1
|
Hamad MIK, Daoud S, Petrova P, Rabaya O, Jbara A, Al Houqani S, BaniYas S, Alblooshi M, Almheiri A, Nakhal MM, Ali BR, Shehab S, Allouh MZ, Emerald BS, Schneider-Lódi M, Bataineh MF, Herz J, Förster E. Reelin differentially shapes dendrite morphology of medial entorhinal cortical ocean and island cells. Development 2024; 151:dev202449. [PMID: 38856043 PMCID: PMC11234379 DOI: 10.1242/dev.202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Meera Alblooshi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Ayesha Almheiri
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mohammed Z. Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mária Schneider-Lódi
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Mo'ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
2
|
Hamad MIK, Rabaya O, Jbara A, Daoud S, Petrova P, Ali BR, Allouh MZ, Herz J, Förster E. Reelin Regulates Developmental Desynchronization Transition of Neocortical Network Activity. Biomolecules 2024; 14:593. [PMID: 38786001 PMCID: PMC11118507 DOI: 10.3390/biom14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Mohammed Z. Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 5323, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| |
Collapse
|
3
|
Markiewicz R, Markiewicz-Gospodarek A, Borowski B, Trubalski M, Łoza B. Reelin Signaling and Synaptic Plasticity in Schizophrenia. Brain Sci 2023; 13:1704. [PMID: 38137152 PMCID: PMC10741648 DOI: 10.3390/brainsci13121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Recent research emphasizes the significance of studying the quality of life of schizophrenia patients, considering the complex nature of the illness. Identifying neuronal markers for early diagnosis and treatment is crucial. Reelin (RELN) stands out among these markers, with genetic studies highlighting its role in mental health. Suppression of RELN expression may contribute to cognitive deficits by limiting dendritic proliferation, affecting neurogenesis, and leading to improper neuronal circuits. Although the physiological function of reelin is not fully understood, it plays a vital role in hippocampal cell stratification and neuroglia formation. This analysis explores reelin's importance in the nervous system, shedding light on its impact on mental disorders such as schizophrenia, paving the way for innovative therapeutic approaches, and at the same time, raises the following conclusions: increased methylation levels of the RELN gene in patients with a diagnosis of schizophrenia results in a multiple decrease in the expression of reelin, and monitoring of this indicator, i.e., methylation levels, can be used to monitor the severity of symptoms in the course of schizophrenia.
Collapse
Affiliation(s)
- Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, 4 Staszica St., 20-081 Lublin, Poland;
| | | | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (B.B.); (M.T.)
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (B.B.); (M.T.)
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
4
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Alexander A, Herz J, Calvier L. Reelin through the years: From brain development to inflammation. Cell Rep 2023; 42:112669. [PMID: 37339050 PMCID: PMC10592530 DOI: 10.1016/j.celrep.2023.112669] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Reelin was originally identified as a regulator of neuronal migration and synaptic function, but its non-neuronal functions have received far less attention. Reelin participates in organ development and physiological functions in various tissues, but it is also dysregulated in some diseases. In the cardiovascular system, Reelin is abundant in the blood, where it contributes to platelet adhesion and coagulation, as well as vascular adhesion and permeability of leukocytes. It is a pro-inflammatory and pro-thrombotic factor with important implications for autoinflammatory and autoimmune diseases such as multiple sclerosis, Alzheimer's disease, arthritis, atherosclerosis, or cancer. Mechanistically, Reelin is a large secreted glycoprotein that binds to several membrane receptors, including ApoER2, VLDLR, integrins, and ephrins. Reelin signaling depends on the cell type but mostly involves phosphorylation of NF-κB, PI3K, AKT, or JAK/STAT. This review focuses on non-neuronal functions and the therapeutic potential of Reelin, while highlighting secretion, signaling, and functional similarities between cell types.
Collapse
Affiliation(s)
- Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Ardalan M, Chumak T, Quist A, Hermans E, Hoseinpoor Rafati A, Gravina G, Jabbari Shiadeh SM, Svedin P, Alabaf S, Hansen B, Wegener G, Westberg L, Mallard C. Reelin cells and sex-dependent synaptopathology in autism following postnatal immune activation. Br J Pharmacol 2022; 179:4400-4422. [PMID: 35474185 PMCID: PMC9545289 DOI: 10.1111/bph.15859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. EXPERIMENTAL APPROACH C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1 mg·kg-1 ) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. KEY RESULTS Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. CONCLUSION AND IMPLICATIONS The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
Collapse
Affiliation(s)
- Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexandra Quist
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eva Hermans
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Developmental Origins of Disease, Utrecht Brain Center and Wilhelmina Children's HospitalUtrecht UniversityUtrechtNetherlands
| | - Ali Hoseinpoor Rafati
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Giacomo Gravina
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Setareh Alabaf
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience‐SKSAarhus UniversityAarhusDenmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
7
|
Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy. Front Cell Dev Biol 2022; 10:917575. [PMID: 35733853 PMCID: PMC9207388 DOI: 10.3389/fcell.2022.917575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various in vivo and in vitro models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.
