1
|
Rolando AMA, Motta MJ, Agnolín FL, Tsuihiji T, Miner S, Brissón-Egli F, Novas FE. A new carcharodontosaurid specimen sheds light on the anatomy of South American giant predatory dinosaurs. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:56. [PMID: 39382666 DOI: 10.1007/s00114-024-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Carcharodontosaurids were gigantic terrestrial dinosaurs and top predators of dinosaur faunas in Gondwanan landmasses during the "Mid"-Cretaceous Period. Despite their wide geographical and stratigraphical distribution, essential parts of their anatomy are still poorly known. The present contribution aims to describe a new partial skeleton of the carcharodontosaurid Taurovenator violantei, which was previously known only by an isolated postorbital bone coming from Cenomanian-Turonian beds of northern Patagonia, Argentina. The neck of Taurovenator is composed of notably high anterior cervicals, bearing neural spines with expanded, flange-like dorsal tips which are successively imbricated. This condition has been reported previously in the carcharodontosaurid Acrocanthosaurus, but its occurrence in Taurovenator and other members of the clade suggests it may represent a synapomorphy of this theropod family. This unique neck morphology was probably related to strong modifications in musculature and restriction in the range of movements within the neck, but not with the head. The new specimen also affords valuable anatomical information on the forelimb of Patagonian carcharodontosaurids. As in other giganotosaurines, Taurovenator shows strongly reduced forelimbs, particularly the forearm, showing hand elements with elongated non-ungual phalanges, and well-marked articular surfaces and muscular insertions, suggesting highly movable digits. This new specimen of Taurovenator allows us to expand anatomical and morpho-functional discussions about the carcharodontosaurid clade.
Collapse
Affiliation(s)
- Alexis M Aranciaga Rolando
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina.
| | - Matías J Motta
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Federico L Agnolín
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
- Fundación de Historia Natural "Félix de Azara", Universidad Maimónides, Hidalgo 767, C1405BDB, Buenos Aires, Argentina
| | - Takanobu Tsuihiji
- National Museum of Nature & Science, 4‑1‑1 Amakubo, Tsukuba, 305-0005, Japan
| | - Santiago Miner
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Federico Brissón-Egli
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| |
Collapse
|
2
|
Cerroni MA, Otero A, Novas FE. Appendicular myology of Skorpiovenator bustingorryi: A first attempt to reconstruct pelvic and hindlimb musculature in an abelisaurid theropod. Anat Rec (Hoboken) 2024. [PMID: 38989612 DOI: 10.1002/ar.25532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
We present the pelvic and hindlimb musculature of the abelisaurid Skorpiovenator bustingorryi, constituting the most comprehensive muscle reconstruction to date in ceratosaur theropods. Using extant phylogenetic bracket method, we reconstructed 39 muscles that can commonly found in extant archosaurs. Through the identification of bone correlates, we recognized thigh and hindlimb muscles including knee extensors, m. iliofibularis, m. flexor tibialis externus, mm. caudofemorales, mm. puboischiofemorales, and crus muscles important in foot extension and flexion (e.g., m. tibialis anterior, mm. gastrocnemii). Also, autopodial intrinsic muscles were reconstructed whose function involve extension (m. extensor digiti 2-4), flexion (mm. flexor digitorum brevis superficialis), interdigital adduction (m. interosseus dorsalis) and abduction (m. interosseous plantaris, m. abductor 4). Abelisaurids like Skorpiovenator show a deep pre- and postacetabular blade of the ilia and enlarged cnemial crests, which would have helped increasing the moment arm of muscles related to hip flexion and hindlimb extension. Also, pedal muscles related to pronation were probably present but reduced (e.g., m. pronator profundus). Despite some gross differences in the autopodial morphology in extant outgroups (e.g., crocodilian metatarsus and avian tarsometatarsus), the present study allows us to hypothesize several pedal muscles in Skorpiovenator. These muscles would not be arranged in tendinous bundles as in Neornithes, but rather the condition would be similar to that of crocodilians with several layers formed by fleshy bellies on the plantar and dorsal aspects of the metatarsus. The musculature of Skorpiovenator is key for future studies concerning abelisaurid biomechanics, including the integration of functional morphology and ichnological data.
