1
|
Jahn K, Blumer N, Wieltsch C, Duzzi L, Fuchs H, Meister R, Groh A, Schulze Westhoff M, Krüger THC, Bleich S, Khan AQ, Frieling H. Impact of cannabinoids on synapse markers in an SH-SY5Y cell culture model. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:96. [PMID: 39448630 PMCID: PMC11502758 DOI: 10.1038/s41537-024-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 10/26/2024]
Abstract
Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals, and often, the use of cannabis precedes the onset of schizophrenic psychosis. Therefore, we investigated if different types of cannabinoids impact methylation patterns and expression of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function in a SH-SY5Y cell culture model. For this purpose, SH-SY5Y cells were differentiated into a neuron-like cell type as previously described. Effects of the cannabinoids delta-9-THC, HU-210, and Anandamide were investigated by analysis of cell morphology and measurement of neurite/dendrite lengths as well as determination of methylation pattern, expression (real time-qPCR, western blot) and localization (immunocytochemistry) of different target molecules concerned with the formation of synapses. Regarding the global impression of morphology, cells, and neurites appeared to be a bit more blunted/roundish and to have more structures that could be described a bit boldly as resembling transport vesicles under the application of the three cannabinoids in comparison to a sole application of retinoic acid (RA). However, there were no obvious differences between the three cannabinoids. Concerning dendrites or branch lengths, there was a significant difference with longer dendrites and branches in RA-treated cells than in undifferentiated control cells (as shown previously), but there were no differences between cannabinoid treatment and exclusive RA application. Methylation rates in the promoter regions of synapse candidate genes in cannabinoid-treated cells were in between those of differentiated cells and untreated controls, even though findings were significant only in some of the investigated genes. In other targets, the methylation rates of cannabinoid-treated cells did not only approach those of undifferentiated cells but were also valued even beyond. mRNA levels also showed the same tendency of values approaching those of undifferentiated controls under the application of the three cannabinoids for most investigated targets except for the structural molecules (NEFH, MAPT). Likewise, the quantification of expression via western blot analysis revealed a higher expression of targets in RA-treated cells compared to undifferentiated controls and, again, lower expression under the additional application of THC in trend. In line with our earlier findings, the application of RA led to higher fluorescence intensity and/or a differential signal distribution in the cell in most of the investigated targets in ICC. Under treatment with THC, fluorescence intensity decreased, or the signal distribution became similar to the dispersion in the undifferentiated control condition. Our findings point to a decline of neuronal differentiation markers in our in vitro cell-culture system under the application of cannabinoids.
Collapse
Affiliation(s)
- Kirsten Jahn
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany.
| | - Nina Blumer
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Caroline Wieltsch
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Laura Duzzi
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Heiko Fuchs
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Roland Meister
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Adrian Groh
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Martin Schulze Westhoff
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Tillmann Horst Christoph Krüger
- Department of Clinical Psychiatry, Division of clinical psychology and sexual medicine, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Stefan Bleich
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Abdul Qayyum Khan
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Helge Frieling
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| |
Collapse
|
2
|
Coupland CE, Karimi R, Bueler SA, Liang Y, Courbon GM, Di Trani JM, Wong CJ, Saghian R, Youn JY, Wang LY, Rubinstein JL. High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles. Science 2024; 385:168-174. [PMID: 38900912 DOI: 10.1126/science.adp5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.
Collapse
Affiliation(s)
- Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Rayan Saghian
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Young Youn
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lu-Yang Wang
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Wang C, Jiang W, Leitz J, Yang K, Esquivies L, Wang X, Shen X, Held RG, Adams DJ, Basta T, Hampton L, Jian R, Jiang L, Stowell MHB, Baumeister W, Guo Q, Brunger AT. Structure and topography of the synaptic V-ATPase-synaptophysin complex. Nature 2024; 631:899-904. [PMID: 38838737 PMCID: PMC11269182 DOI: 10.1038/s41586-024-07610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Collapse
Affiliation(s)
- Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wenhong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xing Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Richard G Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Adams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tamara Basta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Lucas Hampton
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Lu J, Wang M, Wang X, Meng Y, Chen F, Zhuang J, Han Y, Wang H, Liu W. A basement membrane extract-based three-dimensional culture system promotes the neuronal differentiation of cochlear Sox10-positive glial cells in vitro. Mater Today Bio 2024; 24:100937. [PMID: 38269057 PMCID: PMC10805941 DOI: 10.1016/j.mtbio.2023.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Spiral ganglion neurons (SGNs) in the mammalian cochleae are essential for the delivery of acoustic information, and damage to SGNs can lead to permanent sensorineural hearing loss as SGNs are not capable of regeneration. Cochlear glial cells (GCs) might be a potential source for SGN regeneration, but the neuronal differentiation ability of GCs is limited and its properties are not clear yet. Here, we characterized the cochlear Sox10-positive (Sox10+) GCs as a neural progenitor population and developed a basement membrane extract-based three-dimensional (BME-3D) culture system to promote its neuronal generation capacity in vitro. Firstly, the purified Sox10+ GCs, isolated from Sox10-creER/tdTomato mice via flow cytometry, were able to form neurospheres after being cultured in the traditional suspension culture system, while significantly more neurospheres were found and the expression of stem cell-related genes was upregulated in the BME-3D culture group. Next, the BME-3D culture system promoted the neuronal differentiation ability of Sox10+ GCs, as evidenced by the increased number, neurite outgrowth, area of growth cones, and synapse density as well as the promoted excitability of newly induced neurons. Notably, the BME-3D culture system also intensified the reinnervation of newly generated neurons with HCs and protected the neurospheres and derived-neurons against cisplatin-induced damage. Finally, transcriptome sequencing analysis was performed to identify the characteristics of the differentiated neurons. These findings suggest that the BME-3D culture system considerably promotes the proliferation capacity and neuronal differentiation efficiency of Sox10+ GCs in vitro, thus providing a possible strategy for the SGN regeneration study.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Jinzhu Zhuang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| |
Collapse
|
5
|
Kim SR, Eom Y, Lee SH. Comprehensive analysis of sex differences in the function and ultrastructure of hippocampal presynaptic terminals. Neurochem Int 2023; 169:105570. [PMID: 37451344 DOI: 10.1016/j.neuint.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Sex differences in the brain, encompassing variations in specific brain structures, size, cognitive function, and synaptic connections, have been identified across numerous species. While previous research has explored sex differences in postsynaptic structures, synaptic plasticity, and hippocampus-dependent functions, the hippocampal presynaptic terminals remain largely uninvestigated. The hippocampus is a critical structure responsible for multiple brain functions. This study examined presynaptic differences in cultured hippocampal neurons derived from male and female mice using a combination of biochemical assays, functional analyses measuring exocytosis and endocytosis of synaptic vesicle proteins, ultrastructural analyses via electron microscopy, and presynaptic Ca2+-specific optical probes. Our findings revealed that female neurons exhibited a higher number of synaptic vesicles at presynaptic terminals compared to male neurons. However, no significant differences were observed in presynaptic protein expression, presynaptic terminal ultrastructure, synaptic vesicle exocytosis and endocytosis, or presynaptic Ca2+ alterations between male and female neurons.