Collapse
Affiliation(s)
- Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry I—Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| | - Mohammad I. K. Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| |
Collapse
|
8
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
9
|
Fang Z, Zhong M, Zhou L, Le Y, Wang H, Fang Z. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered 2022; 13:6807-6818. [PMID: 35246020 PMCID: PMC8974054 DOI: 10.1080/21655979.2022.2036917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 8 (LRP8) is involved in the development of multiple tumors, including lung cancer. However, the exact mechanism by which LRP8 exerts its oncogenic role in non-small cell lung cancer (NSCLC) remains elusive. Hence, in this study, we aimed to unravel the expression and role of LRP8 in the progression of NSCLC. We used online bioinformatics databases to identify the expression of LRP8 in multiple types of lung cancer. We validated LRP8 expression in NSCLC cell lines and tissues by Western blotting and immunohistochemistry. The functions of LRP8 in NSCLC carcinogenesis and progression were determined using in vitro and in vivo systems. The Wnt pathway activator LiCl was further used to validate the regulatory role of LRP8 in Wnt/β-catenin signaling. We demonstrated that LRP8 was markedly overexpressed in NSCLC tissues and cell lines, and its overexpression significantly correlated with poor clinicopathological characteristics and prognosis. Moreover, LRP8 depletion suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and impeded tumor growth in vivo. Mechanistically, LPR8 knockdown elicited tumor-suppressive functions by suppressing the Wnt/β-catenin pathway, which was partially reversed by LiCl. Hence, our study revealed that LRP8 facilitates NSCLC cell proliferation and invasion via the Wnt/β-catenin pathway, and thus LRP8 could be a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Min Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Yi Le
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| |
Collapse
|
10
|
Hamad MIK, Petrova P, Daoud S, Rabaya O, Jbara A, Melliti N, Leifeld J, Jakovčevski I, Reiss G, Herz J, Förster E. Reelin restricts dendritic growth of interneurons in the neocortex. Development 2021; 148:272055. [PMID: 34414407 DOI: 10.1242/dev.199718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood. Here, we have investigated the role of reelin in interneuron development in the postnatal neocortex. To preclude early cortical migration defects caused by reelin deficiency, we employed a conditional reelin knockout (RelncKO) mouse to induce postnatal reelin deficiency. Induced reelin deficiency caused dendritic hypertrophy in distal dendritic segments of neuropeptide Y-positive (NPY+) and calretinin-positive (Calr+) interneurons, and in proximal dendritic segments of parvalbumin-positive (Parv+) interneurons. Chronic recombinant Reelin treatment rescued dendritic hypertrophy in Relncko interneurons. Moreover, we provide evidence that RelncKO interneuron hypertrophy is due to presynaptic GABABR dysfunction. Thus, GABABRs in RelncKO interneurons were unable to block N-type (Cav2.2) Ca2+ channels that control neurotransmitter release. Consequently, the excessive Ca2+ influx through AMPA receptors, but not NMDA receptors, caused interneuron dendritic hypertrophy. These findings suggest that reelin acts as a 'stop-growth-signal' for postnatal interneuron maturation.
Collapse
Affiliation(s)
- Mohammad I K Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany.,Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Nesrine Melliti
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Igor Jakovčevski
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
11
|
Lee SE, Lee GH. Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons. Int J Mol Sci 2021; 22:ijms22147510. [PMID: 34299127 PMCID: PMC8305533 DOI: 10.3390/ijms22147510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/26/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Reelin is a secretory protein involved in a variety of processes in forebrain development and function, including neuronal migration, dendrite growth, spine formation, and synaptic plasticity. Most of the function of Reelin is focused on excitatory neurons; however, little is known about its effects on inhibitory neurons and inhibitory synapses. In this study, we investigated the phosphatidylinositol 3-kinase/Akt pathway of Reelin in primary cortical and hippocampal neurons. Individual neurons were visualized using immunofluorescence to distinguish inhibitory neurons from excitatory neurons. Reelin-rich protein supplementation significantly induced the phosphorylation of Akt and ribosomal S6 protein in excitatory neurons, but not in most inhibitory neurons. In somatostatin-expressing inhibitory neurons, one of major subtypes of inhibitory neurons, Reelin-rich protein supplementation induced the phosphorylation of S6. Subsequently, we investigated whether or not Reelin-rich protein supplementation affected dendrite development in cultured inhibitory neurons. Reelin-rich protein supplementation did not change the total length of dendrites in inhibitory neurons in vitro. Finally, we examined the development of inhibitory synapses in primary hippocampal neurons and found that Reelin-rich protein supplementation significantly reduced the density of gephyrin-VGAT-positive clusters in the dendritic regions without changing the expression levels of several inhibitory synapse-related proteins. These findings indicate a new role for Reelin in specific groups of inhibitory neurons and the development of inhibitory synapses, which may contribute to the underlying cellular mechanisms of RELN-associated neurological disorders.
Collapse
|