1
|
McCulloch MK, Mehryab F, Rashnonejad A. Navigating the Landscape of CMT1B: Understanding Genetic Pathways, Disease Models, and Potential Therapeutic Approaches. Int J Mol Sci 2024; 25:9227. [PMID: 39273178 PMCID: PMC11395143 DOI: 10.3390/ijms25179227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Charcot-Marie-Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), endoplasmic reticulum (ER) stress, or protein mistrafficking. Despite significant progress in understanding the disease mechanisms, there is currently no effective treatment for CMT1B, with therapeutic strategies primarily focused on supportive care. Gene therapy represents a promising therapeutic approach for treating CMT1B. To develop a treatment and better design preclinical studies, an in-depth understanding of the pathophysiological mechanisms and animal models is essential. In this review, we present a comprehensive overview of the disease mechanisms, preclinical models, and recent advancements in therapeutic research for CMT1B, while also addressing the existing challenges in the field. This review aims to deepen the understanding of CMT1B and to encourage further research towards the development of effective treatments for CMT1B patients.
Collapse
Affiliation(s)
- Mary Kate McCulloch
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fatemeh Mehryab
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
3
|
Carroll AS, Razvi Y, O'Donnell L, Veleva E, Heslegrave A, Zetterberg H, Vucic S, Kiernan MC, Rossor AM, Gillmore JD, Reilly MM. Serum neurofilament light chain in hereditary transthyretin amyloidosis: validation in real-life practice. Amyloid 2024; 31:95-104. [PMID: 38348665 DOI: 10.1080/13506129.2024.2313218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/27/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Neurofilament light chain (NfL) has emerged as a sensitive biomarker in hereditary transthyretin amyloid polyneuropathy (ATTRv-PN). We hypothesise that NfL can identify conversion of gene carriers to symptomatic disease, and guide treatment approaches. METHODS Serum NfL concentration was measured longitudinally (2015-2022) in 59 presymptomatic and symptomatic ATTR variant carriers. Correlations between NfL and demographics, biochemistry and staging scores were performed as well as longitudinal changes pre- and post-treatment, and in asymptomatic and symptomatic cohorts. Receiver-operating analyses were performed to determine cut-off values. RESULTS NfL levels correlated with examination scores (CMTNS, NIS and MRC; all p < .01) and increased with disease severity (PND and FAP; all p < .05). NfL was higher in symptomatic and sensorimotor converters, than asymptomatic or sensory converters irrespective of time (all p < .001). Symptomatic or sensorimotor converters were discriminated from asymptomatic patients by NfL concentrations >64.5 pg/ml (sensitivity= 91.9%, specificity = 88.5%), whereas asymptomatic patients could only be discriminated from sensory or sensorimotor converters or symptomatic individuals by a NfL concentration >88.9 pg/ml (sensitivity = 62.9%, specificity = 96.2%) However, an NfL increment of 17% over 6 months could discriminate asymptomatic from sensory or sensorimotor converters (sensitivity = 88.9%, specificity = 80.0%). NfL reduced with treatment by 36%/year and correlated with TTR suppression (r = 0.64, p = .008). CONCLUSIONS This data validates the use of serum NfL to identify conversion to symptomatic disease in ATTRv-PN. NfL levels can guide assessment of disease progression and response to therapies.