Collapse
Affiliation(s)
- Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea.
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
6
|
Lu X, Zhang S. How Tongxie-Yaofang Regulates Intestinal Synaptic Plasticity by Activating Enteric Glial Cells and NGF/TrkA Pathway in Diarrhea-Predominant Irritable Bowel Syndrome Rats. Drug Des Devel Ther 2023; 17:2969-2983. [PMID: 37789966 PMCID: PMC10544122 DOI: 10.2147/dddt.s423333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Diarrhea-predominant irritable bowel syndrome (D-IBS) is a frequent functional gastrointestinal disease that affects health and quality of life owing to its high incidence and recurrence rate. Tongxie-Yaofang (TXYF) is a traditional Chinese medicine prescribed for D-IBS. However, the therapeutic mechanism of TXYF has not been fully elucidated. This study aimed to investigate the effects of TXYF on visceral hypersensitivity in stress-induced D-IBS rats and the underlying mechanisms. Methods Electromyographic (EMG) activity of the external oblique muscles and the abdominal withdrawal reflex (AWR) score captured by Barostat were used to quantify the effect of TXYF on visceral sensitivity. Transmission electron microscopy (TEM) was used to observe the ultrastructure of the enteric nervous system (ENS). For molecular detection, the colonic expression of enteric glial cell's (EGC's) activation markers, glial fibrillary acidic protein (GFAP) and calcium-binding protein S100β, NGF, TrkA, synaptic plasticity-related factors, synaptophysin (SYN) and postsynaptic density-95 (PSD-95), glutamate, glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR), and N-methyl-D-aspartate receptor (NMDAR) were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time PCR. An ex vivo experiment was conducted to measure the EGC-induced NGF release. Results TXYF decreased the EMG activity and AWR scores in rats with D-IBS. Under TEM, TXYF improved the dense and irregular nerve arrangement, narrowed the synaptic cleft, and decreased the number of synaptic vesicles in D-IBS rats. In addition, TXYF decreased the expression of GFAP, S100β, SYN, and PSD-95; down-regulated the levels of NGF, TrkA, and glutamate; and reduced the mRNA expression of AMPAR1, NMDAR1, and NMDAR2B. In an ex vivo experiment, TXYF decreased NGF release in D-IBS rats, and this trend disappeared under EGC inhibition. Conclusion TXYF alleviated visceral hypersensitivity in D-IBS rats possibly by improving synaptic plasticity through inhibiting the activity of EGCs and the NGF/TrkA signaling pathway in the colon.
Collapse
Affiliation(s)
- Xiaofang Lu
- Center of Digestive, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shengsheng Zhang
- Center of Digestive, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Wang ZG, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Huang H, Chen L, Manzhulo I, Wiklund L, Sharma HS. Co-administration of dl-3-n-butylphthalide and neprilysin is neuroprotective in Alzheimer disease associated with mild traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:145-185. [PMID: 37833011 DOI: 10.1016/bs.irn.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
dl-3-n-Butylphthalide is a potent synthetic Chinese celery extract that is highly efficient in inducing neuroprotection in concussive head injury (CHI), Parkinson's disease, Alzheimer's disease, stroke as well as depression, dementia, anxiety and other neurological diseases. Thus, there are reasons to believe that dl-3-n-butylphthalide could effectively prevent Alzheimer's disease brain pathology. Military personnel during combat operation or veterans are often the victims of brain injury that is a major risk factor for developing Alzheimer's disease in their later lives. In our laboratory we have shown that CHI exacerbates Alzheimer's disease brain pathology and reduces the amyloid beta peptide (AβP) inactivating enzyme neprilysin. We have used TiO2 nanowired-dl-3-n-butylphthalide in attenuating Parkinson's disease brain pathology exacerbated by CHI. Nanodelivery of dl-3-n-butylphthalide appears to be more potent as compared to the conventional delivery of the compound. Thus, it would be interesting to examine the effects of nanowired dl-3-n-butylphthalide together with nanowired delivery of neprilysin in Alzheimer's disease model on brain pathology. In this investigation we found that nanowired delivery of dl-3-n-butylphthalide together with nanowired neprilysin significantly attenuated brain pathology in Alzheimer's disease model with CHI, not reported earlier. The possible mechanism and clinical significance is discussed based on the current literature.
Collapse
Affiliation(s)
- Zhenguo G Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, P.R. China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
8
|
Xie Y, Liu L, Zheng J, Shi K, Ai W, Zhang X, Wang P, Lan Z, Chen L. Polygoni Multiflori Radix Praeparata and Acori Tatarinowii Rhizoma ameliorate scopolamine-induced cognitive impairment by regulating the cholinergic and synaptic associated proteins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116400. [PMID: 37003402 DOI: 10.1016/j.jep.2023.116400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Polygoni Multiflori Radix Praeparata (PMRP) and Acori Tatarinowii Rhizoma (ATR) is often used in traditional Chinese medicine to prevent and treat Alzheimer's disease (AD). However, it is not clear whether the effects and mechanisms of the decoction prepared by traditional decocting method (PA) is different from that prepared by modern decocting method (P + A). AIM OF THE STUDY The present study aimed to investigate the differences in the protective effects of PA and P + A on scopolamine induced cognitive impairment, and to explore its potential mechanism. MATERIALS AND METHODS To assess the protective effect of PA and P + A on cognitive dysfunction, the mice were orally administrated with PA (1.56, 6.24 g kg-1•day-1) and P + A (1.56, 6.24 g kg-1•day-1) for 26 days before co-treatment with scopolamine (4 mg kg-1•day-1, i.p.). The learning and memory abilities of mice were examined by Morris water maze test, and the expressions of proteins related to cholinergic system and synaptic function were detected by the methods of ELISA, real-time PCR and Western blotting. Then, molecular docking technique was used to verify the effect of active compounds in plasma after PA administration on Acetylcholinesterase (AChE) protein. Finally, the Ellman method was used to evaluate the effects of different concentrations of PA, P + A (1 μg/mL-100 mg/mL) and the compounds (1-100 μM) on AChE activity in vitro. RESULTS On one hand, in the scopolamine-induced cognitive impairment mouse model, both of PA and P + A could improve the cognitive impairment, while the effect of PA on cognitive amelioration was better than that of P + A. Moreover, PA regulated the cholinergic and synaptic functions by enhancing the concentration of acetylcholine (ACh), the mRNA levels of CHT1, Syn, GAP-43 and PSD-95, and the related proteins (CHT1, VACHT, Syn, GAP-43 and PSD-95), and significantly inhibiting the expression of AChE protein. Meanwhile, P + A only up-regulated the mRNA levels of GAP-43 and PSD-95, increased the expressions of CHT1, VACHT, Syn, GAP-43 and PSD-95 proteins, and inhibited the expression of AChE protein. On the other hand, the in vitro study showed that some compounds including emodin-8-o-β-d-Glucopyranoside, THSG and α-Asarone inhibited AChE protein activity with the IC50 values 3.65 μM, 5.42 μM and 9.43 μM, respectively. CONCLUSIONS These findings demonstrate that both of PA and P + A can ameliorate the cognitive deficits by enhancing cholinergic and synaptic related proteins, while PA has the stronger improvement effect on the cholinergic function, which may be attributed to the compounds including THSG, emodin, emodin-8-O-β-D-glucopyranoside and α-asarone. The present study indicated that PA has more therapeutic potential in the treatment of neurodegenerative diseases such as AD. The results provide the experimental basis for the clinical use of PA.
