1
|
Taïb S, Durand J, Dehais V, Boulay AC, Martin S, Blugeon C, Jourdren L, Freydier R, Cohen-Salmon M, Hazan J, Brunet I. Vascular dysfunction is at the onset of oxaliplatin-induced peripheral neuropathy symptoms in mice. Life Sci Alliance 2025; 8:e202402791. [PMID: 39578077 PMCID: PMC11584327 DOI: 10.26508/lsa.202402791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is an adverse side effect of this chemotherapy used for gastrointestinal cancers. The continuous pain experienced by OIPN patients often results in the reduction or discontinuation of chemotherapy, thereby affecting patient survival. Several pathogenic mechanisms involving sensory neurons were shown to participate in the occurrence of OIPN symptoms. However, the dysfunction of the blood-nerve barrier as a source of nerve alteration had not been thoroughly explored. To characterise the vascular contribution to OIPN symptoms, we undertook two comparative transcriptomic analyses of mouse purified brain and sciatic nerve blood vessels (BVs) and nerve BVs after oxaliplatin or control administration. These analyses reveal distinct molecular landscapes between brain and nerve BVs and the up-regulation of transcripts involved in vascular contraction after oxaliplatin treatment. Anatomical examination of the nerve yet shows the preservation of BV architecture in the acute OIPN mouse model, although treated mice exhibit both neuropathic symptoms and enhanced vasoconstriction reflected by hypoxia. Moreover, vasodilators significantly reduce oxaliplatin-induced neuropathic symptoms and endoneurial hypoxia, establishing the key involvement of nerve blood flow in OIPN.
Collapse
Affiliation(s)
- Sonia Taïb
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Juliette Durand
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Vianney Dehais
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Sabrina Martin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université PSL, Paris, France
| | - Laurent Jourdren
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université PSL, Paris, France
| | - Rémi Freydier
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Jamilé Hazan
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Isabelle Brunet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| |
Collapse
|
2
|
Yang XR, Zhang XY, Xia YJ, Fu J, Lian XX, Liang XR, He YQ, Li ZH. Study on the Efficacy and Safety of the Huangqi Guizhi Wuwu Decoction in the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: Meta-Analysis of 32 Randomized Controlled Trials. J Pain Res 2024; 17:2605-2628. [PMID: 39139997 PMCID: PMC11319928 DOI: 10.2147/jpr.s466658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose Chemotherapy-induced peripheral neuropathy (CIPN) still lacks efficient therapeutic drugs. This study aimed to systematically evaluate the effects of Huangqi Guizhi Wuwu Decoction (HGWD) alone or combined with positive drugs on CIPN prevention and treatment. Methods The PubMed, Embase, Web of Science, Cochrane, China National Knowledge Infrastructure (CNKI), Wan Fang Data, China Science and Technology Journal (VIP) and Chinese Biomedical (CBM) databases were searched for randomized controlled trials (RCTs) of HGWD for CIPN prevention and treatment. The search time ranged from database establishment to October 17, 2023. The Cochrane risk-of-bias assessment tool was used for quality assessment, Review Manager 5.3 and STATA 12.0 were used for meta-analysis, and GRADEprofiler was used for evidence level assessment. Results A total of 32 RCTs involving 1987 patients were included. The meta-analysis results revealed the following: 1. In terms of the total CIPN incidence, that in the HGWD group was lower than that in the blank control group. The incidence in both the HGWD and HGWD+positive drug groups was lower than that in the monotherapy-positive drug group. 2. In terms of the incidence of severe CIPN, that in the HGWD group was lower than that in the blank control and positive drug groups. There was no statistically significant difference between the HGWD+positive drug and positive drug groups. Sensitivity analysis revealed that the results of severe incidence in the HGWD group was lower than that in the positive drug group were unstable 3. HGWD did not increase the number of chemotherapy-related adverse events. Conclusion HGWD can safely and effectively prevent CIPN, reduce symptoms, improve quality of life and reduce the impact of chemotherapy drugs on sensory nerve conduction. However, more high-quality RCTs are needed to compare the efficacy of HGWD with that of positive control drugs in preventing severe CIPN.
Collapse
Affiliation(s)
- Xin-Rong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xin-Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yi-Jia Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jin Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiao-Xuan Lian
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xin-Ru Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Ying-Qi He
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhuo-Hong Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
4
|
Ahmed Eltayeb S, Dressler JM, Schlatt L, Pernecker M, Neugebauer U, Karst U, Ciarimboli G. Interaction of the chemotherapeutic agent oxaliplatin and the tyrosine kinase inhibitor dasatinib with the organic cation transporter 2. Arch Toxicol 2024; 98:2131-2142. [PMID: 38589558 PMCID: PMC11169033 DOI: 10.1007/s00204-024-03742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Oxaliplatin (OHP) is effective in colorectal cancer treatment but induces peripheral neurotoxicity (OHP-induced peripheral neurotoxicity, OIPN), diminishing survivor quality of life. Organic cation transporter 2 (OCT2) is a key OHP uptake pathway in dorsal root ganglia. Competing for OCT2-mediated OHP uptake, such as with the tyrosine kinase inhibitor dasatinib, may mitigate OHP side effects. We investigated OHP and dasatinib interaction with OCT2 in human embryonic kidney 293 (HEK293) cells expressing OCT2 within a 10-3 to 10-7 M concentration range. Uptake competition experiments using fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP+, 1 µM) and mass spectrometry (MS) to determine cellular platinum content indicated that OHP (100 µM) is an OCT2 substrate, mediating OHP cellular toxicity. ASP+ and MS analysis revealed dasatinib as a non-transported inhibitor of hOCT2 (IC50 = 5.9 µM) and as a regulator of OCT2 activity. Dasatinib reduced transporter Vmax, potentially via Y544 phosphorylation suppression. MS analysis showed cellular dasatinib accumulation independent of hOCT2. Although 3 µM dasatinib reduced 100 µM OHP accumulation in hOCT2-HEK293 cells, co-incubation with dasatinib and OHP did not prevent OHP toxicity, possibly due to dasatinib-induced cell viability reduction. In summary, this study demonstrates OHP as an OCT2 substrate and dasatinib as a non-transported inhibitor and regulator of OCT2, offering potential for OIPN mitigation.