Collapse
Affiliation(s)
- Antonia S Carroll
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
- Centre for Neuromuscular disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Yousuf Razvi
- National Amyloidosis Centre, UCL Division of Medicine, Royal Free Hospital, London, UK
| | - Luke O'Donnell
- Centre for Neuromuscular disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Elena Veleva
- UK Dementia Research Institute at UCL, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- WI Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Hospital, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Alexander M Rossor
- Centre for Neuromuscular disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Julian D Gillmore
- National Amyloidosis Centre, UCL Division of Medicine, Royal Free Hospital, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
4
|
Määttä LL, Andersen ST, Parkner T, Hviid CVB, Bjerg L, Kural MA, Charles M, Søndergaard E, Kuhle J, Tankisi H, Witte DR, Jensen TS. Longitudinal Change in Serum Neurofilament Light Chain in Type 2 Diabetes and Early Diabetic Polyneuropathy: ADDITION-Denmark. Diabetes Care 2024; 47:986-994. [PMID: 38502878 DOI: 10.2337/dc23-2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To investigate the longitudinal development of neurofilament light chain (NfL) levels in type 2 diabetes with and without diabetic polyneuropathy (+/-DPN) and to explore the predictive potential of NfL as a biomarker for DPN. RESEARCH DESIGN AND METHODS We performed retrospective longitudinal case-control analysis of data from 178 participants of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care-Denmark (ADDITION-Denmark) cohort of people with screen-detected type 2 diabetes. Biobank samples acquired at the ADDITION-Denmark 5- and 10-year follow-ups were analyzed for serum NfL (s-NfL) using single-molecule array, and the results were compared with established reference material to obtain NfL z-scores. DPN was diagnosed according to Toronto criteria for confirmed DPN at the 10-year follow-up. RESULTS s-NfL increased over time in +DPN (N = 39) and -DPN participants (N = 139) at levels above normal age-induced s-NfL increase. Longitudinal s-NfL change was greater in +DPN than in -DPN participants (17.4% [95% CI 4.3; 32.2] or 0.31 SD [95% CI 0.03; 0.60] higher s-NfL or NfL z-score increase in +DPN compared with -DPN). s-NfL at the 5-year follow-up was positively associated with nerve conduction studies at the 10-year follow-up (P = 0.02 to <0.001), but not with DPN risk. Areas under the curve (AUCs) for s-NfL were not inferior to AUCs for the Michigan Neuropathy Screening Instrument questionnaire score or vibration detection thresholds. Higher yearly s-NfL increase was associated with higher DPN risk (odds ratio 1.36 [95% CI 1.08; 1.71] per 1 ng/L/year). CONCLUSIONS Our findings suggest that preceding s-NfL trajectories differ slightly between those with and without DPN and imply a possible biomarker value of s-NfL trajectories in DPN.
Collapse
Affiliation(s)
- Laura L Määttä
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Signe T Andersen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Lasse Bjerg
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mustafa A Kural
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Charles
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kuhle
- Department of Neurology, University of Basel, Basel, Switzerland
- Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, Basel, Switzerland
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel R Witte
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Troels S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Kleinveld VEA, Keritam O, Horlings CGC, Cetin H, Wanschitz J, Hotter A, Zirch LS, Zimprich F, Topakian R, Müller P, Oel D, Quasthoff S, Erdler M, Rauschka H, Grinzinger S, Jecel J, Gaulhofer P, Castek B, Stadler K, Löscher WN. Multifocal motor neuropathy as a mimic of amyotrophic lateral sclerosis: Serum neurofilament light chain as a reliable diagnostic biomarker. Muscle Nerve 2024; 69:422-427. [PMID: 38334356 DOI: 10.1002/mus.28054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION/AIMS The clinical presentation of multifocal motor neuropathy (MMN) may mimic early amyotrophic lateral sclerosis (ALS) with predominant lower motor neuron (LMN) involvement, posing a diagnostic challenge. Both diseases have specific treatments and prognoses, highlighting the importance of early diagnosis. The aim of this study was to assess the diagnostic value of serum neurofilament light chain (NfL) in differentiating MMN from LMN dominant ALS. METHODS NfL was measured in serum in n = 37 patients with MMN and n = 37 age- and sex-matched patients with LMN dominant ALS, to determine the diagnostic accuracy. Clinical and demographic data were obtained at the time of NfL sampling. RESULTS Serum NfL concentration was significantly lower in MMN patients compared to ALS patients (mean 20.7 pg/mL vs. 59.4 pg/mL, p < .01). NfL demonstrated good diagnostic value in discriminating the two groups (AUC 0.985 [95% CI 0.963-1.000], sensitivity 94.6%, specificity 100%, cut-off 44.00 pg/mL). DISCUSSION NfL could be a helpful tool in differentiating MMN from LMN dominant ALS in those patients in whom electrophysiological and clinical examinations remain inconclusive early in the diagnostic process.