Collapse
Affiliation(s)
- Yuman Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Li Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Junzuo Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Kun Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Wenqi Ai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Xuesong Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
9
|
Guo L, Li S, Zhang Y, Yang X, Zhang Y, Cui H, Li Y. Effects of exercise intensity on spatial memory performance and hippocampal synaptic function in SAMP8 mice. Neurobiol Learn Mem 2023:107791. [PMID: 37380098 DOI: 10.1016/j.nlm.2023.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Learning and memory impairment is commonly noted in Alzheimer's disease (AD), which is regarded as a progressive synaptic failure disease. Exercise is a nonpharmacological strategy that may help prevent cognitive decline and reduce the risk of AD, which is usually thought to be related to synaptic damage in the hippocampus. However, the effects of exercise intensity on hippocampal memory and synaptic function in AD remain unclear. In this study, senescence-accelerated mouse prone-8 (SAMP8) mice were randomly assigned to the control group (Con), low-intensity exercise group (Low), and moderate-intensity exercise group (Mid). Here, we showed that eight weeks of treadmill exercise beginning in four-month-old mice improved spatial memory and recognition memory in six-month-old SAMP8 mice, while the Con group exhibited impaired spatial memory and recognition memory. Treadmill exercise also improved hippocampal neuron morphology in SAMP8 mice. Furthermore, dendritic spine density and the levels of postsynaptic density protein-95 (PSD95) and Synaptophysin (SYN) increased significantly in the Low and Mid groups as compared with the Con group. We further showed that moderate-intensity exercise (60% of maximum speed) was more efficacious in increasing dendritic spine density、PSD95 and SYN, than low-intensity exercise (40% of maximum speed). In conclusion, the positive effect of treadmill exercise is closely related to exercise intensity, with moderate-intensity exercise showing the most optimal effects.
Collapse
Affiliation(s)
- Linlin Guo
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xinxin Yang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China.
| | - Yan Li
- College of Nursing, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China.
| |
Collapse
|
10
|
Campos RMP, Barbosa-Silva MC, Ribeiro-Resende VT. A period of transient synaptic density unbalancing in the motor cortex after peripheral nerve injury and the involvement of microglial cells. Mol Cell Neurosci 2023; 124:103791. [PMID: 36372156 DOI: 10.1016/j.mcn.2022.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Some types of peripheral nerve injury lead to limb deafferentation, which leads to remodeling of body representation areas in different parts of the brain, such as in the primary motor cortex and primary sensory cortex. This plasticity is a consequence of several cellular events, such as the emergence and elimination of synapses in these areas. Beside neurons, microglial cells are intimately involved in synapse plasticity, especially in synaptic pruning. In this study, we investigated the transient changes in synaptic density in the primary motor and sensory cortex after different types of peripheral nerve injury, as well as the behavior of microglial cells in each scenario. Male C57/B6 mice were divided into a control group (no injury), sciatic-crush group, and sciatic-transection group, and treated with PBS or minocycline daily for different time points. Both types of sciatic lesion led to a significant decrease of synaptophysin and PSD-95 positive puncta counts compared to control animals 4 days after lesion (DAL), which recovered at 7 DAL and was sustained until 14 DAL. The changes in synaptic puncta density were concomitant with changes in the density and morphology of microglial cells, which were significantly more ramified in the primary motor cortex of injured animals at 1 and 4 DAL. Although the decreased synaptic puncta density overlapped with an increased number of microglial cells, the number of lysosomes per microglial cell did not increase on day 4 after lesion. Surprisingly, daily administration of minocycline increased microglial cell number and PSD-95 positive puncta density by 14 DAL. Taken together, we found evidence for transient changes in synaptic density in the primary motor, related to peripheral injury with possible participation of microglia in this plasticity process.
Collapse
Affiliation(s)
- Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Maria Carolina Barbosa-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ 25255-030, Brazil
| |
Collapse
|
11
|
Gao WR, Hu XH, Yu KY, Cai HY, Wang ZJ, Wang L, Wu MN. Selective orexin 1 receptor antagonist SB-334867 aggravated cognitive dysfunction in 3xTg-AD mice. Behav Brain Res 2023; 438:114171. [PMID: 36280008 DOI: 10.1016/j.bbr.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Cognitive dysfunction is the main clinical manifestation of Alzheimer's disease (AD). Previous research found that elevated orexin level in the cerebrospinal fluid was closely related to the course of AD, and orexin-A treatment could increase amyloid β protein (Aβ) deposition and aggravate spatial memory impairment in APP/PS1 mice. Furthermore, recent research found that dual orexin receptor (OXR) antagonist might affect Aβ level and cognitive dysfunction in AD, but the effects of OX1R or OX2R alone is unreported until now. Considering that OX1R is highly expressed in the hippocampus and plays important roles in learning and memory, the effects of OX1R in AD cognitive dysfunction and its possible mechanism should be investigated. In the present study, selective OX1R antagonist SB-334867 was used to block OX1R. Then, different behavioral tests were performed to observe the effects of OX1R blockade on cognitive function of 3xTg-AD mice exhibited both Aβ and tau pathology, in vivo electrophysiological recording and western blot were used to investigate the potential mechanism. The results showed that chronic OX1R blockade aggravated the impairments of short-term working memory, long-term spatial memory and synaptic plasticity in 9-month-old female 3xTg-AD mice, increased levels of soluble Aβ oligomers and p-tau, and decreased PSD-95 expression in the hippocampus of 3xTg-AD mice. These results indicate that the detrimental effects of SB-334867 on cognitive behaviors in 3xTg-AD mice are closely related to the decrease of PSD-95 and depression of in vivo long-term potentiation (LTP) caused by increased Aβ oligomers and p-tau.
