1
|
Kushwaha A, Thakur MK. Suv39h1 Silencing Recovers Memory Decline in Scopolamine-Induced Amnesic Mouse Model. Mol Neurobiol 2024; 61:487-497. [PMID: 37626270 DOI: 10.1007/s12035-023-03570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Histone post-translational modifications play an important role in the regulation of long-term memory and modulation of expression of neuronal immediate early genes (IEGs). The lysine methyltransferase KMT1A/ Suv39h1 (a mammalian ortholog of the Drosophila melanogaster SU (VAR) 3-9) aids in the methylation of histone H3 at lysine 9. We previously reported that age-related memory decline is associated with an increase in Suv39h1 expression in the hippocampus of male mice. The scopolamine-induced amnesic mouse model is a well-known animal model of memory impairment. In the current study, we have made an attempt to find a link between the changes in the H3K9 trimethylation pattern and memory decline during scopolamine-induced amnesia. It was followed by checking the effect of siRNA-mediated silencing of hippocampal Suv39h1 on memory and expression of neuronal IEGs. Scopolamine treatment significantly increased global levels of H3K9me3 and Suv39h1 in the amnesic hippocampus. Suv39h1 silencing in amnesic mice reduced H3K9me3 levels at the neuronal IEGs (Arc and BDNF) promoter, increased the expression of Arc and BDNF in the hippocampus, and improved recognition memory. Thus, these findings suggest that the silencing of Suv39h1 alone or in combination with other epigenetic drugs might be effective for treating memory decline during amnesia.
Collapse
Affiliation(s)
- Akanksha Kushwaha
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
- K N Govt. P G College, Gyanpur, Sant Ravidas Nagar, 221304, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
2
|
Rafique H, Hu X, Ren T, Dong R, Aadil RM, Zou L, Sharif MK, Li L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients 2023; 16:117. [PMID: 38201947 PMCID: PMC10780882 DOI: 10.3390/nu16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Neurodegenerative disorders pose a substantial risk to human health, and oxidative stress, cholinergic dysfunction, and inflammation are the major contributors. The purpose of this study was to explore the neuroprotective effects of oat protein hydrolysate (OPH) and identify peptides with neuroprotective potential. This study is the first to isolate and identify OPH peptides with neuroprotective potential, including DFVADHPFLF (DF-10), HGQNFPIL (HL-8), and RDFPITWPW (RW-9), by screening via peptidomes and molecular-docking simulations. These peptides showed positive effects on the activity of antioxidant enzymes and thus reduced oxidative stress through regulation of Nrf2-keap1/HO-1 gene expression in vitro and in vivo. The peptides also significantly ameliorated scopolamine-induced cognitive impairment in the zebrafish model. This improvement was correlated with mitigation of MDA levels, AChE activity, and levels of inflammatory cytokines in the brains of zebrafish. Furthermore, these peptides significantly upregulated the mRNA expression of Bdnf, Nrf2, and Erg1 in the brains of zebrafish with neurodegenerative disorders. Collectively, oat peptides have potential for use as active components in nutraceutical applications for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lu Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China
| |
Collapse
|
3
|
Jiang Y, Zhang T, Yang L, Du Z, Wang Q, Hou J, Liu Y, Song Q, Zhao J, Wu Y. Downregulation of FTO in the hippocampus is associated with mental disorders induced by fear stress during pregnancy. Behav Brain Res 2023; 453:114598. [PMID: 37506852 DOI: 10.1016/j.bbr.2023.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Mental disorders (MD), such as anxiety, depression, and cognitive impairment, are very common during pregnancy and predispose to adverse pregnancy outcomes; however, the underlying mechanisms are still under intense investigation. Although the most common RNA modification in epigenetics, N6-methyladenosine (m6A) has been widely studied, its role in MD has not been investigated. Here, we observed that fat mass and obesity-associated protein (FTO) are downregulated in the hippocampus of pregnant rats with MD induced by fear stress and demonstrated that FTO participates in and regulates MD induced by fear stress. In addition, we identified four genes with anomalous modifications and expression (double aberrant genes) that were directly regulated by FTO, namely Angpt2, Fgf10, Rpl21, and Adcy7. Furthermore, we found that these genes might induce MD by regulating the PI3K/Akt and Rap1 signaling pathways. It appears that FTO-mediated m6A modification is a key regulatory mechanism in MD caused by fear stress during pregnancy.
