1
|
Babington S, Tilbrook AJ, Maloney SK, Fernandes JN, Crowley TM, Ding L, Fox AH, Zhang S, Kho EA, Cozzolino D, Mahony TJ, Blache D. Finding biomarkers of experience in animals. J Anim Sci Biotechnol 2024; 15:28. [PMID: 38374201 PMCID: PMC10877933 DOI: 10.1186/s40104-023-00989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
Collapse
Affiliation(s)
- Sarah Babington
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alan J Tilbrook
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jill N Fernandes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, VIC, 3217, Australia
- Poultry Hub Australia, University of New England, Armidale, NSW, 2350, Australia
| | - Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Song Zhang
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Elise A Kho
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Mahony
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Vedor JE. Revisiting Carl Jung's archetype theory a psychobiological approach. Biosystems 2023; 234:105059. [PMID: 37832929 DOI: 10.1016/j.biosystems.2023.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
This paper delves into the concept of archetypes, universal patterns of behavior and cognition, and proposes a novel tripartite model distinguishing between structural, regulatory, and representational archetypes. Drawing on insights from code biology, neuroscience, genetics, and epigenetics, the model provides a nuanced framework for understanding archetypes and their role in shaping cognition and behavior. The paper also explores the interplay between these elements to express representational archetypes. Furthermore, it addresses the informational capacity of the genome and its influence on post-natal development and the psyche. The paper concludes by discussing the future trajectory of psychology, emphasizing the need for an integrative approach that combines our understanding of social constructs with insights into our inherent organizational propensities or archetypes. This exploration holds the potential to advance our understanding of the human condition.
Collapse
|
3
|
Al-Hassany L, MaassenVanDenBrink A. Multifaceted dynamics of sex and gender in neurological research. Lancet Neurol 2023; 22:882-883. [PMID: 37739568 DOI: 10.1016/s1474-4422(22)00447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 09/24/2023]
Affiliation(s)
- Linda Al-Hassany
- Erasmus MC, University Medical Center Rotterdam, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, 3000 CA Rotterdam, Netherlands
| | - Antoinette MaassenVanDenBrink
- Erasmus MC, University Medical Center Rotterdam, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, 3000 CA Rotterdam, Netherlands.
| |
Collapse
|
4
|
Olazábal DE, Bertoni B, Grandi G, Musetti D, Rey G, Sandberg N, Fernández L, Laporte G, Medici F, Nicolaisen-Sobesky E. Oxytocin system polymorphisms rs237887 and rs2740210 variants increase the risk of depression in pregnant women with early abuse. Dev Psychobiol 2023; 65:e22400. [PMID: 37338248 DOI: 10.1002/dev.22400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023]
Abstract
Prepartum depression is associated with early adversity, pregnancy complications, preterm delivery, postpartum depression, and long-term effects on child neurodevelopment. The oxytocin (OXT) system is affected by early adverse experiences and has been associated with depression. In the current study, we investigated risk factors for prenatal depressive symptoms, mainly the effects of early childhood and adolescence trauma, in combination with the presence of certain variants of polymorphisms of OXT and OXT receptor (OXTR) genes. We hypothesized that early childhood and adolescence trauma has higher negative effects in carriers of genetic variants of the OXT/OXTR system, increasing their risk for depression. Early in pregnancy (8-14 weeks), 141 pregnant women from a Uruguayan population were asked to provide DNA samples and complete questionnaires that assessed their experience of child abuse, depression symptoms, and other variables that included demographic information. Our results showed that 23.5% of pregnant women had depressive symptoms. Several OXT and OXTR genetic variants were associated with higher risk of prepartum depression only in those pregnant women who suffered emotional abuse during infancy or adolescence. Logistic regression (Nagelkerke's R2 = .33) revealed that women who suffered early abuse and were carriers of the variants CC of rs2740210 (OXT) or AA of rs237887 (OXTR) had significantly higher risk of experiencing depressive symptoms. Antecedents of psychiatric disorders also contributed to the risk of depression. We conclude that emotional abuse contributes to the risk of depression in different ways in women carrying different OXT and OXTR genetic variants. Early detection and closer follow-up of women with child abuse and certain OXT genetic variants, among other risk factors, could reduce the long-term impact of prepartum depression.