Collapse
Affiliation(s)
- Vera E A Kleinveld
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Hotter
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura S Zirch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Raffi Topakian
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
- Klinisches Forschungsinstitut Neurowissenschaften, Johannes Kepler UniversitätLinz, Linz, Austria
| | - Petra Müller
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Dierk Oel
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Stefan Quasthoff
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Marcus Erdler
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Vienna, Austria
| | - Helmut Rauschka
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Vienna, Austria
| | - Susanne Grinzinger
- Department of Neurology, Salzburger Landeskliniken, Paracelsus Medical University, Salzburg, Austria
| | - Julia Jecel
- Department of Neurology, KH Hietzing, Vienna, Austria
| | | | | | | | - Wolfgang N Löscher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Kodal LS, Witt AM, Pedersen BS, Aagaard MM, Dysgaard T. Prognostic value of neurofilament light in blood in patients with polyneuropathy: A systematic review. J Peripher Nerv Syst 2024; 29:17-27. [PMID: 38066727 DOI: 10.1111/jns.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Neurofilament light protein (NfL) is a part of the neuronal skeleton, primarily expressed in axons, and is released when nerves are damaged. NfL has been found to be a potential diagnostic biomarker in different types of polyneuropathies. However, whether NfL levels can be used as a predictor for the risk of disease progression is currently less understood. We searched MEDLINE (PubMed), Embase, Cochrane Library, and Web of Science Searches and included longitudinal studies with a baseline and follow-up examination of adult patients with polyneuropathy and NfL measured in blood. Twenty studies investigating NfL as a predictor of disease progression were identified, examining eight polyneuropathy subtypes. The results from studies in Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) patients were divergent, with two out of five studies finding a significant association between NfL levels and clinical outcomes. Meta-analysis of the three Guillian-Barré Syndrome (GBS) studies found higher odds for the inability to run after 1 year in patients with high levels of NfL (odds ratio 2.18, 95% confidence interval 1.04-4.56). Results from studies examining other subacute or chronic polyneuropathies like Charcot-Marie-Tooth (CMT) varied in study design and results. Our findings suggest NfL can be used as a predictor of disease progression, particularly in polyneuropathies such as CIDP and GBS. However, NfL may not serve as a reliable and cost-effective biomarker for slowly progressive polyneuropathies like CMT. Future standardized studies considering NfL as a prognostic blood biomarker in patients with different types of polyneuropathies are warranted.
Collapse
Affiliation(s)
- Louise Sloth Kodal
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Møller Witt
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Britt Staevnsbo Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Morten Müller Aagaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tina Dysgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Määttä LL, Andersen ST, Parkner T, Hviid CVB, Bjerg L, Kural MA, Charles M, Søndergaard E, Sandbæk A, Tankisi H, Witte DR, Jensen TS. Serum neurofilament light chain - A potential biomarker for polyneuropathy in type 2 diabetes? Diabetes Res Clin Pract 2023; 205:110988. [PMID: 38349953 DOI: 10.1016/j.diabres.2023.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 02/15/2024]
Abstract
AIMS To investigate the relationship between neurofilament light chain (NfL) and the presence and severity of diabetic polyneuropathy (DPN). METHODS We performed cross-sectional analysis of data from 178 participants of the ADDITION-Denmark cohort of people with screen-detected type 2 diabetes and 32 healthy controls. Biobank serum samples were analyzed for NfL using single-molecule array. DPN was defined by Toronto criteria for confirmed DPN. Original and axonal nerve conduction study (NCS) sum z-scores were used as indicators of the severity of DPN and peripheral nerve damage. RESULTS 39 (21.9%) participants had DPN. Serum NfL (s-NfL) was significantly higher in participants with DPN (18.8 ng/L [IQR 14.4; 27.9]) than in participants without DPN (15.4 ng/L [IQR 11.7; 20.1]). There were no unadjusted s-NfL differences between controls (17.6 ng/L [IQR 12.7; 19.8]) and participants with or without DPN. Higher original and axonal NCS sum z-scores were associated with 10% higher s-NfL (10.2 and 12.1% [95% CI's 4.0; 16.8 and 6.6; 17.9] per 1 SD). The AUC of s-NfL for DPN was 0.63 (95% CI 0.52; 0.73). CONCLUSIONS S-NfL is unlikely to be a reliable biomarker for the presence of DPN. S-NfL is however associated tothe severity of the nerve damage underlying DPN.