Collapse
Affiliation(s)
- Yu Jiang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Zhang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Yang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Zhixin Du
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiyang Wang
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junlin Hou
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Yuexuan Liu
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Song
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiajia Zhao
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongye Wu
- Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Mishra E, Thakur MK. Mdivi-1 Rescues Memory Decline in Scopolamine-Induced Amnesic Male Mice by Ameliorating Mitochondrial Dynamics and Hippocampal Plasticity. Mol Neurobiol 2023; 60:5426-5449. [PMID: 37314656 DOI: 10.1007/s12035-023-03397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Memory loss, often known as amnesia, is common in the elderly population and refers to forgetting facts and experiences. It is associated with increased mitochondrial fragmentation, though the contribution of mitochondrial dynamics in amnesia is poorly understood. Therefore, the present study is aimed at elucidating the role of Mdivi-1 in mitochondrial dynamics, hippocampal plasticity, and memory during scopolamine (SC)-induced amnesia. The findings imply that Mdivi-1 significantly increased the expression of Arc and BDNF proteins in the hippocampus of SC-induced amnesic mice, validating improved recognition and spatial memory. Moreover, an improved mitochondrial ultrastructure was attributed to a decline in the percentage of fragmented and spherical-shaped mitochondria after Mdivi-1 treatment in SC-induced mice. The significant downregulation of p-Drp1 (S616) protein and upregulation of Mfn2, LC3BI, and LC3BII proteins in Mdivi-1-treated SC-induced mice indicated a decline in fragmented mitochondrial number and healthy mitochondrial dynamics. Mdivi-1 treatment alleviated ROS production and Caspase-3 activity and elevated mitochondrial membrane potential, Vdac1 expression, ATP production, and myelination, resulting in reduced neurodegeneration in SC mice. Furthermore, the decline of pro-apoptotic protein cytochrome-c and increase of anti-apoptotic proteins Procaspase-9 and Bcl-2 in Mdivi-1-treated SC-induced mice suggested improved neuronal health. Mdivi-1 also increased the dendritic arborization and spine density, which was further corroborated by increased expression of synaptophysin and PSD95. In conclusion, the current study suggests that Mdivi-1 treatment improves mitochondrial ultrastructure and function through the regulation of mitochondrial dynamics. These changes further improve neuronal cell density, myelination, dendritic arborization, and spine density, decrease neurodegeneration, and improve recognition and spatial memory. Schematic presentation depicts that Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
5
|
Ren LY, Cicvaric A, Zhang H, Meyer MA, Guedea AL, Gao P, Petrovic Z, Sun X, Lin Y, Radulovic J. Stress-induced changes of the cholinergic circuitry promote retrieval-based generalization of aversive memories. Mol Psychiatry 2022; 27:3795-3805. [PMID: 35551246 PMCID: PMC9846583 DOI: 10.1038/s41380-022-01610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Generalization, the process of applying knowledge acquired in one context to other contexts, often drives the expression of similar behaviors in related situations. At the cellular level, generalization is thought to depend on the activity of overlapping neurons that represent shared features between contexts (general representations). Using contextual fear conditioning in mice, we demonstrate that generalization can also occur in response to stress and result from reactivation of specific, rather than general context representations. We found that generalization emerges during memory retrieval, along with stress-induced abnormalities of septohippocampal oscillatory activity and acetylcholine release, which are typically found in negative affective states. In hippocampal neurons that represent aversive memories and drive generalization, cholinergic septohippocampal afferents contributed to a unique reactivation pattern of cFos, Npas4, and repressor element-1 silencing transcription factor (REST). Together, these findings suggest that generalization can be triggered by perceptually dissimilar but valence-congruent memories of specific aversive experiences. Through promoting the reactivation of such memories and their interference with ongoing behavior, abnormal cholinergic signaling could underlie maladaptive cognitive and behavioral generalization linked to negative affective states.