Collapse
Affiliation(s)
- Mauricio A Cerroni
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Alejandro Otero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- División Paleontología de Vertebrados (Anexo Laboratorios), Museo de La Plata, La Plata, Argentina
| | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| |
Collapse
|
3
|
Porfiri JD, Baiano MA, Dos Santos DD, Gianechini FA, Pittman M, Lamanna MC. Diuqin lechiguanae gen. et sp. nov., a new unenlagiine (Theropoda: Paraves) from the Bajo de la Carpa Formation (Neuquén Group, Upper Cretaceous) of Neuquén Province, Patagonia, Argentina. BMC Ecol Evol 2024; 24:77. [PMID: 38872101 DOI: 10.1186/s12862-024-02247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Unenlagiine paravians are among the most relevant Gondwanan theropod dinosaur clades for understanding the origin of birds, yet their fossil record remains incomplete, with most taxa being represented by fragmentary material and/or separated by lengthy temporal gaps, frustrating attempts to characterize unenlagiine evolution. RESULTS AND CONCLUSIONS Here we describe Diuqin lechiguanae gen. et sp. nov., a new unenlagiine taxon from the Upper Cretaceous (Santonian) Bajo de la Carpa Formation of the Neuquén Basin of Neuquén Province in northern Patagonia, Argentina that fills a substantial stratigraphic gap in the fossil record of these theropods. Although known only from a very incomplete postcranial skeleton, the preserved bones of Diuqin differ from corresponding elements in other unenlagiines, justifying the erection of the new taxon. Moreover, in several morphological aspects, the humerus of Diuqin appears intermediate between those of geologically older unenlagiines from the Neuquén Basin (e.g., Unenlagia spp. from the Turonian-Coniacian Portezuelo Formation) and that of the stratigraphically younger, larger-bodied Austroraptor cabazai from the Campanian-Maastrichtian Allen Formation. Consequently, the morphology of the new taxon appears to indicate a transitional stage in unenlagiine evolution. Phylogenetic analysis recovers Diuqin as a paravian with multiple plausible systematic positions, but the strongest affinity is with Unenlagiinae. The humerus of the new form exhibits subcircular punctures near its distal end that are interpreted as feeding traces most likely left by a conical-toothed crocodyliform, mammal, or theropod, the latter potentially corresponding to a megaraptorid or another unenlagiine individual. Thus, in addition to filling important morphological and temporal gaps in unenlagiine evolutionary history, the new taxon also offers information relating to the paleoecology of these theropods.
Collapse
Affiliation(s)
- Juan D Porfiri
- Museo de Ciencias Naturales, Secretaría de Extensión, Universidad Nacional del Comahue, Buenos Aires, Neuquén, 1400, Argentina.
- Cátedras de Paleontología y Reptiles Mesozoicos, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires, Neuquén, 1400, Argentina.
- Museo del Desierto Patagónico de Añelo, Calle 1 Familia Chávez y Calle 6 Auca Mahuida, Añelo, Neuquén, Argentina.