Collapse
Affiliation(s)
- Daniel Ernesto Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bernardo Bertoni
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Dora Musetti
- Asociación de Psicopatología y Psiquiatría de la Infancia y la Adolescencia, Montevideo, Uruguay
| | - Grazzia Rey
- Hospital de Clínicas Manuel Quintela, Montevideo, Uruguay
| | - Natalia Sandberg
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | - Eliana Nicolaisen-Sobesky
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
5
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Martínez-Burnes J, Lezama-García K, Hernández-Ávalos I, Rodríguez-González D, Bienboire-Frosini C. The Role of Oxytocin in Domestic Animal’s Maternal Care: Parturition, Bonding, and Lactation. Animals (Basel) 2023; 13:ani13071207. [PMID: 37048463 PMCID: PMC10093258 DOI: 10.3390/ani13071207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Oxytocin (OXT) is one of the essential hormones in the birth process; however, estradiol, prolactin, cortisol, relaxin, connexin, and prostaglandin are also present. In addition to parturition, the functions in which OXT is also involved in mammals include the induction of maternal behavior, including imprinting and maternal care, social cognition, and affiliative behavior, which can affect allo-parental care. The present article aimed to analyze the role of OXT and the neurophysiologic regulation of this hormone during parturition, how it can promote or impair maternal behavior and bonding, and its importance in lactation in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| |
Collapse
|
6
|
Camerino C. The Long Way of Oxytocin from the Uterus to the Heart in 70 Years from Its Discovery. Int J Mol Sci 2023; 24:ijms24032556. [PMID: 36768879 PMCID: PMC9916674 DOI: 10.3390/ijms24032556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The research program on oxytocin started in 1895, when Oliver and Schafer reported that a substance extracted from the pituitary gland elevates blood pressure when injected intravenously into dogs. Dale later reported that a neurohypophysial substance triggers uterine contraction, lactation, and antidiuresis. Purification of this pituitary gland extracts revealed that the vasopressor and antidiuretic activity could be attributed to vasopressin, while uterotonic and lactation activity could be attributed to oxytocin. In 1950, the amino-acid sequences of vasopressin and oxytocin were determined and chemically synthesized. Vasopressin (CYFQNCPRG-NH2) and oxytocin (CYIQNCPLG-NH2) differ by two amino acids and have a disulfide bridge between the cysteine residues at position one and six conserved in all vasopressin/oxytocin-type peptides. This characterization of oxytocin led to the Nobel Prize awarded in 1955 to Vincent du Vigneaud. Nevertheless, it was only 50 years later when the evidence that mice depleted of oxytocin or its receptor develop late-onset obesity and metabolic syndrome established that oxytocin regulates energy and metabolism. Oxytocin is anorexigenic and regulates the lean/fat mass composition in skeletal muscle. Oxytocin's effect on muscle is mediated by thermogenesis via a pathway initiated in the myocardium. Oxytocin involvement in thermogenesis and muscle contraction is linked to Prader-Willi syndrome in humans, opening exciting therapeutic avenues.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Screening of Differentially Expressed Genes and miRNAs in Hypothalamus and Pituitary Gland of Sheep under Different Photoperiods. Genes (Basel) 2022; 13:genes13061091. [PMID: 35741853 PMCID: PMC9222358 DOI: 10.3390/genes13061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