Collapse
Affiliation(s)
- Lynn Y Ren
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA
| | - Ana Cicvaric
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Hui Zhang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Mariah Aa Meyer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA
| | - Pan Gao
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA
| | - Zorica Petrovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Xiaochen Sun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yingxi Lin
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Psychiatry, State University of New York Upstate Medical University, New York, NY, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Mishra E, Thakur MK. Alterations in hippocampal mitochondrial dynamics are associated with neurodegeneration and recognition memory decline in old male mice. Biogerontology 2022; 23:251-271. [PMID: 35266060 DOI: 10.1007/s10522-022-09960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022]
Abstract
Mitochondrial dynamics is a key process that modulates the ultrastructure, quality and function of mitochondria. It is disrupted in numerous major neurodegenerative disorders including Parkinson's, Alzheimer's and Huntington's disease. Mitochondrial dysfunction has been correlated with the loss of memory. Previous studies suggest the involvement of Vdac1 and Drp1 in outer mitochondrial membrane permeabilization and promotion of mitochondrial fragmentation through Drp1 phosphorylation at S616. However, alterations in mitochondrial dynamics with respect to aging, memory loss and neurodegeneration remain unexplored. Therefore, the present study focuses on the involvement of mitochondrial dynamics in neurodegeneration and recognition memory decline during aging. The recognition memory decline was validated by the novel object recognition test and measurement of hippocampal Arc protein level during aging. The ultrastructure analysis revealed a decline in mitochondrial length and area, while an increase in the number of fragmented, round and disrupted mitochondria in the hippocampus during aging. Disruption was also evident in mitochondrial cristae and membrane with advancing age. The change in mitochondrial morphology was corroborated by an increase in the expression of phospho-Drp1 (S616) and Cyt-c proteins but decline in Mfn2, LC3B, Vdac1, Bcl-XL and Bcl-2 proteins in the hippocampus during aging. Taken together, our findings reveal that an increase in the expression of phospho-Drp1 (S616) and decrease in Mfn2 and LC3B proteins in the hippocampus bring about a reduction in mitochondrial length and area, and rise in mitochondrial fragmentation leading to reduced neuronal cell density, increased neurodegeneration and recognition memory decline in old male mice. Diagram depicts the increase in hippocampal mitochondrial fragmentation during aging of mice. Increased mitochondrial fragmentation causes distorted mitochondrial function such as decrease in ATP/ADP transportation due to decrease in Vdac1 protein level and increase in oxidative damage. These alterations result in hippocampal neurodegeneration and consequently impairment in recognition memory during aging.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
7
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Hritcu L. Anxiolytic, Promnesic, Anti-Acetylcholinesterase and Antioxidant Effects of Cotinine and 6-Hydroxy-L-Nicotine in Scopolamine-Induced Zebrafish ( Danio rerio) Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:212. [PMID: 33535660 PMCID: PMC7912787 DOI: 10.3390/antiox10020212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cotinine (COT) and 6-hydroxy-L-nicotine (6HLN) are two nicotinic derivatives that possess cognitive-improving abilities and antioxidant properties in different rodent models of Alzheimer's disease (AD), eluding the side-effects of nicotine (NIC), the parent molecule. In the current study, we evaluated the impact of COT and 6HLN on memory deterioration, anxiety, and oxidative stress in the scopolamine (SCOP)-induced zebrafish model of AD. For this, COT and 6HLN were acutely administered by immersion to zebrafish that were treated with SCOP before testing. The memory performances were assessed in Y-maze and object discrimination (NOR) tasks, while the anxiety-like behavior was evaluated in the novel tank diving test (NTT). The acetylcholinesterase (AChE) activity and oxidative stress were measured from brain samples. The RT-qPCR analysis was used to evaluate the npy, egr1, bdnf, and nrf2a gene expression. Our data indicated that both COT and 6HLN attenuated the SCOP-induced anxiety-like behavior and memory impairment and reduced the oxidative stress and AChE activity in the brain of zebrafish. Finally, RT-qPCR analysis indicated that COT and 6HLN increased the npy, egr1, bdnf, and nrf2a gene expression. Therefore, COT and 6HLN could be used as tools for improving AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| | | | | | | | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