Collapse
Affiliation(s)
- Laura L Määttä
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 165, J109, 8200 Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark.
| | - Signe T Andersen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 165, J109, 8200 Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark.
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 99, 8200 Aarhus, Denmark Aarhus, Denmark.
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 99, 8200 Aarhus, Denmark Aarhus, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark.
| | - Lasse Bjerg
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Mustafa A Kural
- Department of Clinical Neurophysiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 165, J209, 8200 Aarhus, Denmark.
| | - Morten Charles
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark.
| | - Annelli Sandbæk
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 165, J209, 8200 Aarhus, Denmark.
| | - Daniel R Witte
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 11, 8200 Aarhus, Denmark; Department of Public Health, Aarhus University, Batholins Allé 2, 8000 Aarhus, Denmark.
| | - Troels S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 165, J109, 8200 Aarhus, Denmark.
| |
Collapse
|
9
|
Georgiou E, Kagiava A, Sargiannidou I, Schiza N, Stavrou M, Richter J, Tryfonos C, Heslegrave A, Zetterberg H, Christodoulou C, Kleopa KA. AAV9-mediated SH3TC2 gene replacement therapy targeted to Schwann cells for the treatment of CMT4C. Mol Ther 2023; 31:3290-3307. [PMID: 37641403 PMCID: PMC10638072 DOI: 10.1016/j.ymthe.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/19/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Type 4C Charcot-Marie-Tooth (CMT4C) demyelinating neuropathy is caused by autosomal recessive SH3TC2 gene mutations. SH3TC2 is highly expressed in myelinating Schwann cells. CMT4C is a childhood-onset progressive disease without effective treatment. Here, we generated a gene therapy for CMT4C mediated by an adeno-associated viral 9 vector (AAV9) to deliver the human SH3TC2 gene in the Sh3tc2-/- mouse model of CMT4C. We used a minimal fragment of the myelin protein zero (Mpz) promoter (miniMpz), which was cloned and validated to achieve Schwann cell-targeted expression of SH3TC2. Following the demonstration of AAV9-miniMpz.SH3TC2myc vector efficacy to re-establish SH3TC2 expression in the peripheral nervous system, we performed an early as well as a delayed treatment trial in Sh3tc2-/- mice. We demonstrate both after early as well as following late treatment improvements in multiple motor performance tests and nerve conduction velocities. Moreover, treatment led to normalization of the organization of the nodes of Ranvier, which is typically deficient in CMT4C patients and Sh3tc2-/- mice, along with reduced ratios of demyelinated fibers, increased myelin thickness and reduced g-ratios at both time points of intervention. Taken together, our results provide a proof of concept for an effective and potentially translatable gene replacement therapy for CMT4C treatment.