Collapse
Affiliation(s)
- Sara Ahmed Eltayeb
- Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1/A14, 48149, Münster, Germany
| | - Julia M Dressler
- Institut Für Anorganische Und Analytische Chemie, Universität Münster, Münster, Germany
| | - Lukas Schlatt
- Institut Für Anorganische Und Analytische Chemie, Universität Münster, Münster, Germany
| | - Moritz Pernecker
- Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1/A14, 48149, Münster, Germany
| | - Ute Neugebauer
- Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1/A14, 48149, Münster, Germany
| | - Uwe Karst
- Institut Für Anorganische Und Analytische Chemie, Universität Münster, Münster, Germany
| | - Giuliano Ciarimboli
- Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1/A14, 48149, Münster, Germany.
| |
Collapse
|
5
|
Warren G, Osborn M, Tsantoulas C, David-Pereira A, Cohn D, Duffy P, Ruston L, Johnson C, Bradshaw H, Kaczocha M, Ojima I, Yates A, O'Sullivan SE. Discovery and Preclinical Evaluation of a Novel Inhibitor of FABP5, ART26.12, Effective in Oxaliplatin-Induced Peripheral Neuropathy. THE JOURNAL OF PAIN 2024; 25:104470. [PMID: 38232863 DOI: 10.1016/j.jpain.2024.01.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a dose-limiting toxicity characterised by mechanical allodynia and thermal hyperalgesia, without any licensed medications. ART26.12 is a fatty acid-binding protein (FABP) 5 inhibitor with antinociceptive properties, characterised here for the prevention and treatment of OIPN. ART26.12 binds selectively to FABP5 compared to FABP3, FABP4, and FABP7, with minimal off-target liabilities, high oral bioavailability, and a NOAEL of 1,000 mg/kg/day in rats and dogs. In an established preclinical OIPN model, acute oral dosing (25-100 mg/kg) showed a cannabinoid receptor type 1 (CB1)-dependent anti-allodynic effect lasting up to 8 hours (persisting longer than plasma exposure to ART26.12). Antagonists of cannabinoid receptor type 2 (CB2), peroxisome proliferator-activated receptor alpha, and transient receptor potential cation channel subfamily V member 1 (TRPV1) may have also been implicated. Twice daily oral dosing (25 mg/kg bis in die (BID) for 7 days) showed anti-allodynic effects in an established OIPN model without the development of tolerance. In a prevention paradigm, coadministration of ART26.12 (10 and 25 mg/kg BID for 15 days) with oxaliplatin prevented thermal hyperalgesia, mitigated mechanical allodynia, and attenuated OXA-induced weight loss. Multi-scale analyses revealed widespread lipid modulation, particularly among N-acyl amino acids in the spinal cord, including potential analgesic mediators. Additionally, ART26.12 administration led to upregulation of ion channels in the periaqueductal grey, and broad translational upregulation within the plasma proteome. These results show promise that ART26.12 is a safe and well-tolerated candidate for the treatment and prevention of OIPN through lipid modulation. PERSPECTIVE: Inhibition of fatty acid-binding protein 5 (FABP5) is a novel target for reducing pain associated with chemotherapy. ART26.12 is a safe and well-tolerated small molecule FABP5 inhibitor effective at preventing and reducing pain induced with oxaliplatin through lipid modulation and activation of cannabinoid receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clare Johnson
- Department of Psychological and Brain Sciences, Bloomington, Indiana
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Bloomington, Indiana
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, New York; Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, New York; Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York
| | | | | |
Collapse
|
6
|
Iokawa K, Fujita T, Yoshida S, Mogi Y, Kasahara R, Yamamoto Y, Kai T. Change of hand sensation and function in patients with malignant lymphoma during early-stage vincristine chemotherapy: A single-center observational study. Medicine (Baltimore) 2024; 103:e38207. [PMID: 38758870 PMCID: PMC11098250 DOI: 10.1097/md.0000000000038207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
This study aimed to investigate changes in hand sensation (finger tactile threshold and two-point discrimination) and function in patients with malignant lymphoma, particularly during the early stages of chemotherapy with vincristine. Eighteen patients with malignant lymphoma were enrolled in this study. Data on the Common Terminology Criteria for Adverse Events Version 4.0, the visual analog scale for hand numbness, the Semmes Weinstein monofilament test, static and moving two-point discrimination (2PD), grip strength, pinch strength, and the Purdue Pegboard test were collected at 3 time points: before the start of chemotherapy (T0), after the first cycle of chemotherapy (T1), and after the second cycle of chemotherapy (T2). No significant changes were observed in Semmes Weinstein monofilament test at T0, T1, or T2 in either hand. However, the static 2PD was significantly worse for the right ring, little, and left middle fingers, whereas the moving 2PD was significantly worse for the right ring, left index, middle, and ring fingers. Furthermore, the visual analog scale scores for hand numbness and left-hand grip strength worsened significantly. Right-hand grip strength, pinch strength of both hands, and Purdue Pegboard test showed no significant deterioration. Chemotherapy with vincristine may affect hand sensation and function in patients with malignant lymphoma by exacerbating finger 2PD and hand numbness. Additionally, during the early stages of vincristine chemotherapy, it is important to monitor for a decrease in grip strength specifically in the left hand.