The reproduction of sheep is affected by many factors such as light, nutrition and genetics. The Hypothalamic-pituitary-gonadal (HPG) axis is an important pathway for sheep reproduction, and changes in HPG axis-related gene expression can affect sheep reproduction. In this study, a model of bilateral ovarian removal and estrogen supplementation (OVX + E2) was applied to screen differentially expressed genes and miRNAs under different photoperiods using whole transcriptome sequencing and reveal the regulatory effects of the photoperiod on the upstream tissues of the HPG axis in sheep. Whole transcriptome sequencing was performed in ewe hypothalamus (HYP) and distal pituitary (PD) tissues under short photoperiod 21st day (SP21) and long photoperiod 21st day (LP21). Compared to the short photoperiod, a total of 1813 differential genes (up-regulation 966 and down-regulation 847) and 145 differential miRNAs (up-regulation 73 and down-regulation 72) were identified in the hypothalamus of long photoperiod group. Similarly, 2492 differential genes (up-regulation 1829 and down-regulation 663) and 59 differential miRNAs (up-regulation 49 and down-regulation 10) were identified in the pituitary of long photoperiod group. Subsequently, GO and KEGG enrichment analysis revealed that the differential genes and target genes of differential miRNA were enriched in GnRH, Wnt, ErbB and circadian rhythm pathways associated with reproduction. Combined with sequence complementation and gene expression correlation analysis, several miRNA-mRNA target combinations (e.g., LHB regulated by novel-414) were obtained. Taken together, these results will help to understand the regulatory effect of the photoperiod on the upstream tissues of HPG in sheep.
Collapse
|
8
|
Sanson A, Bosch OJ. Dysfunctions of brain oxytocin signaling: Implications for poor mothering. Neuropharmacology 2022; 211:109049. [PMID: 35390436 DOI: 10.1016/j.neuropharm.2022.109049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Good mothering has profound impact on both the mother's and the young's well-being. Consequently, experiencing inadequate maternal care - or even neglect - in the first stages of life is a major risk factor for the development of psychiatric disorders, and even for poor parenting towards the future offspring. Thus, understanding the neurobiological basis of maternal neglect becomes crucial. Along with other neurotransmitters and neuropeptides, oxytocin (OXT) has long been known as one of the main modulators of maternal behavior. In rodents, disruptions of central OXT transmission have been associated with poor maternal responses, like impaired onset of nursing behaviors, and reduced care and defense of the pups. Importantly, such behavioral and molecular deficits can be transmitted through generations, creating a vicious circle of low-quality maternal behavior. Similarly, evidence from human studies shows that OXT signaling is defective in conditions of inadequate mothering and child neglect. On those premises, this review aims at providing a comprehensive overview of animal and human studies linking perturbed OXT transmission to poor maternal behavior. Considering the important fallouts of inadequate maternal responses, we believe that unraveling the alterations in OXT transmission might provide useful insights for a better understanding of maternal neglect and, ultimately, for future intervention approaches.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Species differences in the effect of oxytocin on maternal behavior: A model incorporating the potential for allomaternal contributions. Front Neuroendocrinol 2022; 65:100996. [PMID: 35429546 DOI: 10.1016/j.yfrne.2022.100996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
Oxytocin has historically been linked to processes involved with maternal behavior. However, the relative importance of oxytocin for maternal behavior widely varies among mammalian species, from indispensable to apparently nonessential. This review proposes a new model in which the relative importance of oxytocin for mothering across species is explained by an evolutionary pressure which we term "allomaternal potential", or the degree to which other conspecifics are capable and likely to assist with caregiving. It is notable that in animals where allomaternal potential is high (i.e., many quality helpers are available), oxytocin is decoupled from mothering. However, in animals where allomaternal potential is low (i.e., conspecifics refuse to, or do not provide, quality help), oxytocin is crucial for mothering. We posit that this relationship is a form of kin selection, whereby oxytocin is a signal that leads mothers to preferentially dispense resources to their own young when quality helpers are unlikely.