Collapse
Affiliation(s)
- Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Natasa Schiza
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jan Richter
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Christina Christodoulou
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
10
|
Palu E, Järvilehto J, Pennonen J, Huber N, Herukka SK, Haapasalo A, Isohanni P, Tyynismaa H, Auranen M, Ylikallio E. Rare PMP22 variants in mild to severe neuropathy uncorrelated to plasma GDF15 or neurofilament light. Neurogenetics 2023; 24:291-301. [PMID: 37606798 PMCID: PMC10545620 DOI: 10.1007/s10048-023-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.
Collapse
Affiliation(s)
- Edouard Palu
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Julius Järvilehto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Isohanni
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Child Neurology, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, Helsinki University Hospital, Biomedicum Room 525B, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Clinical Neurosciences, Neurology, Helsinki University Hospital, Biomedicum Room 525B, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
11
|
Kagiava A, Karaiskos C, Lapathitis G, Heslegrave A, Sargiannidou I, Zetterberg H, Bosch A, Kleopa KA. Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy. Mol Ther Methods Clin Dev 2023; 30:377-393. [PMID: 37645436 PMCID: PMC10460951 DOI: 10.1016/j.omtm.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mutations affecting the GJB1/connexin 32 (Cx32) gene. We previously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we delivered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines expressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and peripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 40530 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 40530 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Assumpció Bosch
- Department of Biochemistry & Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Bellatera, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 028029 Madrid, Spain
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
12
|
Fridman V, Sillau S, Ritchie A, Bockhorst J, Coughlan C, Araya P, Espinosa JM, Smith K, Lange EM, Lange LA, El Ghormli L, Drews KL, Zeitler P, Reusch JEB. Plasma neurofilament light chain concentrations are elevated in youth-onset type 2 diabetes and associated with neuropathy. J Peripher Nerv Syst 2023; 28:460-470. [PMID: 37341347 PMCID: PMC10529877 DOI: 10.1111/jns.12575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND AND AIMS The lack of easily measurable biomarkers remains a challenge in executing clinical trials for diabetic neuropathy (DN). Plasma Neurofilament light chain (NFL) concentration is a promising biomarker in immune-mediated neuropathies. Longitudinal studies evaluating NFL in DN have not been performed. METHODS A nested case-control study was performed on participants with youth-onset type 2 diabetes enrolled in the prospective Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. Plasma NFL concentrations were measured at 4-year intervals from 2008 to 2020 in 50 participants who developed DN and 50 participants with type 2 diabetes who did not develop DN. RESULTS NFL concentrations were similar in the DN and no DN groups at the first assessment. Concentrations were higher in DN participants at all subsequent assessment periods (all p < .01). NFL concentrations increased over time in both groups, with higher degrees of change in DN participants (interaction p = .045). A doubling of the NFL value at Assessment 2 in those without DN increased the odds of ultimate DN outcome by an estimated ratio of 2.86 (95% CI: [1.30, 6.33], p = .0046). At the final study visit, positive Spearman correlations (controlled for age, sex, diabetes duration, and BMI) were observed between NFL and HbA1c (0.48, p < .0001), total cholesterol (0.25, p = .018), and low-density lipoprotein (LDL (0.30, p = .0037)). Negative correlations were observed with measures of heart rate variability (-0.42 to -0.46, p = <.0001). INTERPRETATION The findings that NFL concentrations are elevated in individuals with youth-onset type 2 diabetes, and increase more rapidly in those who develop DN, suggest that NFL could be a valuable biomarker for DN.