Collapse
Affiliation(s)
- Kazuaki Iokawa
- Department of Occupational Therapy, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Takaaki Fujita
- Department of Occupational Therapy, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Shizuka Yoshida
- Department of Rehabilitation, Kita-Fukushima Medical Center, Date City, Fukushima, Japan
| | - Yuka Mogi
- Department of Rehabilitation, Kita-Fukushima Medical Center, Date City, Fukushima, Japan
| | - Ryuichi Kasahara
- Department of Rehabilitation, Kita-Fukushima Medical Center, Date City, Fukushima, Japan
| | - Yuichi Yamamoto
- Department of Rehabilitation, Kita-Fukushima Medical Center, Date City, Fukushima, Japan
| | - Tatsuyuki Kai
- Department of Hematology, Kita-Fukushima Medical Center, Date City, Fukushima, Japan
| |
Collapse
|
7
|
Tiwari A, Albin B, Qubbaj K, Adhikari P, Yang IH. Phytic Acid Maintains Peripheral Neuron Integrity and Enhances Survivability against Platinum-Induced Degeneration via Reducing Reactive Oxygen Species and Enhancing Mitochondrial Membrane Potential. ACS Chem Neurosci 2024; 15:1157-1168. [PMID: 38445956 PMCID: PMC10958516 DOI: 10.1021/acschemneuro.3c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.
Collapse
Affiliation(s)
- Arjun
Prasad Tiwari
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - Bayne Albin
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - Khayzaran Qubbaj
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - Prashant Adhikari
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - In Hong Yang
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
8
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
9
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
10
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
11
|
Forgie BN, Prakash R, Telleria CM. Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. Int J Mol Sci 2022; 23:15410. [PMID: 36499737 PMCID: PMC9793759 DOI: 10.3390/ijms232315410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP), carboplatin (CP), and oxaliplatin (OXP) are three platinating agents clinically approved worldwide for use against a variety of cancers. They are canonically known as DNA damage inducers; however, that is only one of their mechanisms of cytotoxicity. CDDP mediates its effects through DNA damage-induced transcription inhibition and apoptotic signalling. In addition, CDDP targets the endoplasmic reticulum (ER) to induce ER stress, the mitochondria via mitochondrial DNA damage leading to ROS production, and the plasma membrane and cytoskeletal components. CP acts in a similar fashion to CDDP by inducing DNA damage, mitochondrial damage, and ER stress. Additionally, CP is also able to upregulate micro-RNA activity, enhancing intrinsic apoptosis. OXP, on the other hand, at first induces damage to all the same targets as CDDP and CP, yet it is also capable of inducing immunogenic cell death via ER stress and can decrease ribosome biogenesis through its nucleolar effects. In this comprehensive review, we provide detailed mechanisms of action for the three platinating agents, going beyond their nuclear effects to include their cytoplasmic impact within cancer cells. In addition, we cover their current clinical use and limitations, including side effects and mechanisms of resistance.
Collapse
Affiliation(s)
- Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rewati Prakash
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
12
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
13
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Shaheen A, Alam SM, Azam F, Saleem SA, Khan M, Hasan SS, Liaquat A. Lack of impact of OCTN1 gene polymorphisms on clinical outcomes of gabapentinoids in Pakistani patients with neuropathic pain. PLoS One 2022; 17:e0266559. [PMID: 35559956 PMCID: PMC9106170 DOI: 10.1371/journal.pone.0266559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background and objective Gabapentinoids are the first-line drugs for neuropathic pain. These drugs are the substrate of organic cation transporter (OCTN1) for renal excretion and absorption across the intestinal epithelium. Gabapentinoids exhibit wide interindividual variability in daily dosage and therapeutic efficacy which makes titration regimens prolonged for optimal efficacy. The present study aimed to investigate the possible influence of the single nucleotide polymorphism (SNP) of OCTN1 on therapeutic efficacy and safety of gabapentinoids in neuropathic pain patients of the Pakistani population. Methods Four hundred and twenty-six patients were enrolled in the study. All participants were genotyped for OCTN1 rs1050152 and rs3792876 by PCR-RFLP method and followed up for eight weeks. The therapeutic outcomes of gabapentinoids, reduction in pain score, inadequate or complete lack of response, adverse events (AEs) in responders and discontinuation of treatment on account of AEs were recorded for all patients. Results There was no significant association of genotypes and alleles of both SNPs on the clinical response of gabapentinoids (P ˃ 0.05). Similarly, significant differences were not found in the reduction of pain scores and AEs among different genotypes in the responders. The present study has reported the association of OCTN1 rs1050152 and rs3792876 polymorphisms with clinical outcomes of gabapentinoids for the first time in the real-world clinical setting. Conclusion Our results suggest a lack of influence of OCTN1 genetic variants in the determination of clinical response to gabapentinoids in patients with neuropathic pain in the Pakistani population. These findings signify the role of renal functions in predicting the interindividual variability to therapeutic responsiveness of gabapentinoids.
Collapse
Affiliation(s)
- Abida Shaheen
- Department of Pharmacology & Therapeutics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- * E-mail:
| | - Syed Mahboob Alam
- Department of Pharmacology & Therapeutics, Basic Medical Sciences Institute, JPMC, Karachi, Pakistan
| | - Fahad Azam
- Department of Pharmacology & Therapeutics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Salman Ahmad Saleem
- Department of Pain Clinic, Shifa International Hospital, Islamabad, Pakistan
| | - Moosa Khan
- Department of Pharmacology & Therapeutics, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Syed Saud Hasan
- Department of Pharmacology & Therapeutics, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Afrose Liaquat
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
15
|
Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int J Mol Sci 2022; 23:ijms23020914. [PMID: 35055100 PMCID: PMC8776198 DOI: 10.3390/ijms23020914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
Collapse
Affiliation(s)
- Lorena Pochini
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Michele Galluccio
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Lara Console
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Gilda Pappacoda
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Cesare Indiveri
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council—CNR, Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
16
|
Mezzanotte JN, Grimm M, Shinde NV, Nolan T, Worthen-Chaudhari L, Williams NO, Lustberg MB. Updates in the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Curr Treat Options Oncol 2022; 23:29-42. [PMID: 35167004 PMCID: PMC9642075 DOI: 10.1007/s11864-021-00926-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a common toxicity associated with treatment with platinum-based agents, taxanes, vinca alkaloids, and other specific agents. The long-term consequences of this condition can result in decreased patient quality of life and can lead to reduced dose intensity, which can negatively impact disease outcomes. There are currently no evidence-based preventative strategies for CIPN and only limited options for treatment. However, there are several strategies that can be utilized to improve patient experience and outcomes as more data are gathered in the prevention and treatment setting. Before treatment, patient education on the potential side effects of chemotherapy is key, and although trials have been limited, recommending exercise and a healthy lifestyle before and while undergoing chemotherapy may provide some overall benefit. In patients who develop painful CIPN, our approach is to offer duloxetine and titrate up to 60 mg daily. Chemotherapy doses may also need to be reduced if intolerable symptoms develop during treatment. Some patients may also try acupuncture and physical therapy to help address their symptoms, although this can be limited by cost, time commitment, and patient motivation. Additionally, data on these modalities are currently limited, as studies are ongoing. Overall, approaching each patient on an individual level and tailoring treatment options for them based on overall physical condition, their disease burden, goals of care and co-morbid health conditions, and willingness to trial different approaches is necessary when addressing CIPN.