Collapse
|
10
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
11
|
Witteveen AB, Stramrood CAI, Henrichs J, Flanagan JC, van Pampus MG, Olff M. The oxytocinergic system in PTSD following traumatic childbirth: endogenous and exogenous oxytocin in the peripartum period. Arch Womens Ment Health 2020; 23:317-329. [PMID: 31385103 PMCID: PMC7244459 DOI: 10.1007/s00737-019-00994-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Birth experiences can be traumatic and may give rise to PTSD following childbirth (PTSD-FC). Peripartum neurobiological alterations in the oxytocinergic system are highly relevant for postpartum maternal behavioral and affective adaptions like bonding and lactation but are also implicated in the response to traumatic events. Animal models demonstrated that peripartum stress impairs beneficial maternal postpartum behavior. Early postpartum activation of the oxytocinergic system may, however, reverse these effects and thereby prevent adverse long-term consequences for both mother and infant. In this narrative review, we discuss the impact of trauma and PTSD-FC on normal endogenous oxytocinergic system fluctuations in the peripartum period. We also specifically focus on the potential of exogenous oxytocin (OT) to prevent and treat PTSD-FC. No trials of exogenous OT after traumatic childbirth and PTSD-FC were available. Evidence from non-obstetric PTSD samples and from postpartum healthy or depressed samples implies restorative functional neuroanatomic and psychological effects of exogenous OT such as improved PTSD symptoms and better mother-to-infant bonding, decreased limbic activation, and restored responsiveness in dopaminergic reward regions. Adverse effects of intranasal OT on mood and the increased fear processing and reduced top-down control over amygdala activation in women with acute trauma exposure or postpartum depression, however, warrant cautionary use of intranasal OT. Observational and experimental studies into the role of the endogenous and exogenous oxytocinergic system in PTSD-FC are needed and should explore individual and situational circumstances, including level of acute distress, intrapartum exogenous OT exposure, or history of childhood trauma.
Collapse
Affiliation(s)
- A. B. Witteveen
- Department of Midwifery Science/AVAG, Amsterdam Public Health research institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - C. A. I. Stramrood
- Department of Obstetrics and Gynaecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands
| | - J. Henrichs
- Department of Midwifery Science/AVAG, Amsterdam Public Health research institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - J. C. Flanagan
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, 29425 SC USA
| | - M. G. van Pampus
- Department of Obstetrics and Gynaecology, OLVG, Oosterpark 9, Amsterdam, 1091 AC The Netherlands
| | - M. Olff
- Department of Psychiatry, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands
- Arq Psychotrauma Expert Group, Nienoord 5, Diemen, 1112 XE The Netherlands
| |
Collapse
|
12
|
Paiva L, Leng G. Peripheral insulin administration enhances the electrical activity of oxytocin and vasopressin neurones in vivo. J Neuroendocrinol 2020; 32:e12841. [PMID: 32180284 DOI: 10.1111/jne.12841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022]
Abstract
Oxytocin neurones are involved in the regulation of energy balance through diverse central and peripheral actions and, in rats, they are potently activated by gavage of sweet substances. Here, we test the hypothesis that this activation is mediated by the central actions of insulin. We show that, in urethane-anaesthetised rats, oxytocin cells in the supraoptic nucleus show prolonged activation after i.v. injections of insulin, and that this response is greater in fasted rats than in non-fasted rats. Vasopressin cells are also activated, although less consistently. We also show that this activation of oxytocin cells is independent of changes in plasma glucose concentration, and is completely blocked by central (i.c.v.) administration of an insulin receptor antagonist. Finally, we replicate the previously published finding that oxytocin cells are activated by gavage of sweetened condensed milk, and show that this response too is completely blocked by central administration of an insulin receptor antagonist. We conclude that the response of oxytocin cells to gavage of sweetened condensed milk is mediated by the central actions of insulin.