Collapse
Affiliation(s)
- Vera Fridman
- University of Colorado Denver School of Medicine
| | | | | | | | | | - Paula Araya
- University of Colorado Denver School of Medicine
| | | | - Keith Smith
- University of Colorado Denver School of Medicine
| | | | | | | | | | | | | |
Collapse
|
13
|
Tadenev ALD, Hatton CL, Pattavina B, Mullins T, Schneider R, Bogdanik LP, Burgess RW. Two new mouse models of Gjb1-associated Charcot-Marie-Tooth disease type 1X. J Peripher Nerv Syst 2023; 28:317-328. [PMID: 37551045 DOI: 10.1111/jns.12588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1X is caused by mutations in GJB1, which is the second most common gene associated with inherited peripheral neuropathy. The GJB1 gene encodes connexin 32 (CX32), a gap junction protein expressed in myelinating glial cells. The gene is X-linked, and the mutations cause a loss of function. AIMS A large number of disease-associated variants have been identified, and many result in mistrafficking and mislocalization of the protein. An existing knockout mouse lacking Gjb1 expression provides a valid animal model of CMT1X, but the complete lack of protein may not fully recapitulate the disease mechanisms caused by aberrant CX32 proteins. To better represent the spectrum of human CMT1X-associated mutations, we have generated a new Gjb1 knockin mouse model. METHODS CRISPR/Cas9 genome editing was used to produce mice carrying the R15Q mutation in Gjb1. In addition, we identified a second allele with an early frame shift mutation in codon 7 (del2). Mice were analyzed using clinically relevant molecular, histological, neurophysiological, and behavioral assays. RESULTS Both alleles produce protein detectable by immunofluorescence in Schwann cells, with some protein properly localizing to nodes of Ranvier. However, both alleles also result in peripheral neuropathy with thinly myelinated and demyelinated axons, as well as degenerating and regenerating axons, predominantly in distal motor nerves. Nerve conduction velocities were only mildly reduced at later ages and compound muscle action potential amplitudes were not reduced. Levels of neurofilament light chain in plasma were elevated in both alleles. The del2 mice have an onset at ~3 months of age, whereas the R15Q mice had a later onset at 5-6 months of age, suggesting a milder loss of function. Both alleles performed comparably to wild type littermates in accelerating rotarod and grip strength tests of neuromuscular performance. INTERPRETATION We have generated and characterized two new mouse models of CMT1X that will be useful for future mechanistic and preclinical studies.
Collapse
Affiliation(s)
| | - C L Hatton
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - B Pattavina
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - T Mullins
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - R Schneider
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | |
Collapse
|
14
|
Stavrou M, Kleopa KA. CMT1A current gene therapy approaches and promising biomarkers. Neural Regen Res 2023; 18:1434-1440. [PMID: 36571339 PMCID: PMC10075121 DOI: 10.4103/1673-5374.361538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Charcot-Marie-Tooth neuropathies (CMT) constitute a group of common but highly heterogeneous, non-syndromic genetic disorders affecting predominantly the peripheral nervous system. CMT type 1A (CMT1A) is the most frequent type and accounts for almost ~50% of all diagnosed CMT cases. CMT1A results from the duplication of the peripheral myelin protein 22 (PMP22) gene. Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response. This leads to Schwann cell apoptosis, dys- and de- myelination and secondary axonal degeneration, ultimately causing neurological disabilities. During the last decades, several different gene therapies have been developed to treat CMT1A. Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22. The therapeutic goal is to achieve gene silencing, directly or indirectly, thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss. As promising treatments are rapidly emerging, treatment-responsive and clinically relevant biomarkers are becoming necessary. These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics; Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
15
|