Collapse
Affiliation(s)
- Wen-Rui Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Lei Wang
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
12
|
Zhou Q, Lin L, Li H, Li Y, Liu N, Wang H, Jiang S, Li Q, Chen Z, Lin Y, Jin H, Deng Y. Intrahippocampal injection of IL-1β upregulates Siah1-mediated degradation of synaptophysin by activation of the ERK signaling in male rat. J Neurosci Res 2023; 101:930-951. [PMID: 36720002 DOI: 10.1002/jnr.25170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Interleukin-1β (IL-1β) has been described to exert important effect on synapses in the brain. Here, we explored if the synapses in the hippocampus would be adversely affected following intracerebral IL-1β injection and, if so, to clarify the underlying molecular mechanisms. Adult male Sprague-Dawley rats were divided into control, IL-1β, IL-1β + PD98059, and IL-1β + MG132 groups and then sacrificed for detection of synaptophysin (syn) protein level, synaptosome glutamate release, and synapse ultrastructure by western blotting, glutamate kit and electron microscopy, respectively. These rats were tested by Morris water maze for learning and memory ability. It was determined by western blotting whether IL-1β exerted the effect of on syn and siah1 expression in primary neurons via extracellular regulated protein kinases (ERK) signaling pathway. Intrahippocampal injection of IL-1β in male rats and sacrificed at 8d resulted in a significant decrease in syn protein, damage of synapse structure, and abnormal release of neurotransmitters glutamate. ERK inhibitor and proteosome inhibitor treatment reversed the above changes induced by IL-1β both in vivo and in vitro. In primary cultured neurons incubated with IL-1β, the expression level of synaptophysin was significantly downregulated coupled with abnormal glutamate release. Furthermore, use of PD98059 had confirmed that ERK signaling pathway was implicated in synaptic disorders caused by IL-1β treatment. The present results suggest that exogenous IL-1β can suppress syn protein level and glutamate release. A possible mechanism for this is that IL-1β induces syn degradation that is regulated by the E3 ligase siah1 via the ERK signaling pathway.
Collapse
Affiliation(s)
- Qiuping Zhou
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yichen Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Nan Liu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Zhuo Chen
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyan Lin
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Hui Jin
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyu Deng
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
14
|
Khan AQ, Thielen L, Le Pen G, Krebs MO, Kebir O, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Methylation pattern and mRNA expression of synapse-relevant genes in the MAM model of schizophrenia in the time-course of adolescence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:110. [PMID: 36481661 PMCID: PMC9732294 DOI: 10.1038/s41537-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Schizophrenia is highly heritable and aggregating in families, but genetics alone does not exclusively explain the pathogenesis. Many risk factors, including childhood trauma, viral infections, migration, and the use of cannabis, are associated with schizophrenia. Adolescence seems to be the critical period where symptoms of the disease manifest. This work focuses on studying an epigenetic regulatory mechanism (the role of DNA methylation) and its interaction with mRNA expression during development, with a particular emphasis on adolescence. The presumptions regarding the role of aberrant neurodevelopment in schizophrenia were tested in the Methyl-Azoxy-Methanol (MAM) animal model. MAM treatment induces neurodevelopmental disruptions and behavioral deficits in off-springs of the treated animals reminiscent of those observed in schizophrenia and is thus considered a promising model for studying this pathology. On a gestational day-17, adult pregnant rats were treated with the antimitotic agent MAM. Experimental animals were divided into groups and subgroups according to substance treatment (MAM and vehicle agent [Sham]) and age of analysis (pre-adolescent and post-adolescent). Methylation and mRNA expression analysis of four candidate genes, which are often implicated in schizophrenia, with special emphasis on the Dopamine hypothesis i.e., Dopamine receptor D2 (Drd2), and the "co-factors" Disrupted in schizophrenia 1 (DISC1), Synaptophysin (Syp), and Dystrobrevin-binding protein 1 (Dtnbp1), was performed in the Gyrus cingulum (CING) and prefrontal cortex (PFC). Data were analyzed to observe the effect of substance treatment between groups and the impact of adolescence within-group. We found reduced pre-adolescent expression levels of Drd2 in both brain areas under the application of MAM. The "co-factor genes" did not show high deviations in mRNA expression levels but high alterations of methylation rates under the application of MAM (up to ~20%), which diminished in the further time course, reaching a comparable level like in Sham control animals after adolescence. The pre-adolescent reduction in DRD2 expression might be interpreted as downregulation of the receptor due to hyperdopaminergic signaling from the ventral tegmental area (VTA), eventually even to both investigated brain regions. The notable alterations of methylation rates in the three analyzed co-factor genes might be interpreted as attempt to compensate for the altered dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Abdul Qayyum Khan
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.444940.9University of Management and Technology—School of Pharmacy, 72-A Raiwind Rd, Dubai Town, Lahore Pakistan
| | - Lukas Thielen
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gwenaëlle Le Pen
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Marie-Odile Krebs
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Oussama Kebir
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Adrian Groh
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maximilian Deest
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Bleich
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kirsten Jahn
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
15
|
Guo B, Xia Y, Wang C, Wang F, Zhang C, Xiao L, Zhang X, Meng Y, Wang Y, Ding J, Wang L, Zhu C, Jiang S, Huo X, Sun Y, Gao P, Wu J, Yu B, Huo J, Sun T. Decreased cognitive function of ALG13KO female mice may be related to the decreased plasticity of hippocampal neurons. Neuropeptides 2022; 96:102290. [PMID: 36152356 DOI: 10.1016/j.npep.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023]
Abstract
Asparagine-linked glycosylation 13 (ALG13) is an X-linked gene that encodes a protein involved in the glycosylation of the N-terminus. ALG13 deficiency leads to ALG13-congenital disorders of glycosylation (ALG13-CDG), usually in females presenting with mental retardation and epilepsy. Cognitive function is an important function of the hippocampus, and forms the basis for learning, memory and social abilities. However, researchers have not yet investigated the effect of ALG13 on hippocampal cognitive function. In this study, the exploration, learning, memory and social abilities of ALG13 knockout (KO) female mice were decreased in behavioral experiments. Golgi staining demonstrated a decrease in the complexity of hippocampal neurons. Western blot and immunofluorescence staining of the synaptic plasticity factors postsynaptic density protein 95 (PSD95) and synaptophysin (SYP) displayed varying degrees of decline. In other words, the KO of ALG13 may have reduced the expression of PSD95 and SYP in the hippocampus of female mice. Moreover, it may have lowered the synaptic plasticity in various areas of the hippocampus, thus resulting in decreased dendrite length, complexity, and dendrite spine density, which affected the hippocampal function and reduced the cognitive function in female mice.
Collapse
Affiliation(s)
- Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yu Xia
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chunlin Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xian Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xianhao Huo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Peng Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ji Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoli Yu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junming Huo
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia 014017, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
16
|
Acupuncture Interventions for Alzheimer’s Disease and Vascular Cognitive Disorders: A Review of Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6080282. [PMID: 36211826 PMCID: PMC9534683 DOI: 10.1155/2022/6080282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular–glia–neuron unit were further discussed.