Collapse
Affiliation(s)
- Jessica N. Mezzanotte
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Avenue, Room 334B, Columbus, OH 43210
| | - Michael Grimm
- The Ohio State University Comprehensive Cancer Center, 460 W. 10th Avenue, Columbus, OH 43210
| | - Namrata V. Shinde
- Department of Radiology, The Ohio State University Wexner Medical Center, 395 W 12th Avenue, Columbus, OH 43210
| | - Timiya Nolan
- The Ohio State University College of Nursing, 1585 Neil Avenue, Columbus, OH 43210
| | - Lise Worthen-Chaudhari
- Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Dodd Hall, Suite 1060, Columbus, OH 43210
| | - Nicole O. Williams
- Department of Medical Oncology, The Ohio State University Wexner Medical Center, 1800 Cannon Drive, 1310K Lincoln Tower, Columbus, OH 43210
| | - Maryam B. Lustberg
- Smilow Cancer Hospital/Yale Cancer Center, 35 Park Street, New Haven, CT 06519
| |
Collapse
|
17
|
|
18
|
Egashira N. Pathological Mechanisms and Preventive Strategies of Oxaliplatin-Induced Peripheral Neuropathy. FRONTIERS IN PAIN RESEARCH 2021; 2:804260. [PMID: 35295491 PMCID: PMC8915546 DOI: 10.3389/fpain.2021.804260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Oxaliplatin, which is widely used in treating cancers such as colorectal cancer, frequently causes peripheral neuropathy. It not only significantly reduces the patient's quality of life due to physical distress but may also result in a change or discontinuation of cancer treatment. Oxaliplatin-induced peripheral neuropathy (OIPN) is classified as acute or chronic depending on the onset time of side effects; however, the prevention and treatment of OIPN has not been established. As these peripheral neuropathies are side effects that occur due to treatment, the administration of effective prophylaxis can effectively prevent their onset. Although transient relief of symptoms such as pain and numbness enable the continuation of cancer treatment, it may result in the worsening of peripheral neuropathy. Thus, understanding the pathological mechanisms of OIPN and finding better preventative measures are important. This review focuses on animal models to address these issues, clarifies the pathological mechanisms of OIPN, and summarizes various approaches to solving OIPN, including targets for preventing OIPN.
Collapse
|
19
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
20
|
Ma J, Chen X, Zhu X, Pan Z, Hao W, Li D, Zheng Q, Tang X. Luteolin potentiates low-dose oxaliplatin-induced inhibitory effects on cell proliferation in gastric cancer by inducing G 2/M cell cycle arrest and apoptosis. Oncol Lett 2021; 23:16. [PMID: 34820015 PMCID: PMC8607327 DOI: 10.3892/ol.2021.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Although the reduction of oxaliplatin doses may alleviate deleterious side effects of gastrointestinal and gynecological cancer treatment, it also limits the anticancer therapeutic effects. As a high-efficient and low-priced herbal medicine ingredient, luteolin is an agent with a broad spectrum of anticancer activities and acts as a potential enhancer of therapeutic effects of chemotherapy agents in cancer treatment. This study focused on the antitumor effects and mechanism of combined treatment with luteolin and oxaliplatin on a mouse forestomach carcinoma (MFC) cell line. The study used CCK-8 assay, flow cytometry, Annexin V-FITC/PI double staining assay, reactive oxygen species testing assay, mitochondrial membrane potential testing assay, and western blot assay. The results showed that luteolin and oxaliplatin exerted synergistic effects on inhibiting MFC cell proliferation by inducing G2/M cell cycle arrest and apoptosis. Inhibiting the tumor necrosis factor receptor-associated protein 1/phosphorylated-extracellular-regulated protein kinases1/2/cell division cycle 25 homolog C/cyclin-dependent kinase-1/cyclin B1 pathway was indispensable to the combined treatment with luteolin and oxaliplatin to induce G2/M cell cycle arrest. In addition, luteolin increased oxidative stress in MFC cells treated with a low dose of oxaliplatin. The combined therapy damaged mitochondrial membrane potential and regulated BCL-2-associated X protein and B-cell lymphoma 2 protein expression, leading to apoptosis. Findings of the present study suggest that luteolin may be a qualified chemotherapy enhancer to potentiate the anticancer effects of low-dose oxaliplatin in MFC cells. This work provides a theoretical foundation for future research on applications of luteolin in clinical chemotherapy.