Gaetani L, Chiasserini D, Paolini Paoletti F, Bellomo G, Parnetti L. Required improvements for cerebrospinal fluid-based biomarker tests of Alzheimer's disease. Expert Rev Mol Diagn 2023; 23:1195-1207. [PMID: 37902844 DOI: 10.1080/14737159.2023.2276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarkers represent a well-established tool for diagnosing Alzheimer's disease (AD), independently from the clinical stage, by reflecting the presence of brain amyloidosis (A+) and tauopathy (T+). In front of this important achievement, so far, (i) CSF AD biomarkers have not yet been adopted for routine clinical use in all Centers dedicated to AD, mainly due to inter-lab variation and lack of internationally accepted cutoff values; (ii) we do need to add other biomarkers more suitable to correlate with the clinical stage and disease monitoring; (iii) we also need to detect the co-presence of other 'non-AD' pathologies. AREAS COVERED Efforts to establish standardized cutoff values based on large-scale multi-center studies are discussed. The influence of aging and comorbidities on CSF biomarker levels is also analyzed, and possible solutions are presented, i.e. complementing the A/T/(N) system with markers of axonal damage and synaptic derangement. EXPERT OPINION The first, mandatory need is to reach common cutoff values and defined (automated) methodologies for CSF AD biomarkers. To properly select subjects deserving CSF analysis, blood tests might represent the first-line approach. In those subjects undergoing CSF analysis, multiple biomarkers, able to give a comprehensive and personalized pathophysiological/prognostic information, should be included.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Pisciotta C, Shy ME. Hereditary neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:609-617. [PMID: 37562889 DOI: 10.1016/b978-0-323-98818-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
17
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
18
|
Stavrou M, Kagiava A, Choudury SG, Jennings MJ, Wallace LM, Fowler AM, Heslegrave A, Richter J, Tryfonos C, Christodoulou C, Zetterberg H, Horvath R, Harper SQ, Kleopa KA. A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice. J Clin Invest 2022; 132:159814. [PMID: 35579942 PMCID: PMC9246392 DOI: 10.1172/jci159814] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), the most common inherited demyelinating peripheral neuropathy, is caused by PMP22 gene duplication. Overexpression of WT PMP22 in Schwann cells destabilizes the myelin sheath, leading to demyelination and ultimately to secondary axonal loss and disability. No treatments currently exist that modify the disease course. The most direct route to CMT1A therapy will involve reducing PMP22 to normal levels. To accomplish this, we developed a gene therapy strategy to reduce PMP22 using artificial miRNAs targeting human PMP22 and mouse Pmp22 mRNAs. Our lead therapeutic miRNA, miR871, was packaged into an adeno-associated virus 9 (AAV9) vector and delivered by lumbar intrathecal injection into C61-het mice, a model of CMT1A. AAV9-miR871 efficiently transduced Schwann cells in C61-het peripheral nerves and reduced human and mouse PMP22 mRNA and protein levels. Treatment at early and late stages of the disease significantly improved multiple functional outcome measures and nerve conduction velocities. Furthermore, myelin pathology in lumbar roots and femoral motor nerves was ameliorated. The treated mice also showed reductions in circulating biomarkers of CMT1A. Taken together, our data demonstrate that AAV9-miR871–driven silencing of PMP22 rescues a CMT1A model and provides proof of principle for treating CMT1A using a translatable gene therapy approach.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Sarah G Choudury
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Amanda Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Henrik Zetterberg
- Institute of Laboratory Medicine, Göteborgs University, Göteborg, Sweden
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
19
|
Zetterberg H, Schott JM. Blood biomarkers for Alzheimer's disease and related disorders. Acta Neurol Scand 2022; 146:51-55. [PMID: 35470421 DOI: 10.1111/ane.13628] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the single commonest cause of dementia. Many other diseases can, however, cause dementia, and differential diagnosis can be challenging, especially in early disease stages. For most neurodegenerative dementias, accumulation of brain pathologies starts many years before clinical onset; the ability to detect these pathologies paves the way for targeted disease-modifying prevention trials. AD is associated with β-amyloid and tau pathologies, which can be quantified using cerebrospinal fluid and imaging biomarkers and, more recently, using highly sensitive blood tests. While for the most part, specific biomarkers of non-AD neurodegenerative dementias are lacking, non-specific biomarkers of neurodegeneration are available. This review summarizes recent advances in the neurodegenerative dementia blood biomarker research and discusses the next steps required for clinical implementation.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology Queen Square London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Jonathan M. Schott
- UK Dementia Research Institute at UCL London UK
- Dementia Research Centre UCL Queen Square Institute of Neurology University College London London UK
| |
Collapse
|