Collapse
|
17
|
Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia. Sleep Breath 2022; 27:893-902. [DOI: 10.1007/s11325-022-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
|
18
|
Lin Z, Lu Y, Li S, Li Y, Li H, Li L, Wang L. Effect of eplerenone on cognitive impairment in spontaneously hypertensive rats. Am J Transl Res 2022; 14:3864-3878. [PMID: 35836906 PMCID: PMC9274607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The present study aimed to determine the effect of blocking brain mineralocorticoid receptor on cognitive impairment in spontaneously hypertensive rats and its intracellular changes. METHODS 12-week-old male spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were given eplerenone (EPL, 30 mg/Kg/d or 100 mg/Kg/d) or pure water via oral gavage daily for 8 weeks. Effects of blocking brain mineralocorticoid receptor (MR) on cognitive function were examined through cognitive behavioral experiments. The morphology of hippocampal neurons was observed. Synaptic proteins and autophagy levels were detected by western blot. RESULTS The results showed decreases in both short-term working memory and long-term spatial learning and memory ability, hippocampal neuron damage, and reduced expression of synaptic proteins in the SHR-Veh group. Impaired autophagy was found in the SHR-Veh group as evidenced by decreased expression levels of Beclin-1 protein and a defect in P62 degradation. These abnormalities were reversed by eplerenone, either the high dosage or low dosage. Reduced cognitive dysfunction and enhanced autophagy in hippocampal neurons in both SHR-EPL30 group and SHR-EPL100 group were independent of lowering blood pressure. CONCLUSION Eplerenone improves cognitive deficits observed in SHRs, and increases autophagy in hippocampal neurons of SHRs, which suggests a new site of MR antagonists in treatment of hypertension-related cognitive impairment.
Collapse
Affiliation(s)
- Zhongqiao Lin
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTaiyuan 030032, Shanxi, China
| | - Yan Lu
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTaiyuan 030032, Shanxi, China
| | - Sheng Li
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTaiyuan 030032, Shanxi, China
| | - Yiying Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Han Li
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTaiyuan 030032, Shanxi, China
| | - Lin Li
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTaiyuan 030032, Shanxi, China
| | - Lei Wang
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTaiyuan 030032, Shanxi, China
| |
Collapse
|
19
|
Musi CA, Marchini G, Giani A, Tomaselli G, Priori EC, Colnaghi L, Borsello T. Colocalization and Interaction Study of Neuronal JNK3, JIP1, and β-Arrestin2 Together with PSD95. Int J Mol Sci 2022; 23:ijms23084113. [PMID: 35456931 PMCID: PMC9024448 DOI: 10.3390/ijms23084113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are stress-activated serine/threonine protein kinases belonging to the mitogen-activated protein kinase (MAPK) family. Among them, JNK3 is selectively expressed in the central nervous system, cardiac smooth muscle, and testis. In addition, it is the most responsive JNK isoform to stress stimuli in the brain, and it is involved in synaptic dysfunction, an essential step in neurodegenerative processes. JNK3 pathway is organized in a cascade of amplification in which signal transduction occurs by stepwise, highly controlled phosphorylation. Since different MAPKs share common upstream activators, pathway specificity is guaranteed by scaffold proteins such as JIP1 and β-arrestin2. To better elucidate the physiological mechanisms regulating JNK3 in neurons, and how these interactions may be involved in synaptic (dys)function, we used (i) super-resolution microscopy to demonstrate the colocalization among JNK3-PSD95-JIP1 and JNK3-PSD95-β-arrestin2 in cultured hippocampal neurons, and (ii) co-immunoprecipitation techniques to show that the two scaffold proteins and JNK3 can be found interacting together with PSD95. The protein-protein interactions that govern the formation of these two complexes, JNK3-PSD95-JIP1 and JNK3-PSD95-β-arrestin2, may be used as targets to interfere with their downstream synaptic events.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy; (C.A.M.); (G.T.); (E.C.P.)
- Mario Negri Insitute for Pharmacolgical Research–IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (G.M.); (A.G.)
| | - Giacomo Marchini
- Mario Negri Insitute for Pharmacolgical Research–IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (G.M.); (A.G.)
| | - Arianna Giani
- Mario Negri Insitute for Pharmacolgical Research–IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (G.M.); (A.G.)
| | - Giovanni Tomaselli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy; (C.A.M.); (G.T.); (E.C.P.)
- Mario Negri Insitute for Pharmacolgical Research–IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (G.M.); (A.G.)
| | - Erica Cecilia Priori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy; (C.A.M.); (G.T.); (E.C.P.)
- Mario Negri Insitute for Pharmacolgical Research–IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (G.M.); (A.G.)
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy;
- School of Medicine, Vita Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy; (C.A.M.); (G.T.); (E.C.P.)
- Mario Negri Insitute for Pharmacolgical Research–IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (G.M.); (A.G.)
- Correspondence:
| |
Collapse
|
20
|
Abe T, Ichimura M, Kudo H. Gene expression levels of synaptic exocytosis regulator synaptophysin in the brain and the olfactory organ of anadromous salmon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:461-469. [PMID: 35301620 DOI: 10.1007/s10695-022-01063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Anadromous Pacific salmon (genus Oncorhynchus) are known for their homing behavior based on olfactory imprinting, which is formed during their seaward migration. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE/Snare) complex is a minimum unit of vesicle exocytosis from the pre-synaptic membrane. Its component genes (synaptosome-associated protein 25, syntaxin 1, and vesicle-associated membrane protein 2) are more strongly expressed in the olfactory nervous system (olfactory epithelium, olfactory bulb, and telencephalon) at the migration stages related to olfactory imprinting and/or retrieval in salmon. This study focused on the mRNA synthesis of synaptophysin (Syp), one of the Snare regulatory factors. syp is strongly expressed in chum salmon (Oncorhynchus keta) olfactory nervous system during the seaward migration and temporarily increased during the homeward migration. In reference to our previous studies, these expression changes were similar to the snare genes in the chum salmon. Therefore, syp and Snare component genes were synchronously expressed reflecting the development and short-term plasticity of the olfactory nervous system that is essential for olfactory imprinting.
Collapse
Affiliation(s)
- Takashi Abe
- Shibetsu Salmon Museum, North 1, West 6, Shibetsu, Hokkaido, Japan
| | - Masaki Ichimura
- Shibetsu Salmon Museum, North 1, West 6, Shibetsu, Hokkaido, Japan
| | - Hideaki Kudo
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
21
|
Marco-Manclus P, Ávila-González D, Paredes RG, Portillo W. Sexual experience in female mice involves synaptophysin-related plasticity in the accessory olfactory bulb. Physiol Behav 2022; 244:113649. [PMID: 34798129 DOI: 10.1016/j.physbeh.2021.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Sexually naïve female mice do not display high levels of sexual receptivity in their first sexual experience; they require around 4-5 sexual encounters to display the full receptive response, assessed by the lordosis reflex. In this study, we evaluated if repeated sexual stimulation with the same male is associated with changes in synaptic remodeling evaluated by synaptophysin (SYP) in brain structures involved in the control of sexual behavior such as the main and accessory olfactory bulbs (MOB and AOB, respectively), medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and amygdala (AMG). Female mice were ovariectomized and hormonally primed to induce sexual receptivity. They were randomly distributed into three groups: a) sexually naïve (SN), with no prior sexual stimulation; b) sexually inexperienced (SI), with one prior mating session; and c) sexually experienced (SE), with six mating sessions. The SI group showed a significant decrease in SYP in the glomerular, mitral and granular layers of the AOB in comparison to SN and SE females. SYP expression increased in the SE group in comparison to SN and SI females in the glomerular and mitral cell layers of the AOB. No significant differences between groups were found in the other brain regions (MOB, MPOA, VMH or AMG). These changes in SYP expression in the AOB suggest that plastic modifications in this brain region can be associated with receptivity increase in sexual experience in female mice.