Collapse
Affiliation(s)
- Jun Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China.,School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaojie Chen
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuejie Zhu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaohai Pan
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjin Hao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.,School of Pharmacy, Shihezi University, Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi, Xinjiang 832002, P.R. China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
21
|
Hu X, Jiang Z, Teng L, Yang H, Hong D, Zheng D, Zhao Q. Platinum-Induced Peripheral Neuropathy (PIPN): ROS-Related Mechanism, Therapeutic Agents, and Nanosystems. Front Mol Biosci 2021; 8:770808. [PMID: 34901160 PMCID: PMC8652200 DOI: 10.3389/fmolb.2021.770808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Platinum (Pt) drugs (e.g., oxaliplatin, cisplatin) are applied in the clinic worldwide for the treatment of various cancers. However, platinum-induced peripheral neuropathy (PIPN) caused by the accumulation of Pt in the peripheral nervous system limits the clinical application, whose prevention and treatment are still a huge challenge. To date, Pt-induced reactive oxygen species (ROS) generation has been studied as one of the primary mechanisms of PIPN, whose downregulation would be feasible to relieve PIPN. This review will discuss ROS-related PIPN mechanisms including Pt accumulation in the dorsal root ganglia (DRG), ROS generation, and cellular regulation. Based on them, some antioxidant therapeutic drugs will be summarized in detail to alleviate the Pt-induced ROS overproduction. More importantly, we focus on the cutting-edge nanotechnology in view of ROS-related PIPN mechanisms and will discuss the rational fabrication of tailor-made nanosystems for efficiently preventing and treating PIPN. Last, the future prospects and potential breakthroughs of these anti-ROS agents and nanosystems will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyu Teng
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Zheng
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Yi Y, Li L, Song F, Li P, Chen M, Ni S, Zhang H, Zhou H, Zeng S, Jiang H. L-tetrahydropalmatine reduces oxaliplatin accumulation in the dorsal root ganglion and mitochondria through selectively inhibiting the transporter-mediated uptake thereby attenuates peripheral neurotoxicity. Toxicology 2021; 459:152853. [PMID: 34252480 DOI: 10.1016/j.tox.2021.152853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Yaodong Yi
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Liping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Feifeng Song
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shixin Ni
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Su Zeng
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
23
|
Jones MR, Urits I, Wolf J, Corrigan D, Colburn L, Peterson E, Williamson A, Viswanath O. Drug-Induced Peripheral Neuropathy: A Narrative Review. ACTA ACUST UNITED AC 2021; 15:38-48. [PMID: 30666914 PMCID: PMC7365998 DOI: 10.2174/1574884714666190121154813] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
Abstract
Background Peripheral neuropathy is a painful condition deriving from many and varied etiologies. Certain medications have been implicated in the iatrogenic development of Drug Induced Peripheral Neuropathy (DIPN) and include chemotherapeutic agents, antimicrobials, cardiovascular drugs, psychotropic, anticonvulsants, among others. This review synthesizes current clinical concepts regarding the mechanism, common inciting medications, and treatment options for drug-induced peripheral neuropathy. Methods The authors undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question and inclusion/exclusion criteria. The most relevant and up to date research was included. Results Drug-induced peripheral neuropathy is a common and painful condition caused by many different and frequently prescribed medications. Most often, DIPN is seen in chemotherapeutic agents, antimicrobials, cardiovascular drugs, psychotropic, and anticonvulsant drugs. Certain drugs exhibit more consistent neuropathic side effects, such as the chemotherapeutic compounds, but others are more commonly prescribed by a larger proportion of providers, such as the statins. DIPN is more likely to occur in patients with concomitant risk factors such as preexisting neuropathy, diabetes, and associated genetically predisposing diseases. DIPN is often difficult to treat, however medications including duloxetine, and gabapentin are shown to reduce neuropathic pain. Advanced techniques of neuromodulation offer promise though further randomized and controlled studies are needed to confirm efficacy. Conclusion Awareness of the drugs covered in this review and their potential for adverse neuropathic effect is important for providers caring for patients who report new onset symptoms of pain, paresthesia, or weakness. Prevention of DIPN is especially important because treatment often proves challenging. While many pharmacologic therapies have demonstrated analgesic potential in the pain caused by DIPN, many patients remain refractive to treatment. More studies are needed to elucidate the effectiveness of interventional, neuromodulating therapies.
Collapse
Affiliation(s)
- Mark R Jones
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, MA, 02118, United States
| | - Ivan Urits
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, MA, 02118, United States
| | - John Wolf
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Devin Corrigan
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Luc Colburn
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Emily Peterson
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Amber Williamson
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
24
|
Branca JJV, Carrino D, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Pacini A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front Mol Biosci 2021; 8:643824. [PMID: 34026827 PMCID: PMC8138476 DOI: 10.3389/fmolb.2021.643824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients’ quality of life.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Donatello Carrino
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
25
|
Wei G, Gu Z, Gu J, Yu J, Huang X, Qin F, Li L, Ding R, Huo J. Platinum accumulation in oxaliplatin-induced peripheral neuropathy. J Peripher Nerv Syst 2021; 26:35-42. [PMID: 33462873 PMCID: PMC7986112 DOI: 10.1111/jns.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a common and dose-limiting toxic effect that markedly limits the use of oxaliplatin and affects the quality of life. Although it is common, the underlying mechanisms of OIPN remain ambiguous. Recent studies have shown that the platinum accumulation in peripheral nervous system, especially in dorsal root ganglion, is a significant mechanism of OIPN. Several specific transporters, including organic cation transporters, high-affinity copper uptake protein1 (CTR1), ATPase copper transporting alpha (ATP7A) and multidrug and toxin extrusion protein 1 (MATE1), could be associated with this mechanism. This review summarizes the current research progress about the relationship between platinum accumulation and OIPN, as well as suggests trend for the future research.
Collapse
Affiliation(s)
- Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Zhancheng Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xiaofei Huang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Fengxia Qin
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Rong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| |
Collapse
|
26
|
Peripheral Neuropathy under Oncologic Therapies: A Literature Review on Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:ijms22041980. [PMID: 33671327 PMCID: PMC7922628 DOI: 10.3390/ijms22041980] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral neurologic complications are frequent adverse events during oncologic treatments and often lead to dose reduction, administration delays with time elongation of the therapeutic plan and, not least, worsening of patients’ quality of life. Experience skills are required to recognize symptoms and clinical evidences and the collaboration between different health professionals, in particular oncologists and hospital pharmacists, grants a correct management of this undesirable occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single mechanism. This paper aims from one side at summarizing and explaining all the scattering mechanisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the other side at finding new approaches to possible treatments, in order to facilitate the collaboration between oncologists, hematologists and hospital pharmacists.
