1
|
Gąsior Ł, Pochwat B, Zaręba-Kozioł M, Włodarczyk J, Grabrucker AM, Szewczyk B. Proteomics analysis in rats reveals convergent mechanisms between major depressive disorder and dietary zinc deficiency. Pharmacol Rep 2025; 77:145-157. [PMID: 39623245 PMCID: PMC11743416 DOI: 10.1007/s43440-024-00681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Preclinical and clinical studies have shown that dietary zinc deficiency can lead to symptoms similar to those observed in major depressive disorder (MDD). However, the underlying molecular mechanisms remain unclear. To investigate these mechanisms, we examined proteomic changes in the prefrontal cortex (PFC) and hippocampus (HP) of rats, two critical brain regions implicated in the pathophysiology of depression. METHODS Rats were fed diets either adequate in zinc (ZnA, 50 mg Zn/kg) or deficient in zinc (ZnD, <3 mg/kg) for four weeks. High-throughput proteomic analysis was used to detect changes in protein expression, supplemented by enzyme activity assay for mitochondrial complexes I and IV, examining their functional impacts. RESULTS ZnD led to significant alterations in protein expression related to zinc transport and mitochondrial function. Proteomic analysis revealed changes in zinc transporter family members such as Slc30a1 (6.64 log2FC), Slc30a3 (-2.32 log2FC), Slc30a4 (2.87 log2FC), Slc30a5 (5.90 log2FC), Slc30a6 (1.50 log2FC), and Slc30a7 (2.17 log2FC) in the PFC, and Slc30a3 (-1.02 log2FC), Slc30a5 (-1.04 log2FC), and Slc30a7 (1.08 log2FC) in the HP of rats subjected to ZnD. Furthermore, ZnD significantly affected essential mitochondrial activity proteins, including Atp5pb (3.25 log2FC), Cox2 (2.28 log2FC), Atp5me (2.04 log2FC), Cyc1 (2.30 log2FC), Cox4i1 (1.23 log2FC), Cox7c (1.63 log2FC), and Cisd1 (1.55 log2FC), with a pronounced decrease in complex I activity in the PFC. CONCLUSIONS Our study demonstrates that ZnD leads to significant proteomic changes in the PFC and HP of rats. Specifically, ZnD alters the expression of zinc transporter proteins and proteins critical for mitochondrial function. The significant decrease in complex I activity in the PFC further underscores the impact of ZnD on mitochondrial function. These results highlight the molecular mechanisms by which ZnD can influence brain function and contribute to symptoms similar to those observed in depression.
Collapse
Affiliation(s)
- Łukasz Gąsior
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Bartłomiej Pochwat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, Warsaw, 02-093, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, Warsaw, 02-093, Poland
| | - Andreas Martin Grabrucker
- Dept. of Biological Sciences, University of Limerick, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Limerick, V94PH61, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, V94PH61, Ireland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
2
|
Deal M, Kar A, Lee SHT, Alvarez M, Rajkumar S, Arasu UT, Kaminska D, Männistö V, Heinonen S, van der Kolk BW, Säiläkivi U, Saarinen T, Juuti A, Pihlajamäki J, Kaikkonen MU, Laakso M, Pietiläinen KH, Pajukanta P. An abdominal obesity missense variant in the adipocyte thermogenesis gene TBX15 is implicated in adaptation to cold in Finns. Am J Hum Genet 2024; 111:2542-2560. [PMID: 39515300 PMCID: PMC11568758 DOI: 10.1016/j.ajhg.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Mechanisms of abdominal obesity GWAS variants have remained largely unknown. To elucidate these mechanisms, we leveraged subcutaneous adipose tissue (SAT) single nucleus RNA-sequencing and genomics data. After discovering that heritability of abdominal obesity is enriched in adipocytes, we focused on a SAT unique adipocyte marker gene, the transcription factor TBX15, and its abdominal obesity-associated deleterious missense variant, rs10494217. The allele frequency of rs10494217 revealed a north-to-south decreasing gradient, with consistent significant FST values observed for 25 different populations when compared to Finns, a population with a history of genetic isolation. Given the role of Tbx15 in mouse thermogenesis, the frequency may have increased as an adaptation to cold in Finns. Our selection analysis provided significant evidence of selection for the abdominal obesity risk allele T of rs10494217 in Finns, with a north-to-south decreasing trend in other populations, and demonstrated that latitude significantly predicts the allele frequency. We also discovered that the risk allele status significantly affects SAT adipocyte expression of multiple adipocyte marker genes in trans in two cohorts. Two of these trans genes have been connected to thermogenesis, supporting the thermogenic effect of the TBX15 missense variant as a possible cause of its selection. Adipose expression of one trans gene, a lncRNA, AC002066.1, was strongly associated with adipocyte size, implicating it in metabolically unhealthy adipocyte hypertrophy. In summary, the abdominal obesity variant rs10494217 was selected in Finns, and individuals with the risk allele have trans effects on adipocyte expression of genes relating to thermogenesis and adipocyte hypertrophy.