Collapse
Affiliation(s)
- Luis Paiva
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gareth Leng
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Rincón-Cortés M, Grace AA. Adaptations in reward-related behaviors and mesolimbic dopamine function during motherhood and the postpartum period. Front Neuroendocrinol 2020; 57:100839. [PMID: 32305528 PMCID: PMC7531575 DOI: 10.1016/j.yfrne.2020.100839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/15/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Initiation and maintenance of maternal behavior is driven by a complex interaction between the physiology of parturition and offspring stimulation, causing functional changes in maternal brain and behavior. Maternal behaviors are among the most robust and rewarding motivated behaviors. Mesolimbic dopamine (DA) system alterations during pregnancy and the postpartum enable enhanced reward-related responses to offspring stimuli. Here, we review behavioral evidence demonstrating postpartum rodents exhibit a bias towards pups and pup-related stimuli in reward-related tasks. Next, we provide an overview of normative adaptations in the mesolimbic DA system induced by parturition and the postpartum, which likely mediate shifts in offspring valence. We also discuss a causal link between dopaminergic dysfunction and disrupted maternal behaviors, which are recapitulated in postpartum depression (PPD) and relevant rodent models. In sum, mesolimbic DA system activation drives infant-seeking behavior and strengthens the mother-infant bond, potentially representing a therapeutic target for reward-related deficits in PPD.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15217, United States.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15217, United States
| |
Collapse
|
14
|
Hou W, He Z, Yang Y, Yuan W, Wang L, Zhang J, Zhang X, Cai W, Guo Q, Tai F. The involvement of oxytocin in the effects of chronic social defeat stress on emotional behaviours in adult female mandarin voles. Eur J Neurosci 2020; 52:2853-2872. [PMID: 32011013 DOI: 10.1111/ejn.14691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022]
Abstract
Chronic social defeat stress (CSDS) can induce anxiety and depression in male rodents, but the prevalence of anxiety and depression is much higher in females, and effects of CSDS on adult females and its underlying mechanism remain unclear. Oxytocin is a stress-buffering hormone in the brain that modulates the physiological effects of stress. Strikingly, research regarding the effect of oxytocin on emotional changes caused by CSDS is still lacking in females. Thus, we focused on the involvement of the oxytocin system in changes in emotional regulation induced by CSDS in female voles. Seventy-day-old female mandarin voles (Microtus mandarinus) were exposed to aggressive adult females for 14 days, and the effects of CSDS on emotion and regulation of oxytocin system were characterized. In addition, we injected vehicle, oxytocin and oxytocin receptor antagonist into the nucleus accumbens (Nacc) of female voles to investigate the involvement of Nacc oxytocin in the effect of CSDS on emotion. Herein, we reported that CSDS increased anxiety and depression-like behaviour and the circulating level of corticosterone, but decreased the number of oxytocin projections and the protein and mRNA expression levels of oxytocin receptor in the Nacc. Injection of oxytocin into the Nacc reversed the effects of CSDS on anxiety-like and depressive-like behaviour, whereas combined injections of oxytocin and oxytocin receptor antagonist eliminated these effects. In conclusion, CSDS increases the levels of anxiety and depression possibly via a reduction in oxytocin projections and the oxytocin receptor level in the Nacc. Nacc oxytocin may be involved in the effects of CSDS on emotional behaviours.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
15
|
Chen Q, Leshkowitz D, Blechman J, Levkowitz G. Single-Cell Molecular and Cellular Architecture of the Mouse Neurohypophysis. eNeuro 2020; 7:ENEURO.0345-19.2019. [PMID: 31915267 PMCID: PMC6984808 DOI: 10.1523/eneuro.0345-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 12/05/2022] Open
Abstract
The neurohypophysis (NH), located at the posterior lobe of the pituitary, is a major neuroendocrine tissue, which mediates osmotic balance, blood pressure, reproduction, and lactation by means of releasing the neurohormones oxytocin (OXT) and arginine-vasopressin (AVP) from the brain into the peripheral blood circulation. The major cellular components of the NH are hypothalamic axonal termini, fenestrated endothelia and pituicytes, the resident astroglia. However, despite the physiological importance of the NH, the exact molecular signature defining neurohypophyseal cell types and in particular the pituicytes, remains unclear. Using single-cell RNA sequencing (scRNA-Seq), we captured seven distinct cell types in the NH and intermediate lobe (IL) of adult male mouse. We revealed novel pituicyte markers showing higher specificity than previously reported. Bioinformatics analysis demonstrated that pituicyte is an astrocytic cell type whose transcriptome resembles that of tanycyte. Single molecule in situ hybridization revealed spatial organization of the major cell types implying intercellular communications. We present a comprehensive molecular and cellular characterization of neurohypophyseal cell types serving as a valuable resource for further functional research.