Collapse
|
27
|
Huang KM, Leblanc AF, Uddin ME, Kim JY, Chen M, Eisenmann ED, Gibson AA, Li Y, Hong KW, DiGiacomo D, Xia SH, Alberti P, Chiorazzi A, Housley SN, Cope TC, Sprowl JA, Wang J, Loprinzi CL, Noonan A, Lustberg MB, Cavaletti G, Pabla N, Hu S, Sparreboom A. Neuronal uptake transporters contribute to oxaliplatin neurotoxicity in mice. J Clin Invest 2021; 130:4601-4606. [PMID: 32484793 DOI: 10.1172/jci136796] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Peripheral neurotoxicity is a debilitating condition that afflicts up to 90% of patients with colorectal cancer receiving oxaliplatin-containing therapy. Although emerging evidence has highlighted the importance of various solute carriers to the toxicity of anticancer drugs, the contribution of these proteins to oxaliplatin-induced peripheral neurotoxicity remains controversial. Among candidate transporters investigated in genetically engineered mouse models, we provide evidence for a critical role of the organic cation transporter 2 (OCT2) in satellite glial cells in oxaliplatin-induced neurotoxicity, and demonstrate that targeting OCT2 using genetic and pharmacological approaches ameliorates acute and chronic forms of neurotoxicity. The relevance of this transport system was verified in transporter-deficient rats as a secondary model organism, and translational significance of preventive strategies was demonstrated in preclinical models of colorectal cancer. These studies suggest that pharmacological targeting of OCT2 could be exploited to afford neuroprotection in cancer patients requiring treatment with oxaliplatin.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alix F Leblanc
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kristen W Hong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Duncan DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sherry H Xia
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI, Milan Center for Neuroscience, Milan, Italy
| | - Alessia Chiorazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI, Milan Center for Neuroscience, Milan, Italy
| | - Stephen N Housley
- School of Biological Sciences and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Timothy C Cope
- School of Biological Sciences and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jing Wang
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Charles L Loprinzi
- Department of Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Anne Noonan
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B Lustberg
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI, Milan Center for Neuroscience, Milan, Italy
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Yamamoto S, Egashira N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front Pharmacol 2021; 11:607780. [PMID: 33519471 PMCID: PMC7840493 DOI: 10.3389/fphar.2020.607780] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect observed in most patients treated with neurotoxic anti-cancer drugs. Currently, there are no therapeutic options available for the prevention of CIPN. Furthermore, few drugs are recommended for the treatment of existing neuropathies because the mechanisms of CIPN remain unclear. Each chemotherapeutic drug induces neuropathy by distinct mechanisms, and thus we need to understand the characteristics of CIPN specific to individual drugs. Here, we review the known pathogenic mechanisms of oxaliplatin- and paclitaxel-induced CIPN, highlighting recent findings. Cancer chemotherapy is performed in a planned manner; therefore, preventive strategies can be planned for CIPN. Drug repositioning studies, which identify the unexpected actions of already approved drugs, have increased in recent years. We have also focused on drug repositioning studies, especially for prevention, because they should be rapidly translated to patients suffering from CIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
29
|
Bouchenaki H, Danigo A, Sturtz F, Hajj R, Magy L, Demiot C. An overview of ongoing clinical trials assessing pharmacological therapeutic strategies to manage chemotherapy-induced peripheral neuropathy, based on preclinical studies in rodent models. Fundam Clin Pharmacol 2020; 35:506-523. [PMID: 33107619 DOI: 10.1111/fcp.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect induced by a variety of chemotherapeutic agents. Symptoms are mainly sensory: pain, tingling, numbness, and temperature sensitivity. They may require the tapering of chemotherapy regimens or even their cessation; thus, the prevention/treatment of CIPN is critical to increase effectiveness of cancer treatment. However, CIPN management is mainly based on conventional neuropathic pain treatments, with poor clinical efficacy. Therefore, significant effort is made to identify new pharmacological targets to prevent/treat CIPN. Animal modeling is a key component in predicting human response to drugs and in understanding the pathophysiological mechanisms underlying CIPN. In fact, studies performed in rodents highlighted several pharmacological targets to treat/prevent CIPN. This review provides updated information about ongoing clinical trials testing drugs for the management of CIPN and presents some of their proof-of-concept studies conducted in rodent models. The presented drugs target oxidative stress, renin-angiotensin system, glutamatergic neurotransmission, sphingolipid metabolism, neuronal uptake transporters, nicotinamide adenine dinucleotide metabolism, endocannabinoid system, transient receptor potential channels, and serotoninergic receptors. As some clinical trials focus on the effect of the drugs on pain, others evaluate their efficacy by assessing general neuropathy. Moreover, based on studies conducted in rodent models, it remains unclear if some of the tested drugs act in an antinociceptive fashion or have neuroprotective properties. Thus, further investigations are needed to understand their mechanism of action, as well as a global standardization of the methods used to assess efficacy of new therapeutic strategies in the treatment of CIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France.,Pharnext SA, Issy-les-Moulineaux, France
| | - Aurore Danigo
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Franck Sturtz
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | | | - Laurent Magy
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges, France
| | - Claire Demiot
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| |
Collapse
|
30
|
Stage TB, Hu S, Sparreboom A, Kroetz DL. Role for Drug Transporters in Chemotherapy-Induced Peripheral Neuropathy. Clin Transl Sci 2020; 14:460-467. [PMID: 33142018 PMCID: PMC7993259 DOI: 10.1111/cts.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity to widely used chemotherapeutics. Although the exact molecular mechanism of chemotherapy-induced peripheral neuropathy remains elusive, there is consensus that it is caused by damage to the peripheral nervous system leading to sensory symptoms. Recently developed methodologies have provided evidence of expression of drug transporters in the peripheral nervous system. In this literature review, we explore the role for drug transporters in CIPN. First, we assessed the transport of chemotherapeutics that cause CIPN (taxanes, platins, vincristine, bortezomib, epothilones, and thalidomide). Second, we cross-referenced the transporters implicated in genetic or functional studies with CIPN with their expression in the peripheral nervous system. Several drug transporters are involved in the transport of chemotherapeutics that cause peripheral neuropathy and particularly efflux transporters, such as ABCB1 and ABCC1, are expressed in the peripheral nervous system. Previous literature has linked genetic variants in efflux transporters to higher risk of peripheral neuropathy with the taxanes paclitaxel and docetaxel and the vinca alkaloid vincristine. We propose that this might be due to accumulation of the chemotherapeutics in the peripheral nervous system due to reduced neuronal efflux capacity. Thus, concomitant administration of efflux transporter inhibitors may lead to higher risk of adverse events of drugs that cause CIPN. This might prove valuable in drug development where screening new drugs for neurotoxicity might also require drug transporter consideration. There are ongoing efforts targeting drug transporters in the peripheral nervous system to reduce intraneuronal concentrations of chemotherapeutics that cause CIPN, which might ultimately protect against this dose-limiting adverse event.
