [PMID: 30634989 PMCID: PMC6330496 DOI: 10.1186/s13024-018-0304-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system (CNS), which affects mostly older adults. In recent years, the incidence of PD has been dramatically increasing with the aging population expanding. Due to the lack of effective biomarkers, the accurate diagnosis and precise treatment of PD are currently compromised. Notably, metabolites have been considered as the most direct reflection of the physiological and pathological conditions in individuals and represent attractive candidates to provide deep insights into disease phenotypes. By profiling the metabolites in biofluids (cerebrospinal fluid, blood, urine), feces and brain tissues, metabolomics has become a powerful and promising tool to identify novel biomarkers and provide valuable insights into the etiopathogenesis of neurological diseases. In this review, we will summarize the recent advancements of major analytical platforms implemented in metabolomics studies, dedicated to the improvement and extension of metabolome coverage for in-depth biological research. Based on the current metabolomics studies in both clinical populations and experimental PD models, this review will present new findings in metabolomics biomarkers research and abnormal metabolic pathways in PD, and will discuss the correlation between metabolomic changes and clinical conditions of PD. A better understanding of the biological underpinning of PD pathogenesis might offer novel diagnostic, prognostic, and therapeutic approaches to this devastating disease.
Collapse
Affiliation(s)
- Yaping Shao
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Fluorescent ternary complexes of some biogenic amines and their metabolites with europium and oxytetracycline for applications in the chemical analysis. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Fang G, Wang H, Bian Z, Sun J, Liu A, Fang H, Liu B, Yao Q, Wu Z. Recent development of boronic acid-based fluorescent sensors. RSC Adv 2018; 8:29400-29427. [PMID: 35548017 PMCID: PMC9084483 DOI: 10.1039/c8ra04503h] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/08/2018] [Indexed: 11/21/2022] Open
Abstract
As Lewis acids, boronic acids can bind with 1,2- or 1,3-diols in aqueous solution reversibly and covalently to form five or six cyclic esters, thus resulting in significant fluorescence changes. Based on this phenomenon, boronic acid compounds have been well developed as sensors to recognize carbohydrates or other substances. Several reviews in this area have been reported before, however, novel boronic acid-based fluorescent sensors have emerged in large numbers in recent years. This paper reviews new boron-based sensors from the last five years that can detect carbohydrates such as glucose, ribose and sialyl Lewis A/X, and other substances including catecholamines, reactive oxygen species, and ionic compounds. And emerging electrochemically related fluorescent sensors and functionalized boronic acid as new materials including nanoparticles, smart polymer gels, and quantum dots were also involved. By summarizing and discussing these newly developed sensors, we expect new inspiration in the design of boronic acid-based fluorescent sensors.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Aiqin Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan Shandong 250012 China
| | - Bo Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhongyu Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
28
|
Loiodice S, Denibaud AS, Deffains W, Alix M, Montagne P, Seffals M, Drieu La Rochelle C. Validation of a New Scoring Scale for Behavioral Assessment of L-Dopa-Induced Dyskinesia in the Rat: A New Tool for Early Decision-Making in Drug Development. ACS Chem Neurosci 2018; 9:762-772. [PMID: 29226687 DOI: 10.1021/acschemneuro.7b00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate (NHP) has been described as the most translatable model for experimental reproduction of L-dopa-induced dyskinesia (LID). However, from a drug discovery perspective, the risk associated with investment in this type of model is high due to the time and cost. The 6-hydroxydopamine (6-OHDA) rat dyskinesia model is recommended for testing compounds but relies on onerous, and nonstandard behavioral rating scales. We sought to develop a simplified and sensitive method aiming at assessing LID in the rat. The purpose was to validate a reliable tool providing earlier insight into the antidyskinetic potential of compounds in a time/cost-effective manner before further investigation in NHP models. Unilaterally 6-OHDA-lesioned rats were administered L-dopa (20 mg/kg) and benserazide (5 mg/kg) daily for 3 weeks starting 4 weeks postlesion, then coadministered with amantadine (20-30-40 mg/kg). An adapted rating scale was used to score LID frequency and a severity coefficient was applied depending on the features of the observed behavior. A gradual increase (about 3-fold) in LID score was observed over the 3 weeks of L-dopa treatment. The rating scale was sensitive enough to highlight a dose-dependent amantadine-mediated decrease (about 2.2-fold) in LID score. We validated a simplified method, able to reflect different levels of severity in the assessment of LID and, thus, provide a reliable tool for drug discovery.