| | - Mattia A Baiano
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CONICET-Área Laboratorio e Investigación, Museo Municipal "Ernesto Bachmann," Dr. Natali s/n, Villa El Chocón, Neuquén, Argentina
- Universidad Nacional de Río Negro, Isidro Lobo 516, General Roca, Río Negro, 8332, Argentina
| | - Domenica D Dos Santos
- Museo de Ciencias Naturales, Secretaría de Extensión, Universidad Nacional del Comahue, Buenos Aires, Neuquén, 1400, Argentina
- Cátedras de Paleontología y Reptiles Mesozoicos, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires, Neuquén, 1400, Argentina
- Museo del Desierto Patagónico de Añelo, Calle 1 Familia Chávez y Calle 6 Auca Mahuida, Añelo, Neuquén, Argentina
| | - Federico A Gianechini
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (CONICET-Universidad Nacional de San Luis), Ejército de Los Andes 950, San Luis, Argentina
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Matthew C Lamanna
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Bishop PJ, Pierce SE. The fossil record of appendicular muscle evolution in Synapsida on the line to mammals: Part II-Hindlimb. Anat Rec (Hoboken) 2024; 307:1826-1896. [PMID: 37727023 DOI: 10.1002/ar.25310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Bishop PJ, Pierce SE. The fossil record of appendicular muscle evolution in Synapsida on the line to mammals: Part I-Forelimb. Anat Rec (Hoboken) 2024; 307:1764-1825. [PMID: 37726984 DOI: 10.1002/ar.25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Jasinski SE, Sullivan RM, Carter AM, Johnson EH, Dalman SG, Zariwala J, Currie PJ. Osteology and reassessment of Dineobellator notohesperus, a southern eudromaeosaur (Theropoda: Dromaeosauridae: Eudromaeosauria) from the latest Cretaceous of New Mexico. Anat Rec (Hoboken) 2023; 306:1712-1756. [PMID: 36342817 DOI: 10.1002/ar.25103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Dromaeosaurids (Theropoda: Dromaeosauridae), a group of dynamic, swift predators, have a sparse fossil record, particularly at the end of the Cretaceous Period. The recently described Dineobellator notohesperus, consisting of a partial skeleton from the Upper Cretaceous (Maastrichtian) of New Mexico, is the only diagnostic dromaeosaurid to be recovered from the latest Cretaceous of the southwestern United States. Reinterpreted and newly described material include several caudal vertebrae, portions of the right radius and pubis, and an additional ungual, tentatively inferred to be from manual digit III. Unique features, particularly those of the humerus, unguals, and caudal vertebrae, distinguish D. notohesperus from other known dromaeosaurids. This material indicates different physical attributes among dromaeosaurids, such as use of the forearms, strength in the hands and feet, and mobility of the tail. Several bones in the holotype exhibit abnormal growth and are inferred to be pathologic features resulting from an injury or disease. Similar lengths of the humerus imply Dineobellator and Deinonychus were of similar size, at least regarding length and/or height, although the more gracile nature of the humerus implies Dineobellator was a more lightly built predator. A new phylogenetic analysis recovers D. notohesperus as a dromaeosaurid outside other previously known and named clades. Theropod composition of the Naashoibito Member theropod fauna is like those found in the more northern Late Cretaceous North American ecosystems. Differences in tooth morphologies among recovered theropod teeth from the Naashoibito Member also implies D. notohesperus was not the only dromaeosaurid present in its environment.
Collapse
Affiliation(s)
- Steven E Jasinski
- Department of Environmental Science and Sustainability, Harrisburg University, Harrisburg, Pennsylvania, USA
- Don Sundquist Center of Excellence in Paleontology, Johnson City, Tennessee, USA
| | - Robert M Sullivan
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| | - Aja M Carter
- Penn Engineering - GRASP Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erynn H Johnson
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Paleontological Research Institution, Ithaca, New York, USA
| | - Sebastian G Dalman
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, USA
| | - Juned Zariwala
- Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Uno Y, Hirasawa T. Origin of the propatagium in non-avian dinosaurs. ZOOLOGICAL LETTERS 2023; 9:4. [PMID: 36823531 PMCID: PMC9951497 DOI: 10.1186/s40851-023-00204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Avian wings as organs for aerial locomotion are furnished with a highly specialized musculoskeletal system compared with the forelimbs of other tetrapod vertebrates. Among the specializations, the propatagium, which accompanies a skeletal muscle spanning between the shoulder and wrist on the leading edge of the wing, represents an evolutionary novelty established at a certain point in the lineage toward crown birds. However, because of the rarity of soft-tissue preservation in the fossil record, the evolutionary origin of the avian propatagium has remained elusive. Here we focus on articulated skeletons in the fossil record to show that angles of elbow joints in fossils are indicators of the propatagium in extant lineages of diapsids (crown birds and non-dinosaurian diapsids), and then use this relationship to narrow down the phylogenetic position acquiring the propatagium to the common ancestor of maniraptorans. Our analyses support the hypothesis that the preserved propatagium-like soft tissues in non-avian theropod dinosaurs (oviraptorosaurian Caudipteryx and dromaeosaurian Microraptor) are homologous with the avian propatagium, and indicate that all maniraptoran dinosaurs likely possessed the propatagium even before the origin of flight. On the other hand, the preserved angles of wrist joints in non-avian theropods are significantly greater than those in birds, suggesting that the avian interlocking wing-folding mechanism involving the ulna and radius had not fully evolved in non-avian theropods. Our study underscores that the avian wing was acquired through modifications of preexisting structures including the feather and propatagium.