Collapse
Affiliation(s)
- Tore B Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
31
|
Argyriou AA, Bruna J, Park SB, Cavaletti G. Emerging pharmacological strategies for the management of chemotherapy-induced peripheral neurotoxicity (CIPN), based on novel CIPN mechanisms. Expert Rev Neurother 2020; 20:1005-1016. [PMID: 32667212 DOI: 10.1080/14737175.2020.1796639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Based on results of available clinical trials, the treatment and prevention of chemotherapy-induced peripheral neurotoxicity (CIPN) largely remains an unmet clinical need. However, new approaches have emerged in the last few years, attempting to modify the natural history of acute and late CIPN effects through a better knowledge of the pathogenic process on the molecular level. AREAS COVERED Clinical results of recently published (last 5 years) or ongoing emerging therapeutic/preventive pharmacological approaches based on novel CIPN mechanisms have been identified from Pubmed and ClinicalTrials.gov. Results are reviewed and discussed, in order to assess the trend of new clinical studies but also to infer the role novel approaches may have in the future. EXPERT OPINION The large heterogeneity of disease-causing mechanisms prevents researchers from identifying a reliable approach to effectively and safely treat or prevent CIPN. Understanding of novel pathophysiologic processes is leading the way to novel therapies, which, through targeting the sphingosine 1-phosphate receptor or pharmacologically inhibiting axonal degeneration might achieve in the future both treatment and prevention of CIPN. Toward this end, a multi-targeting approach, combining drugs to target different CIPN pathomechanisms seems to be a rational approach that warrants testing.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Department of Neurology, Saint Andrew's State General Hospital of Patras , Patras, Greece
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO L'Hospitalet-IDIBELL , Barcelona, Spain
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
32
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
33
|
Huang KM, Uddin ME, DiGiacomo D, Lustberg MB, Hu S, Sparreboom A. Role of SLC transporters in toxicity induced by anticancer drugs. Expert Opin Drug Metab Toxicol 2020; 16:493-506. [PMID: 32276560 DOI: 10.1080/17425255.2020.1755253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION . Membrane transporters are integral to the maintenance of cellular integrity of all tissue and cell types. While transporters play an established role in the systemic pharmacokinetics of therapeutic drugs, tissue specific expression of uptake transporters can serve as an initiating mechanism that governs the accumulation and impact of cytotoxic drugs. AREAS COVERED . This review provides an overview of organic cation transporters as determinants of chemotherapy-induced toxicities. We also provide insights into the recently updated FDA guidelines for in vitro drug interaction studies, with a particular focus on the class of tyrosine kinase inhibitors as perpetrators of transporter-mediated drug interactions. EXPERT OPINION . Studies performed over the last few decades have highlighted the important role of basolateral uptake and apical efflux transporters in the pathophysiology of drug-induced organ damage. Increased understanding of the mechanisms that govern the accumulation of cytotoxic drugs has provided insights into the development of novel strategies to prevent debilitating toxicities. Furthermore, we argue that current regulatory guidelines provide inadequate recommendations for in vitro studies to identify substrates or inhibitors of drug transporters. Therefore, the translational and predictive power of FDA-approved drugs as modulators of transport function remains ambiguous and warrants further revision of the current guidelines.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Duncan DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, College of Medicine, the Ohio State University and Comprehensive Cancer Center , Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, the Ohio State University , Columbus, OH, USA
| |
Collapse
|
34
|
Staff NP, Cavaletti G, Islam B, Lustberg M, Psimaras D, Tamburin S. Platinum-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2020; 24 Suppl 2:S26-S39. [PMID: 31647151 DOI: 10.1111/jns.12335] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Platinum-induced peripheral neurotoxicity (PIPN) is a common side effect of platinum-based chemotherapy that may cause dose reduction and discontinuation, with oxaliplatin being more neurotoxic. PIPN includes acute neurotoxicity restricted to oxaliplatin, and chronic non-length-dependent sensory neuronopathy with positive and negative sensory symptoms and neuropathic pain in both upper and lower limbs. Chronic sensory axonal neuropathy manifesting as stocking-and-glove distribution is also frequent. Worsening of neuropathic symptoms after completing the last chemotherapy course may occur. Motor and autonomic involvement is uncommon. Ototoxicity is frequent in children and more commonly to cisplatin. Platinum-based compounds result in more prolonged neuropathic symptoms in comparison to other chemotherapy agents. Patient reported outcomes questionnaires, clinical evaluation and instrumental tools offer complementary information in PIPN. Electrodiagnostic features include diffusely reduced/abolished sensory action potentials, in keeping with a sensory neuronopathy. PIPN is dependent on cumulative dose but there is a large variability in its occurrence. The search for additional risk factors for PIPN has thus far yielded no consistent findings. There are currently no neuroprotective strategies to reduce the risk of PIPN, and symptomatic treatment is limited to duloxetine that was found effective in a single phase III intervention study. This review critically examines the pathogenesis, incidence, risk factors (both clinical and pharmacogenetic), clinical phenotype and management of PIPN.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Badrul Islam
- Laboratory Sciences and Services Division, The International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dimitri Psimaras
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
35
|