Collapse
Affiliation(s)
- Qiyu Chen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Olazábal DE, Sandberg NY. Variation in the density of oxytocin receptors in the brain as mechanism of adaptation to specific social and reproductive strategies. Gen Comp Endocrinol 2020; 286:113337. [PMID: 31734142 DOI: 10.1016/j.ygcen.2019.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023]
Abstract
Most species have predominant forms of social and reproductive behavior driven by many years of selection pressures and evolution. For example, rodent species can live in small or large groups, behave more tolerant or aggressively toward conspecifics (including newborns), and form or not bonds with other members of the group (including sexual partners). Any of those behavioral adaptations could result in good fitness for the species, but could also require compromises such as sharing resources, greater parental investment, increased risk of predation, etc. We propose that the oxytocin (OXT) system, among others neuroendocrine peptides, is at the basis of a neural mechanism that adapts and predisposes species to a particular social and reproductive form of living. In this review we will show evidence that the variability in the density of receptors for OXT (OXTR) in the nucleus accumbens (NAc) and the lateral septum (LS) predisposes species to adopt at least 4 different social and reproductive strategies in rodents. Large or medium size groups with lower conspecific spacing (preferred separation distance maintained by adult conspecifics), and high levels of promiscuity are characterized by low levels of OXTR in the NAc and LS (e.g. Ratus norvegicus, Ctenomys sociabilis, Scotinomys teguina, Cavia porcellus); small size groups with higher conspecific spacing and low levels of promiscuity are characterized by high OXTR in the NAc and the LS (e.g. Peromyscus californicus); large or medium groups with lower conspecific spacing and low levels of promiscuity characterized by high levels of OXTR in the NAc but low levels in the LS (e.g. Microtus ochrogaster, Heterocephalus glaber, Microtus kikuchii); and small or medium size groups with higher conspecific spacing and high levels of promiscuity characterized by low levels of OXTR in the NAc and high OXTR in the LS (e.g. Mus musculus, Ctenomys haigi, Peromyscus maniculatus, Microtus pennsylvanicus, Microtus montanus). Careful analysis of the distribution of OXTR, and other peptides receptors, in the brain can contribute to understand its function but also to predict reproductive and social strategies of species.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Natalia Y Sandberg
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
18
|
Post C, Leuner B. The maternal reward system in postpartum depression. Arch Womens Ment Health 2019; 22:417-429. [PMID: 30554286 PMCID: PMC6784840 DOI: 10.1007/s00737-018-0926-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
The experience of motherhood is most often emotionally positive and rewarding, but for many new mothers suffering from postpartum depression (PPD), this is not the case. Preclinical and clinical research has sought to uncover brain changes underlying PPD in order to gain a better understanding of how this disorder develops. This review focuses on the mesolimbic dopamine system, particularly the ventral tegmental area-nucleus accumbens pathway which has been implicated in the regulation of critical functions disrupted in PPD including mood, motivation, and mothering. Specifically, we discuss normative changes in the mesolimbic system during motherhood in both rodents and humans and how these are impacted in PPD. We also consider modulation of mesolimbic dopamine by the hypothalamic neuropeptide oxytocin and how oxytocin-dopamine interactions regulate mood and mothering during the postpartum period. In addition to providing an overview of reward mechanisms in PPD, our goal is to highlight open questions which warrant further research.
Collapse
Affiliation(s)
- Caitlin Post
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH, USA
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|