Collapse
Affiliation(s)
| | - Tatsuya Hirasawa
- Department of Earth and Planetary Science, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Dempsey M, Maidment SCR, Hedrick BP, Bates KT. Convergent evolution of quadrupedality in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics. Proc Biol Sci 2023; 290:20222435. [PMID: 36722082 PMCID: PMC9890092 DOI: 10.1098/rspb.2022.2435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The secondary evolution of quadrupedality from bipedal ancestry is a rare evolutionary transition in tetrapods yet occurred convergently at least three times within ornithischian dinosaurs. Despite convergently evolving quadrupedal gait, ornithischians exhibited variable anatomy, particularly in the forelimbs, which underwent a major functional change from assisting in foraging and feeding in bipeds to becoming principal weight-bearing components of the locomotor system in quadrupeds. Here, we use three-dimensional multi-body dynamics models to demonstrate quantitatively that different quadrupedal ornithischian clades evolved distinct forelimb musculature, particularly around the shoulder. We find that major differences in glenohumeral abduction-adduction and long axis rotation muscle leverages were key drivers of mechanical disparity, thereby refuting previous hypotheses about functional convergence in major clades. Elbow muscle leverages were also disparate across the major ornithischian lineages, although high elbow extension muscle leverages were convergent between most quadrupeds. Unlike in ornithischian hind limbs, where differences are more closely tied to functional similarity than phylogenetic relatedness, mechanical disparity in ornithischian forelimbs appears to have been shaped primarily by phylogenetic constraints. Differences in ancestral bipedal taxa within each clade may have resulted in disparate ecomorphological constraints on the evolutionary pathways driving divergence in their quadrupedal descendants.
Collapse
Affiliation(s)
- Matthew Dempsey
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Brandon P. Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
9
|
Aranciaga Rolando AM, Novas FE, Calvo JO, Porfiri JD, Dos Santos DD, Lamanna MC. Reconstruction of the pectoral girdle and forelimb musculature of Megaraptora (Dinosauria: Theropoda). Anat Rec (Hoboken) 2023. [PMID: 36647300 DOI: 10.1002/ar.25128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/18/2022] [Accepted: 11/06/2022] [Indexed: 01/18/2023]
Abstract
Megaraptora is a group of enigmatic, carnivorous non-avian theropod dinosaurs from the Cretaceous of Asia, Australia, and especially South America. Perhaps the most striking aspect of megaraptoran morphology is the large, robustly constructed forelimb that, in derived members of the clade, terminates in a greatly enlarged manus with hypertrophied, raptorial unguals on the medialmost two digits and a substantially smaller ungual on digit III. The unique forelimb anatomy of megaraptorans was presumably associated with distinctive functional specializations; nevertheless, its paleobiological significance has not been extensively explored. Here we draw from observations of the pectoral girdle and forelimb skeletons of Megaraptora and myological assessments of other archosaurian taxa to provide a comprehensive reconstruction of the musculature of this anatomical region in these singular theropods. Many muscle attachment sites on megaraptoran forelimb bones are remarkably well developed, which in turn suggests that the muscles themselves were functionally significant and important to the paleobiology of these theropods. Furthermore, many of these attachments became increasingly pronounced through megaraptoran evolutionary history, being substantially better developed in derived taxa such as Australovenator wintonensis and especially Megaraptor namunhuaiquii than in early branching forms such as Fukuiraptor kitadaniensis. When considered alongside previous range of motion hypotheses for Australovenator, our results indicate that megaraptorans possessed a morphologically and functionally specialized forelimb that was capable of complex movements. Notable among these were extensive extension and flexion, particularly in the highly derived manus, as well as enhanced humeral protraction, attributes that very probably aided in prey capture.