Collapse
Affiliation(s)
- P Marco-Manclus
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico
| | - D Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico; Escuela Nacional de Estudios Superiores, UNAM. Juriquilla Querétaro, Mexico
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM). Juriquilla Querétaro, Mexico.
| |
Collapse
|
22
|
Mu L, Cai J, Gu B, Yu L, Li C, Liu QS, Zhao L. Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells 2022; 11:cells11020244. [PMID: 35053360 PMCID: PMC8774241 DOI: 10.3390/cells11020244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.
Collapse
Affiliation(s)
- Lianwei Mu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Cui Li
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Correspondence: ; Tel.: +86-158-1043-5675
| |
Collapse
|
23
|
Hippocampal injury and learning deficits following non-convulsive status epilepticus in periadolescent rats. Epilepsy Behav 2021; 125:108415. [PMID: 34788732 DOI: 10.1016/j.yebeh.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The effects of non-convulsive status epilepticus (NCSE) on the developing brain remain largely elusive. Here we investigated potential hippocampal injury and learning deficits following one or two episodes of NCSE in periadolescent rats. Non-convulsive status epilepticus was induced with subconvulsive doses of intrahippocampal kainic acid (KA) under continuous EEG monitoring in postnatal day 43 (P43) rats. The RKA group (repeated KA) received intrahippocampal KA at P43 and P44, the SKA group (single KA injection) received KA at P43 and an intrahippocampal saline injection at P44. Controls were sham-treated with saline. The modified two-way active avoidance (MAAV) test was conducted between P45 and P52 to assess learning of context-cued and tone-signaled electrical foot-shock avoidance. Histological analyses were performed at P52 to assess hippocampal neuronal densities, as well as potential reactive astrocytosis and synaptic dysfunction with GFAP (glial fibrillary acidic protein) and synaptophysin (Syp) staining, respectively. Kainic acid injections resulted in electroclinical seizures characterized by behavioral arrest, oromotor automatisms and salivation, without tonic-clonic activity. Compared to controls, both the SKA and RKA groups had lower rates of tone-signaled shock avoidance (p < 0.05). In contextual testing, SKA rats were comparable to controls (p > 0.05), but the RKA group had learning deficits (p < 0.05). Hippocampal neuronal densities were comparable in all groups. Compared to controls, both the SKA and RKA groups had higher hippocampal GFAP levels (p < 0.05). The RKA group also had lower hippocampal Syp levels compared to the SKA and control groups (p < 0.05), which were comparable (p > 0.05). We show that hippocampal NCSE in periadolescent rats results in a seizure burden-dependent hippocampal injury accompanied by cognitive deficits. Our data suggest that the diagnosis and treatment of NCSE should be prompt.
Collapse
|
24
|
He Y, Phan K, Bhatia S, Pickford R, Fu Y, Yang Y, Hodges JR, Piguet O, Halliday GM, Kim WS. Increased VLCFA-lipids and ELOVL4 underlie neurodegeneration in frontotemporal dementia. Sci Rep 2021; 11:21348. [PMID: 34725421 PMCID: PMC8560873 DOI: 10.1038/s41598-021-00870-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Rare, yet biologically critical, lipids that contain very long chain fatty acids (VLCFA-lipids) are synthesized in the brain by the enzyme ELOVL4. High levels of VLCFA-lipids are toxic to cells and excess VLCFA-lipids are actively removed by ABCD1 in an ATP-dependent manner. Virtually nothing is known about the impact of VLCFA-lipids in neurodegenerative diseases. Here, we investigated the possible role of VLCFA-lipids in frontotemporal dementia (FTD), which is a leading cause of younger-onset dementia. Using quantitative discovery lipidomics, we identified three VLCFA-lipid species that were significantly increased in FTD brain compared to controls, with strong correlations with ELOVL4. Increases in ELOVL4 expression correlated with significant decreases in the membrane-bound synaptophysin in FTD brain. Furthermore, increases in ABCD1 expression correlated with increases in VLCFA-lipids. We uncovered a new pathomechanism that is pertinent to understanding the pathogenesis of FTD.
Collapse
Affiliation(s)
- Ying He
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Katherine Phan
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Surabhi Bhatia
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Yue Yang
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - John R Hodges
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre and School of Psychology, The University of Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Cousin MA. Synaptophysin-dependent synaptobrevin-2 trafficking at the presynapse-Mechanism and function. J Neurochem 2021; 159:78-89. [PMID: 34468992 DOI: 10.1111/jnc.15499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Synaptobrevin-2 (Syb2) is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) that is essential for neurotransmitter release. It is the most numerous protein on a synaptic vesicle (SV) and drives SV fusion via interactions with its cognate SNARE partners on the presynaptic plasma membrane. Synaptophysin (Syp) is the second most abundant protein on SVs; however, in contrast to Syb2, it has no obligatory role in neurotransmission. Syp interacts with Syb2 on SVs, and the molecular nature of its interaction with Syb2 and its physiological role has been debated for decades. However, recent studies have revealed that the sole physiological role of Syp at the presynapse is to ensure the efficient retrieval of Syb2 during SV endocytosis. In this review, current theories surrounding the role of Syp in Syb2 trafficking will be discussed, in addition to the debate regarding the molecular nature of their interaction. A unifying model is presented that describes how Syp controls Syb2 function as part of an integrated mechanism involving key molecular players such as intersectin-1 and AP180/CALM. Finally, key future questions surrounding the role of Syp-dependent Syb2 trafficking will be posed, with respect to brain function in health and disease.