8
|
Ye F, Tian S, Hu H, Yu Z. Electroacupuncture reduces scopolamine-induced amnesia via mediating the miR-210/SIN3A and miR-183/SIN3A signaling pathway. Mol Med 2020; 26:107. [PMID: 33183243 PMCID: PMC7661264 DOI: 10.1186/s10020-020-00233-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The expression of SIN3A is closely correlated with electroacupuncture (EA) treatment efficacy of scopolamine-induced amnesia (SIA), but its underlying mechanisms remain to be further explored. Methods Quantitative real-time PCR was performed to analyze the expression of candidate microRNAs (miRNAs) and SIN3A mRNA in a rat model of SIA. Western blot was carried out to evaluate the differential expression of SIN3A proteins under different circumstances. Luciferase assay was used to explore the inhibitory role of certain miRNAs in SIN3A expression. A novel object recognition (NOR) test was performed to assess the memory function of SIA rats undergoing EA treatment. Immunohistochemistry was carried out to evaluate the expression of SIN3A in the hippocampus of SIA rats. Results Rno-miR-183-5p, rno-miR-34c-3p and rno-miR-210-3p were significantly up-regulated in SIA rats treated with EA. In addition, rno-miR-183-5p and rno-miR-210-3p exerted an inhibitory effect on SIN3A expression. EA treatment of SIA rats effectively restored the dysregulated expression of rno-miR-183-5p, rno-miR-210-3p and SIN3A. EA treatment also promoted the inhibited expression of neuronal IEGs including Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats. Accordingly, the NOR test also confirmed the effect of EA treatment on the improvement of memory in SIA rats. Conclusion In summary, the findings of this study demonstrated that scopolamine-induced amnesia was associated with downregulated expression of miR-210/miR-183 and upregulated expression of SIN3A. Furthermore, treatment with EA alleviated scopolamine-induced amnesia in rats and was associated with upregulated expression of miR-210/miR-183 and downregulated expression of SIN3A.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021, Hubei, China
| | - Shiming Tian
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021, Hubei, China
| | - Huimin Hu
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021, Hubei, China.
| | - Zhengwen Yu
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
9
|
Activation of PAR4 Upregulates p16 through Inhibition of DNMT1 and HDAC2 Expression via MAPK Signals in Esophageal Squamous Cell Carcinoma Cells. J Immunol Res 2018; 2018:4735752. [PMID: 30363984 PMCID: PMC6186345 DOI: 10.1155/2018/4735752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
A previous study showed that a downexpression of protease-activated receptor 4 (PAR4) is associated with the development of esophageal squamous cell carcinoma (ESCC). In this study, we explored the relationship between PAR4 activation and the expression of p16, and elucidated the underlying mechanisms in PAR4 inducing the tumor suppressor role in ESCC. ESCC cell lines (EC109 and TE-1) were treated with PAR4-activating peptide (PAR4-AP). Immunohistochemistry for DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) was performed in 26 cases of ESCC tissues. We found that DNMT1 and HDAC2 immunoreactivities in ESCC were significantly higher than those in adjacent noncancerous tissues. PAR4 activation could suppress DNMT1 and HDAC2, as well as increase p16 expressions, whereas silencing PAR4 dramatically increased HDAC2 and DNMT1, as well as reduced p16 expressions. Importantly, the chromatin immunoprecipitation-PCR (ChIP-PCR) data indicated that treatment of ESCC cells with PAR4-AP remarkably suppressed DNMT1 and HDAC2 enrichments on the p16 promoter. Furthermore, we demonstrated that activation of PAR4 resulted in an increase of p38/ERK phosphorylation and activators for p38/ERK enhanced the effect of PAR4 activation on HDAC2, DNMT1, and p16 expressions, whereas p38/ERK inhibitors reversed these effects. Moreover, we found that activation of PAR4 in ESCC cells significantly inhibited cell proliferation and induced apoptosis. These findings suggest that PAR4 plays a potential tumor suppressor role in ESCC cells and represents a potential therapeutic target of this disease.
Collapse
|