Collapse
Affiliation(s)
| | - Fernando E Novas
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia," CONICET, CABA, Argentina
| | - Jorge O Calvo
- Grupo de Transferencia Proyecto Dino, CIGPat, Facultad de Ingeniería, Departamento de Geología y Petróleo, Universidad Nacional del Comahue, Neuquén, Argentina.,Parque Natural Geo-Paleontológico Proyecto Dino, Grupo de Transferencia Proyecto Dino, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de la Pampa, Santa Rosa, La Pampa, Argentina
| | - Juan D Porfiri
- Museo de Ciencias Naturales, Universidad Nacional del Comahue, Neuquén, Argentina.,Cátedra de Reptiles Mesozoicos, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.,Museo del Desierto Patagónico de Añelo, Municipalidad de Añelo/Universidad Nacional del Comahue, Neuquén, Argentina
| | - Domenica D Dos Santos
- Museo de Ciencias Naturales, Universidad Nacional del Comahue, Neuquén, Argentina.,Cátedra de Reptiles Mesozoicos, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.,Museo del Desierto Patagónico de Añelo, Municipalidad de Añelo/Universidad Nacional del Comahue, Neuquén, Argentina
| | - Matthew C Lamanna
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Pittman M, Kaye TG, Wang X, Zheng X, Dececchi TA, Hartman SA. Preserved soft anatomy confirms shoulder-powered upstroke of early theropod flyers, reveals enhanced early pygostylian upstroke, and explains early sternum loss. Proc Natl Acad Sci U S A 2022; 119:e2205476119. [PMID: 36375073 PMCID: PMC9704744 DOI: 10.1073/pnas.2205476119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/29/2022] [Indexed: 10/08/2023] Open
Abstract
Anatomy of the first flying feathered dinosaurs, modern birds and crocodylians, proposes an ancestral flight system divided between shoulder and chest muscles, before the upstroke muscles migrated beneath the body. This ancestral flight system featured the dorsally positioned deltoids and supracoracoideus controlling the upstroke and the chest-bound pectoralis controlling the downstroke. Preserved soft anatomy is needed to contextualize the origin of the modern flight system, but this has remained elusive. Here we reveal the soft anatomy of the earliest theropod flyers preserved as residual skin chemistry covering the body and delimiting its margins. These data provide preserved soft anatomy that independently validate the ancestral theropod flight system. The heavily constructed shoulder and more weakly constructed chest in the early pygostylian Confuciusornis indicated by a preserved body profile, proposes the first upstroke-enhanced flight stroke. Slender ventral body profiles in the early-diverging birds Archaeopteryx and Anchiornis suggest habitual use of the pectoralis could not maintain the sternum through bone functional adaptations. Increased wing-assisted terrestrial locomotion potentially accelerated sternum loss through higher breathing requirements. Lower expected downstroke requirements in the early thermal soarer Sapeornis could have driven sternum loss through bone functional adaption, possibly encouraged by the higher breathing demands of a Confuciusornis-like upstroke. Both factors are supported by a slender ventral body profile. These data validate the ancestral shoulder/chest flight system and provide insights into novel upstroke-enhanced flight strokes and early sternum loss, filling important gaps in our understanding of the appearance of modern flight.
Collapse
Affiliation(s)
- Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Thomas G. Kaye
- Foundation for Scientific Advancement, Sierra Vista, AZ 85650
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Shandong 276005, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Shandong 273300, China
| | | | - Scott A. Hartman
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706-1692
| |
Collapse
|
11
|
Moore BRS, Roloson MJ, Currie PJ, Ryan MJ, Patterson RT, Mallon JC. The appendicular myology of Stegoceras validum (Ornithischia: Pachycephalosauridae) and implications for the head-butting hypothesis. PLoS One 2022; 17:e0268144. [PMID: 36048811 PMCID: PMC9436104 DOI: 10.1371/journal.pone.0268144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we use an exceptional skeleton of the pachycephalosaur Stegoceras validum (UALVP 2) to inform a comprehensive appendicular muscle reconstruction of the animal, with the goal of better understanding the functional morphology of the pachycephalosaur postcranial skeleton. We find that S. validum possessed a conservative forelimb musculature, particularly in comparison to early saurischian bipeds. By contrast, the pelvic and hind limb musculature are more derived, reflecting peculiarities of the underlying skeletal anatomy. The iliotibialis, ischiocaudalis, and caudofemoralis muscles have enlarged attachment sites and the caudofemoralis has greater leverage owing to the distal displacement of the fourth trochanter along the femur. These larger muscles, in combination with the wide pelvis and stout hind limbs, produced a stronger, more stable pelvic structure that would have proved advantageous during hypothesized intraspecific head-butting contests. The pelvis may have been further stabilized by enlarged sacroiliac ligaments, which stemmed from the unique medial iliac flange of the pachycephalosaurs. Although the pubis of UALVP 2 is not preserved, the pubes of other pachycephalosaurs are highly reduced. The puboischiofemoralis musculature was likely also reduced accordingly, and compensated for by the aforementioned improved pelvic musculature.