Collapse
Affiliation(s)
- Milena Deal
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Asha Kar
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Seung Hyuk T Lee
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus Alvarez
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sandhya Rajkumar
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ulla Säiläkivi
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuure Saarinen
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Juuti
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Liu Z, Deng C, Zhou Z, Xiao Y, Jiang S, Zhu B, Naler LB, Jia X, Yao DD, Lu C. Epigenomic tomography for probing spatially defined chromatin state in the brain. CELL REPORTS METHODS 2024; 4:100738. [PMID: 38508188 PMCID: PMC10985265 DOI: 10.1016/j.crmeth.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Revised: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome.
Collapse
Affiliation(s)
- Zhengzhi Liu
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ya Xiao
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Bohan Zhu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | | | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Chen Y, Liu Y, Xiong J, Ouyang L, Tang M, Mao C, Li L, Xiao D, Liu S, Yang Z, Huang J, Tao Y. LINC02774 inhibits glycolysis in glioma to destabilize HIF-1α dependent on transcription factor RP58. MedComm (Beijing) 2023; 4:e364. [PMID: 37701531 PMCID: PMC10494996 DOI: 10.1002/mco2.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Glioma, the most common of malignant tumors in the brain, is responsible for the majority of deaths from primary brain tumors. The regulation of long noncoding RNAs (lncRNAs) in HIF-1α-driven tumor development remains unclear. LINC02774 is a nuclear lncRNA and that it is being reported for the first time in this study. We found the downregulation of LINC02774 in glioma and decreased with the degree of malignant, with its expression showing a negative correlation with the relative index of enhanced magnetic resonance (RIEMR). RIEMR-associated LINC02774 was found to inhibit glycolysis by modulating the hypoxia pathway rather than the hypoxia response itself. LINC02774 interacted with its neighboring gene, RP58 (ZBTB18), to enhance the expression of PHD3, which catalyzed HIF-1α hydroxylase and ubiquitination, leading to the downregulation of HIF-1α expression. We also found that the function of LINC02774, dependent on PHD3, was diminished upon RP58 depletion. Notably, higher expression of RIEMR-associated LINC02774 was associated with a favorable prognosis. In conclusion, these findings reveal the role of RIEMR-associated LINC02774, which relies on its neighbor gene, RP58, to regulate the hypoxia pathway as a novel tumor suppressor, suggesting its potential to be a prognostic marker and a molecular target for the therapy of glioma.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of NeurosurgeryThird Xiangya Hospital, Central South UniversityChangshaHunanChina
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Jianbing Xiong
- Department of EmergencyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Lianlian Ouyang
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Miao Tang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Liling Li
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shuang Liu
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Zhen Yang
- Shanghai Key Laboratory of Medical EpigeneticsFudan UniversityShanghaiChina
| | - Jun Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of Education, Central South UniversityHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research InstituteCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Parker E, Judge MA, Pastor L, Fuente-Soro L, Jairoce C, Carter KW, Anderson D, Mandomando I, Clifford HD, Naniche D, Le Souëf PN. Gene dysregulation in acute HIV-1 infection – early transcriptomic analysis reveals the crucial biological functions affected. Front Cell Infect Microbiol 2023; 13:1074847. [PMID: 37077524 PMCID: PMC10106835 DOI: 10.3389/fcimb.2023.1074847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionTranscriptomic analyses from early human immunodeficiency virus (HIV) infection have the potential to reveal how HIV causes widespread and lasting damage to biological functions, especially in the immune system. Previous studies have been limited by difficulties in obtaining early specimens.MethodsA hospital symptom-based screening approach was applied in a rural Mozambican setting to enrol patients with suspected acute HIV infection (Fiebig stage I-IV). Blood samples were collected from all those recruited, so that acute cases and contemporaneously recruited, uninfected controls were included. PBMC were isolated and sequenced using RNA-seq. Sample cellular composition was estimated from gene expression data. Differential gene expression analysis was completed, and correlations were determined between viral load and differential gene expression. Biological implications were examined using Cytoscape, gene set enrichment analysis, and enrichment mapping.ResultsTwenty-nine HIV infected subjects one month from presentation and 46 uninfected controls were included in this study. Subjects with acute HIV infection demonstrated profound gene dysregulation, with 6131 (almost 13% of the genome mapped in this study) significantly differentially expressed. Viral load was correlated with 1.6% of dysregulated genes, in particular, highly upregulated genes involved in key cell cycle functions, were correlated with viremia. The most profoundly upregulated biological functions related to cell cycle regulation, in particular, CDCA7 may drive aberrant cell division, promoted by overexpressed E2F family proteins. Also upregulated were DNA repair and replication, microtubule and spindle organization, and immune activation and response. The interferome of acute HIV was characterized by broad activation of interferon-stimulated genes with antiviral functions, most notably IFI27 and OTOF. BCL2 downregulation alongside upregulation of several apoptotic trigger genes and downstream effectors may contribute to cycle arrest and apoptosis. Transmembrane protein 155 (TMEM155) was consistently highly overexpressed during acute infection, with roles hitherto unknown.DiscussionOur study contributes to a better understanding of the mechanisms of early HIV-induced immune damage. These findings have the potential to lead to new earlier interventions that improve outcomes.
Collapse
Affiliation(s)
- Erica Parker
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Melinda A. Judge
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Melinda A. Judge,
| | - Lucia Pastor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | | | - Inácio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Peter Neils Le Souëf
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|