Collapse
Affiliation(s)
- Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
26
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
27
|
Pilipović K, Rajič Bumber J, Dolenec P, Gržeta N, Janković T, Križ J, Župan G. Long-Term Effects of Repetitive Mild Traumatic Injury on the Visual System in Wild-Type and TDP-43 Transgenic Mice. Int J Mol Sci 2021; 22:ijms22126584. [PMID: 34205342 PMCID: PMC8235442 DOI: 10.3390/ijms22126584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 01/29/2023] Open
Abstract
Little is known about the impairments and pathological changes in the visual system in mild brain trauma, especially repetitive mild traumatic brain injury (mTBI). The goal of this study was to examine and compare the effects of repeated head impacts on the neurodegeneration, axonal integrity, and glial activity in the optic tract (OT), as well as on neuronal preservation, glial responses, and synaptic organization in the lateral geniculate nucleus (LGN) and superior colliculus (SC), in wild-type mice and transgenic animals with overexpression of human TDP-43 mutant protein (TDP-43G348C) at 6 months after repeated closed head traumas. Animals were also assessed in the Barnes maze (BM) task. Neurodegeneration, axonal injury, and gliosis were detected in the OT of the injured animals of both genotypes. In the traumatized mice, myelination of surviving axons was mostly preserved, and the expression of neurofilament light chain was unaffected. Repetitive mTBI did not induce changes in the LGN and the SC, nor did it affect the performance of the BM task in the traumatized wild-type and TDP-43 transgenic mice. Differences in neuropathological and behavioral assessments between the injured wild-type and TDP-43G348C mice were not revealed. Results of the current study suggest that repetitive mTBI was associated with chronic damage and inflammation in the OT in wild-type and TDP-43G348C mice, which were not accompanied with behavioral problems and were not affected by the TDP-43 genotype, while the LGN and the SC remained preserved in the used experimental conditions.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia; (K.P.); (J.R.B.); (P.D.); (N.G.); (T.J.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia; (K.P.); (J.R.B.); (P.D.); (N.G.); (T.J.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia; (K.P.); (J.R.B.); (P.D.); (N.G.); (T.J.)
| | - Nika Gržeta
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia; (K.P.); (J.R.B.); (P.D.); (N.G.); (T.J.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia; (K.P.); (J.R.B.); (P.D.); (N.G.); (T.J.)
| | - Jasna Križ
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University Laval, Québec City, QC G1V 0A6, Canada;
| | - Gordana Župan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia; (K.P.); (J.R.B.); (P.D.); (N.G.); (T.J.)
- Correspondence:
| |
Collapse
|
28
|
Zhao C, Deng Y, He Y, Huang X, Wang C, Li W. Decreased Level of Exosomal miR-5121 Released from Microglia Suppresses Neurite Outgrowth and Synapse Recovery of Neurons Following Traumatic Brain Injury. Neurotherapeutics 2021; 18:1273-1294. [PMID: 33475953 PMCID: PMC8423926 DOI: 10.1007/s13311-020-00999-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022] Open
Abstract
Activated microglia can suppress neurite outgrowth and synapse recovery in the acute stage following traumatic brain injury (TBI). However, the underlying mechanism has not been clearly elucidated. Exosomes derived from microglia have been reported to play a critical role in microglia-neuron interaction in healthy and pathological brains. Here, we aimed to investigate the role of microglia-derived exosomes in regulating neurite outgrowth and synapse recovery following TBI. In our study, exosomes derived from microglia were co-cultured with stretch-injured neurons in vitro and intravenously injected into mice that underwent fluid percussion injury (FPI) by tail vein injection in vivo. The results showed that microglia-derived exosomes could be absorbed by neurons in vitro and in vivo. Moreover, exosomes derived from stretch-injured microglia decreased the protein levels of GAP43, PSD-95, GluR1, and Synaptophysin and dendritic complexity in stretch-injured neurons in vitro, and reduced GAP43+ NEUN cell percentage and apical dendritic spine density in the pericontusion region in vivo. Motor coordination was also impaired in mice treated with stretch-injured microglia-derived exosomes after FPI. A microRNA microarray showed that the level of miR-5121 was decreased most greatly in exosomes derived from stretch-injured microglia. Overexpression of miR-5121 in stretch-injured microglia-derived exosomes partly reversed the suppression of neurite outgrowth and synapse recovery of neurons both in vitro and in vivo. Moreover, motor coordination in miR-5121 overexpressed exosomes treated mice was significantly improved after FPI. Following mechanistic study demonstrated that miR-5121 might promote neurite outgrowth and synapse recovery by directly targeting RGMa. In conclusion, our finding revealed a novel exosome-mediated mechanism of microglia-neuron interaction that suppressed neurite outgrowth and synapse recovery of neurons following TBI.
Collapse
Affiliation(s)
- Chengcheng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi He
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
| | - Xianjian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
| | - Chuanfang Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong, China.
| | - Weiping Li
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Harper CB, Blumrich EM, Cousin MA. Synaptophysin controls synaptobrevin-II retrieval via a cryptic C-terminal interaction site. J Biol Chem 2021; 296:100266. [PMID: 33769286 PMCID: PMC7948965 DOI: 10.1016/j.jbc.2021.100266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
The accurate retrieval of synaptic vesicle (SV) proteins during endocytosis is essential for the maintenance of neurotransmission. Synaptophysin (Syp) and synaptobrevin-II (SybII) are the most abundant proteins on SVs. Neurons lacking Syp display defects in the activity-dependent retrieval of SybII and a general slowing of SV endocytosis. To determine the role of the cytoplasmic C terminus of Syp in the control of these two events, we performed molecular replacement studies in primary cultures of Syp knockout neurons using genetically encoded reporters of SV cargo trafficking at physiological temperatures. Under these conditions, we discovered, 1) no slowing in SV endocytosis in Syp knockout neurons, and 2) a continued defect in SybII retrieval in knockout neurons expressing a form of Syp lacking its C terminus. Sequential truncations of the Syp C-terminus revealed a cryptic interaction site for the SNARE motif of SybII that was concealed in the full-length form. This suggests that a conformational change within the Syp C terminus is key to permitting SybII binding and thus its accurate retrieval. Furthermore, this study reveals that the sole presynaptic role of Syp is the control of SybII retrieval, since no defect in SV endocytosis kinetics was observed at physiological temperatures.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
30
|
Amani M, Lauterborn JC, Le AA, Cox BM, Wang W, Quintanilla J, Cox CD, Gall CM, Lynch G. Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus. J Neurosci 2021; 41:2301-2312. [PMID: 33514675 PMCID: PMC8018768 DOI: 10.1523/jneurosci.2376-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Why layers II/III of entorhinal cortex (EC) deteriorate in advance of other regions during the earliest stages of Alzheimer's disease is poorly understood. Failure of retrograde trophic support from synapses to cell bodies is a common cause of neuronal atrophy, and we accordingly tested for early-life deterioration in projections of rodent layer II EC neurons. Using electrophysiology and quantitative imaging, changes in EC terminals during young adulthood were evaluated in male rats and mice. Field excitatory postsynaptic potentials, input/output curves, and frequency following capacity by lateral perforant path (LPP) projections from lateral EC to dentate gyrus were unchanged from 3 to 8-10 months of age. In contrast, the unusual presynaptic form of long-term potentiation (LTP) expressed by the LPP was profoundly impaired by 8 months in rats and mice. This impairment was accompanied by a reduction in the spine to terminal endocannabinoid signaling needed for LPP-LTP induction and was offset by an agent that enhances signaling. There was a pronounced age-related increase in synaptophysin within LPP terminals, an effect suggestive of incipient pathology. Relatedly, presynaptic levels of TrkB-receptors mediating retrograde trophic signaling-were reduced in the LPP terminal field. LTP and TrkB content were also reduced in the medial perforant path of 8- to 10-month-old rats. As predicted, performance on an LPP-dependent episodic memory task declined by late adulthood. We propose that memory-related synaptic plasticity in EC projections is unusually sensitive to aging, which predisposes EC neurons to pathogenesis later in life.SIGNIFICANCE STATEMENT Neurons within human superficial entorhinal cortex are particularly vulnerable to effects of aging and Alzheimer's disease, although why this is the case is not understood. Here we report that perforant path projections from layer II entorhinal cortex to the dentate gyrus exhibit rapid aging in rodents, including reduced synaptic plasticity and abnormal protein content by 8-10 months of age. Moreover, there was a substantial decline in the performance of an episodic memory task that depends on entorhinal cortical projections at the same ages. Overall, the results suggest that the loss of plasticity and related trophic signaling predispose the entorhinal neurons to functional decline in relatively young adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary Lynch
- Departments of Anatomy & Neurobiology
- Psychiatry & Human Behavior, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
31
|
Mirza FJ, Amber S, Sumera, Hassan D, Ahmed T, Zahid S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ 1-42-induced mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153490. [PMID: 33601255 DOI: 10.1016/j.phymed.2021.153490] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rosmarinus officinalis, commonly known as rosemary, is a medicinal herb that presents significant biological properties such as antimicrobial, antioxidant, anti-inflammatory, anti-diabetic and anti-depressant activities. Recent findings correlate impaired adult neurogenesis, which is crucial for the maintenance of synaptic plasticity and hippocampal functioning, synaptic regulation with the pathological hallmarks of Alzheimer's disease (AD). These observations call for the need to developing compounds that promote neurogenesis and alleviates deficits in cognition and synaptic regulation. PURPOSE AND STUDY DESIGN The present study was conducted to determine the proneurogenic effects of R. officinalis and its active compounds (ursolic acid and rosmarinic acid) in comparison to Donepezil in an Aβ1-42-induced mouse model of AD. METHODS BALB/c mice were divided into ten groups. Half were injected with Aβ1-42 in the hippocampus through stereotaxic surgery to generate the disease groups. The other half received control injections. Each set of five groups were administered orally with vehicle, an ethanolic extract of R. officinalis, ursolic acid, rosmarinic acid or donepezil. Behavior analysis included the Morris water maze test, the novel object recognition test and the Elevated plus maze. The mice were then sacrificed and the hippocampal tissue was processed for immunohistochemistry and gene expression analysis. RESULTS The results show a protective effect by rosmarinic acid and ursolic acid in reversing the deficits in spatial and recognition memory as well as changes in anxiety induced by Aβ1-42. The neuronal density and the expression levels of neurogenic (Ki67, NeuN and DCX) and synaptic (Syn I, II, III, Synaptophysin and PSD-95) markers were also normalized upon treatment with rosmarinic and ursolic acid. CONCLUSION Our findings indicate the potential of R. officinalis and its active compounds as therapeutic agents against Aβ1-42-induced neurotoxicity in AD.
Collapse
Affiliation(s)
- Fatima Javed Mirza
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sanila Amber
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sumera
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Deeba Hassan
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
32
|
Role of MLC901 in increasing neurogenesis in rats with traumatic brain injury. Ann Med Surg (Lond) 2020; 60:36-40. [PMID: 33101671 PMCID: PMC7578557 DOI: 10.1016/j.amsu.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
Background Traumatic brain injury is a dangerous life threatening condition. This study examines the role of MLC901 in increasing neurogenesis. The aim of this study was to demonstrate the role of MLC901 in increasing neuron cell (neurogenesis) in rat with traumatic brain injury using the synaptophysin marker. Methods The synaptophysin levels were measured as a marker for neuron cell (neurogenesis) of brain nerve cells in Sprague-Dawley rats aged 10–12 weeks, weighing 200–300 g. All rats (n = 10) were performed as traumatic brain injury using The Modified Marmourou Model, then they were divided into 2 group, one group was given MLC901 (n = 5) and the other group was not given MLC901 (n = 5). The synaptophysin levels in both groups were assessed after 6 weeks and also carried out an examination of immnuhistochemical from the brain tissue of both groups. Results There was an increase in the number of neuron cells as evidenced by synaptophysin ihc staining in the rats given MLC 901 (Neuroaid II) compared to those without MLC 901. Synaptophysin levels were lower in the control group than in the MLC 901 group (81.6, SD: 13.52 vs 118.4, SD: 12.198, p = 0.062). Conclusion These research suggest that MLC901 can increase neurogenesis in traumatic brain injury and also appeared as synaptophysin antibody that binding to cytoplasm of neuronal cells in the rat brain. Experimental study on rats with traumatic brain injury to determine the role of MLC 901 in increasing number of neuronal cells (neurogenesis) in rat with traumatic brain injury using the synaptophysin marker. The synaptophysin levels in both groups were assessed after 6 weeks and also carried out an examination of immnuhistochemical from the brain tissue of both groups. There was an increase in synaptophysin levels in the rats given MLC 901. MLC 901 can increase neurogenesis in traumatic brain injury.
Collapse
|
33
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Ye Q, Zeng C, Luo C, Wu Y. Ferrostatin-1 mitigates cognitive impairment of epileptic rats by inhibiting P38 MAPK activation. Epilepsy Behav 2020; 103:106670. [PMID: 31864943 DOI: 10.1016/j.yebeh.2019.106670] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/27/2022]
Abstract
Evidence indicates that ferrostain-1 (Fer-1), a specific inhibitor of ferroptosis, could ameliorate cognitive dysfunction of rats with kainic acid (KA)-induced temporal lobe epilepsy (TLE) by suppressing ferroptosis processes. Recent studies suggest that P38 mitogen-activated protein kinase (MAPK) pathway could be mediated by ferroptosis processes. The activation of P38 MAPK results in cognitive impairment by suppressing the expression of synaptic plasticity-related proteins. However, it is unclear whether Fer-1 can mitigate cognitive impairment of rats with KA-induced TLE by inhibiting P38 MAPK activation. In the present study, treatment with Fer-1 blocked the activation of P38 MAPK, which resulted in an increased expression of synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95) in the hippocampus of rats with KA-induced TLE, hence, ameliorating their cognitive impairment. Also, P38 MAPK activation in the hippocampus of the rats reduced the expression of both PSD-95 and SYP proteins. Treatment of the rats with SB203580, a P38 MAPK-specific inhibitor, prevented the activation of P38 MAPK, which resulted in an increase in SYP and PSD95 protein levels in the hippocampus. These results suggest that Fer-1 could mitigate the cognitive impairment by suppressing P38 MAPK activation thus restoring the expression of synaptic proteins. Ferroptosis processes might be involved in suppressing synaptic protein expression.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, 6th Shuangyong Road, Nanning, China; Department of Neurology, The First Affiliated Hospital of University of South China, 69th Chuanshan Road, Hengyang, China
| | - Chunmei Zeng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, 6th Shuangyong Road, Nanning, China
| | - Chun Luo
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, 262th East Mingxiu Road, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, 6th Shuangyong Road, Nanning, China.
| |
Collapse
|