Collapse
Affiliation(s)
- Bryan R. S. Moore
- Ottawa Carleton Geoscience Center and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| | - Mathew J. Roloson
- Ottawa Carleton Geoscience Center and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Philip J. Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael J. Ryan
- Ottawa Carleton Geoscience Center and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- Beaty Centre for Species Discovery and Palaeobiology section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - R. Timothy Patterson
- Ottawa Carleton Geoscience Center and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Jordan C. Mallon
- Ottawa Carleton Geoscience Center and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- Beaty Centre for Species Discovery and Palaeobiology section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
A large Megaraptoridae (Theropoda: Coelurosauria) from Upper Cretaceous (Maastrichtian) of Patagonia, Argentina. Sci Rep 2022; 12:6318. [PMID: 35474310 PMCID: PMC9042913 DOI: 10.1038/s41598-022-09272-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Megaraptora is a theropod clade known from former Gondwana landmasses and Asia. Most members of the clade are known from the Early to Late Cretaceous (Barremian–Santonian), with Maastrichtian megaraptorans known only from isolated and poorly informative remains. The aim of the present contribution is to describe a partial skeleton of a megaraptorid from Maastrichtian beds in Santa Cruz Province, Argentina. This new specimen is the most informative megaraptoran known from Maastrichtian age, and is herein described as a new taxon. Phylogenetic analysis nested the new taxon together with other South American megaraptorans in a monophyletic clade, whereas Australian and Asian members constitute successive stem groups. South American forms differ from more basal megaraptorans in several anatomical features and in being much larger and more robustly built.
Collapse
|
13
|
Wang S, Ma Y, Wu Q, Wang M, Hu D, Sullivan C, Xu X. Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution. eLife 2022; 11:76086. [PMID: 35356889 PMCID: PMC9023055 DOI: 10.7554/elife.76086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The morphology of the pectoral girdle, the skeletal structure connecting the wing to the body, is a key determinant of flight capability, but in some respects is poorly known among stem birds. Here, the pectoral girdles of the Early Cretaceous birds Sapeornis and Piscivorenantiornis are reconstructed for the first time based on computed tomography and three-dimensional visualization, revealing key morphological details that are important for our understanding of early-flight evolution. Sapeornis exhibits a double articulation system (widely present in non-enantiornithine pennaraptoran theropods including crown birds), which involves, alongside the main scapula-coracoid joint, a small subsidiary joint, though variation exists with respect to the shape and size of the main and subsidiary articular contacts in non-enantiornithine pennaraptorans. This double articulation system contrasts with Piscivorenantiornis in which a spatially restricted scapula-coracoid joint is formed by a single set of opposing articular surfaces, a feature also present in other members of Enantiornithines, a major clade of stem birds known only from the Cretaceous. The unique single articulation system may reflect correspondingly unique flight behavior in enantiornithine birds, but this hypothesis requires further investigation from a functional perspective. Our renderings indicate that both Sapeornis and Piscivorenantiornis had a partially closed triosseal canal (a passage for muscle tendon that plays a key role in raising the wing), and our study suggests that this type of triosseal canal occurred in all known non-euornithine birds except Archaeopteryx, representing a transitional stage in flight apparatus evolution before the appearance of a fully closed bony triosseal canal as in modern birds. Our study reveals additional lineage-specific variations in pectoral girdle anatomy, as well as significant modification of the pectoral girdle along the line to crown birds. These modifications produced diverse pectoral girdle morphologies among Mesozoic birds, which allowed a commensurate range of capability levels and styles to emerge during the early evolution of flight.