Islam B, Lustberg M, Staff NP, Kolb N, Alberti P, Argyriou AA. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2019; 24 Suppl 2:S63-S73. [PMID: 31647152 DOI: 10.1111/jns.12334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Vinca alkaloids, thalidomide, and eribulin are widely used to treat patients with childhood acute lymphoblastic leukemia (ALL), adults affected by multiple myeloma and locally invasive or metastatic breast cancer, respectively. However, soon after their introduction into clinical practice, chemotherapy-induced peripheral neurotoxicity (CIPN) emerged as their main non-hematological and among dose-limiting adverse events. It is generally perceived that vinca alkaloids and the antiangiogenic agent thalidomide are more neurotoxic, compared to eribulin. The exposure to these chemotherapeutic agents is associated with an axonal, length-dependent, sensory polyneuropathy of mild to moderate severity, whereas it is considered that the peripheral nerve damage, unless severe, usually resolves soon after treatment discontinuation. Advanced age, high initial and prolonged dosing, coadministration of other neurotoxic chemotherapeutic agents and pre-existing neuropathy are the common risk factors. Pharmacogenetic biomarkers might be used to define patients at increased susceptibility of CIPN. Currently, there is no established therapy for CIPN prevention or treatment; symptomatic treatment for neuropathic pain and dose reduction or withdrawal in severe cases is considered, at the cost of reduced cancer therapeutic efficacy. This review critically examines the pathogenesis, epidemiology, risk factors (both clinical and pharmacogenetic), clinical phenotype and management of CIPN as a result of exposure to vinca alkaloids, thalidomide and its analogue lenalidomide as also eribulin.
Collapse
Affiliation(s)
- Badrul Islam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer, Columbus, Ohio
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Noah Kolb
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Andreas A Argyriou
- Department of Neurology, "Saint Andrew's" State General Hospital of Patras, Patras, Greece
| |
Collapse
|
36
|
Winkels RM, van Brakel L, van Baar H, Beelman RB, van Duijnhoven FJB, Geijsen A, van Halteren HK, Hansson BME, Richie JP, Sun D, Wesselink E, van Zutphen M, Kampman E, Kok DE. Are Ergothioneine Levels in Blood Associated with Chronic Peripheral Neuropathy in Colorectal Cancer Patients Who Underwent Chemotherapy? Nutr Cancer 2019; 72:451-459. [PMID: 31298929 DOI: 10.1080/01635581.2019.1637005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Chronic Chemotherapy-Induced Peripheral Neuropathy (CIPN) is highly prevalent among colorectal cancer (CRC) patients. Ergothioneine (ET) - a dietary antioxidant -protected against CIPN in experimental models, but human studies are lacking. We explored whether whole blood ET levels were associated with chronic peripheral neuropathy among CRC patients who had completed chemotherapy.Methods: At diagnosis, median ET-concentration in whole blood of 159 CRC patients was 10.2 μg/ml (7.2-15.8). Patients completed questionnaires on peripheral neuropathy 6 months after completion of chemotherapy. We calculated prevalence ratios (PR) to assess associations of ET-concentrations and prevalence of peripheral neuropathy and used linear regression to assess associations with severity of peripheral neuropathy.Results: Prevalence of total and sensory peripheral neuropathy were both 81%. Higher ET-concentrations tended to be associated with lower prevalence of total and sensory peripheral neuropathy, but not statistically significant (highest versus lowest tertile of ET: PR = 0.93(0.78, 1.11) for total neuropathy, and PR = 0.84(0.70, 1.02) for sensory neuropathy). ET-concentrations were not associated with severity of neuropathy.Conclusion: Statistically significant associations were not observed, possibly because of limited sample size. Although data may putatively suggest higher levels of ET to be associated with a lower prevalence of neuropathy, analyses should be repeated in larger populations with larger variability in ET-concentrations.
Collapse
Affiliation(s)
- Renate M Winkels
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lieve van Brakel
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.,Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Harm van Baar
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert B Beelman
- Department of Food Science, Penn State College of Agricultural Sciences, University Park, PA, USA
| | | | - Anne Geijsen
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Bibi M E Hansson
- Department of Surgery, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - John P Richie
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Evertine Wesselink
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Moniek van Zutphen
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
37
|
Hu S, Huang KM, Adams EJ, Loprinzi CL, Lustberg MB. Recent Developments of Novel Pharmacologic Therapeutics for Prevention of Chemotherapy-Induced Peripheral Neuropathy. Clin Cancer Res 2019; 25:6295-6301. [PMID: 31123053 DOI: 10.1158/1078-0432.ccr-18-2152] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity, negatively affecting both quality of life and disease outcomes. To date, there is no proven preventative strategy for CIPN. Although multiple randomized trials have evaluated a variety of pharmacologic interventions for the treatment of CIPN, only duloxetine has shown clear efficacy in a phase III study. The National Cancer Institute's Symptom Management and Health-Related Quality of Life Steering Committee has identified CIPN as a priority for translational research in cancer care. Promising advances in preclinical research have identified several novel preventative and therapeutic targets, which have the potential to transform the care of patients with this debilitating neurotoxicity. Here, we provide an overarching view of emerging strategies and therapeutic targets that are currently being evaluated in CIPN.
Collapse
Affiliation(s)
- Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Elizabeth J Adams
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio
| | | | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
38
|
Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20:ijms20061451. [PMID: 30909387 PMCID: PMC6471666 DOI: 10.3390/ijms20061451] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonly used drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
|