Collapse
Affiliation(s)
- Simon Loiodice
- Non-Clinical Department, Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Anne-Sophie Denibaud
- Non-Clinical Department, Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Wendy Deffains
- Non-Clinical Department, Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Magali Alix
- Non-Clinical Department, Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Pierre Montagne
- Non-Clinical Department, Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Marine Seffals
- Plate-Forme H2P2, Université de Rennes 1, Biosit, 2 Av. du Prof. Léon Bernard, 35043 Rennes, France
| | | |
Collapse
|
29
|
Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson's disease. Parkinsonism Relat Disord 2018; 50:108-112. [PMID: 29475591 DOI: 10.1016/j.parkreldis.2018.02.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Consistent with nigrostriatal dopamine depletion, low cerebrospinal fluid (CSF) concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), the main neuronal metabolite of dopamine, characterize Parkinson's disease (PD) even in recently diagnosed patients. Whether low CSF levels of DOPAC or DOPA, the precursor of dopamine, identify pre-clinical PD in at-risk healthy individuals has been unknown. METHODS Participants in the intramural NINDS PDRisk study entered information about family history of PD, olfactory dysfunction, dream enactment behavior, and orthostatic hypotension at a protocol-specific website. After at least 3 risk factors were confirmed by on-site screening, 26 subjects had CSF sampled for levels of catechols and were followed for at least 3 years. RESULTS Of 26 PDRisk subjects, 4 were diagnosed with PD (Pre-Clinical PD group); 22 risk-matched (mean 3.2 risk factors) subjects remained disease-free after a median of 3.7 years (No-PD group). The Pre-Clinical PD group had lower initial DOPA and DOPAC levels than did the No-PD group (p = 0.0302, p = 0.0190). All 3 subjects with both low DOPA (<2.63 pmol/mL) and low DOPAC (<1.22 pmol/mL) levels, based on optimum cut-off points using the minimum distance method, developed PD, whereas none of 14 subjects with both normal DOPA and DOPAC levels did so (75% sensitivity at 100% specificity, p = 0.0015 by 2-tailed Fisher's exact test). CONCLUSIONS In people with multiple PD risk factors, those with low CSF DOPA and low CSF DOPAC levels develop clinical disease during follow-up. We suggest that neurochemical biomarkers of central dopamine deficiency identify the disease in a pre-clinical phase.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Courtney Holmes
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grisel J Lopez
- Molecular Genetics Section, National Human Genome Research Institute, USA
| | - Tianxia Wu
- Office of the Clinical Director, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yehonatan Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel Aviv University, Tel-HaShomer, Israel
| |
Collapse
|
30
|
Havelund JF, Heegaard NHH, Færgeman NJK, Gramsbergen JB. Biomarker Research in Parkinson's Disease Using Metabolite Profiling. Metabolites 2017; 7:E42. [PMID: 28800113 PMCID: PMC5618327 DOI: 10.3390/metabo7030042] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered a multifactorial disease, which requires a more precise diagnosis and personalized medication to obtain optimal outcome. In recent years, advanced metabolite profiling of body fluids like serum/plasma, CSF or urine, known as "metabolomics", has become a powerful and promising tool to identify novel biomarkers or "metabolic fingerprints" characteristic for PD at various stages of disease. In this review, we discuss metabolite profiling in clinical and experimental PD. We briefly review the use of different analytical platforms and methodologies and discuss the obtained results, the involved metabolic pathways, the potential as a biomarker and the significance of understanding the pathophysiology of PD. Many of the studies report alterations in alanine, branched-chain amino acids and fatty acid metabolism, all pointing to mitochondrial dysfunction in PD. Aromatic amino acids (phenylalanine, tyrosine, tryptophan) and purine metabolism (uric acid) are also altered in most metabolite profiling studies in PD.
Collapse
Affiliation(s)
- Jesper F Havelund
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institute, DK-2300 Copenhagen, Denmark.
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark.
| | - Nils J K Færgeman
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Jan Bert Gramsbergen
- Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
31
|
Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB. Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J Neurochem 2017. [PMID: 28628213 DOI: 10.1111/jnc.14104] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective drug in the symptomatic treatment of Parkinson's disease, but chronic use is associated with L-DOPA-induced dyskinesia in more than half the patients after 10 years of treatment. L-DOPA treatment may affect tryptophan metabolism via the kynurenine pathway. Altered levels of kynurenine metabolites can affect glutamatergic transmission and may play a role in the development of L-DOPA-induced dyskinesia. In this study, we assessed kynurenine metabolites in plasma and cerebrospinal fluid of Parkinson's disease patients and controls. Parkinson patients (n = 26) were clinically assessed for severity of motor symptoms (UPDRS) and L-DOPA-induced dyskinesia (UDysRS). Plasma and cerebrospinal fluid samples were collected after overnight fasting and 1-2 h after intake of L-DOPA or other anti-Parkinson medication. Metabolites were analyzed in plasma and cerebrospinal fluid of controls (n = 14), Parkinson patients receiving no L-DOPA (n = 8), patients treated with L-DOPA without dyskinesia (n = 8), and patients with L-DOPA-induced dyskinesia (n = 10) using liquid chromatography-mass spectrometry. We observed approximately fourfold increase in the 3-hydroxykynurenine/kynurenic acid ratio in plasma of Parkinson's patients with L-DOPA-induced dyskinesia. Anthranilic acid levels were decreased in plasma and cerebrospinal fluid of this patient group. 5-Hydroxytryptophan levels were twofold increased in all L-DOPA-treated Parkinson's patients. We conclude that a higher 3-hydroxykynurenine/kynurenic acid ratio in plasma may serve as a biomarker for L-DOPA-induced dyskinesia. Longitudinal studies including larger patients cohorts are needed to verify whether the changes observed here may serve as a prognostic marker for L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Jesper F Havelund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Andreas D Andersen
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Focused Research Unit in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Odense Patient data Exploratory Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Michael Binzer
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Focused Research Unit in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Niels H H Heegaard
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Autoimmunology & Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Egon Stenager
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Focused Research Unit in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Nils J Faergeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Jan Bert Gramsbergen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|