Collapse
Affiliation(s)
- Shiying Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yubo Ma
- University of Alberta, Edmonton, Canada
| | - Qian Wu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Hu
- Paleontological Museum of Liaoning, Shenyang Normal University, Shenyang, China
| | | | - Xing Xu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Hendrickx C, Bell PR, Pittman M, Milner ARC, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R. Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biol Rev Camb Philos Soc 2022; 97:960-1004. [PMID: 34991180 DOI: 10.1111/brv.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.
Collapse
Affiliation(s)
- Christophe Hendrickx
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, 251 Miguel Lillo, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Phil R Bell
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Department of Earth Sciences, University College London, WC1E 6BT, United Kingdom
| | - Andrew R C Milner
- St. George Dinosaur Discovery Site at Johnson Farm, 2180 East Riverside Drive, St. George, UT, U.S.A
| | - Elena Cuesta
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, Munich, 80333, Germany
| | - Jingmai O'Connor
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - Mark Loewen
- Department of Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 South 1460 East, Salt Lake City, UT, 84112, U.S.A.,Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT, 84108, U.S.A
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Octávio Mateus
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, 95 Rua João Luis de Moura, Lourinhã, 2530-158, Portugal
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Dr., Sierra Vista, AZ, 85650, U.S.A
| | - Rafael Delcourt
- Universidade Estadual de Campinas (UNICAMP), Instituto de Geociências, Cidade Universitária, Rua Carlos Gomes, 250, Campinas, SP, 13083-855, Brazil
| |
Collapse
|
15
|
Ballell A, Rayfield EJ, Benton MJ. Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph Thecodontosaurus antiquus. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211356. [PMID: 35116154 PMCID: PMC8767213 DOI: 10.1098/rsos.211356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dinosaur evolution is marked by numerous independent shifts from bipedality to quadrupedality. Sauropodomorpha is one of the lineages that transitioned from small bipedal forms to graviportal quadrupeds, with an array of intermediate postural strategies evolving in non-sauropodan sauropodomorphs. This locomotor shift is reflected by multiple modifications of the appendicular skeleton, coupled with a drastic rearrangement of the limb musculature. Here, we describe the osteological correlates of appendicular muscle attachment of the Late Triassic sauropodomorph Thecodontosaurus antiquus from multiple well-preserved specimens and provide the first complete forelimb and hindlimb musculature reconstruction of an early-branching sauropodomorph. Comparisons with other sauropodomorphs and early dinosaurs reveal a unique combination of both plesiomorphic and derived musculoskeletal features. The diversity of appendicular osteological correlates among early dinosaurs and their relevance in muscle reconstruction are discussed. In line with previous evidence, aspects of the limb muscle arrangement, such as conspicuous correlates of lower limb extensors and flexors and low moment arms of hip extensors and flexors, suggest Thecodontosaurus was an agile biped. This reconstruction helps to elucidate the timing of important modifications of the appendicular musculature in the evolution of sauropodomorphs which facilitated the transition to quadrupedalism and contributed to their evolutionary success.
Collapse
Affiliation(s)
- Antonio Ballell
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michael J. Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Funston GF, Currie PJ, Tsogtbaatar C, Khishigjav T. A partial oviraptorosaur skeleton suggests low caenagnathid diversity in the Late Cretaceous Nemegt Formation of Mongolia. PLoS One 2021; 16:e0254564. [PMID: 34252154 PMCID: PMC8274908 DOI: 10.1371/journal.pone.0254564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The Nemegt Formation of the Gobi Desert of Mongolia has produced one of the most abundant and diverse oviraptorosaur records globally. However, the caenagnathid component of this fauna remains poorly known. Two caenagnathid taxa are currently recognized from the Nemegt Formation: Elmisaurus rarus and Nomingia gobiensis. Because these taxa are known from mostly non-overlapping material, there are concerns that they could represent the same animal. A partial, weathered caenagnathid skeleton discovered adjacent to the holotype quarry of Nomingia gobiensis is referable to Elmisaurus rarus, revealing more of the morphology of the cranium, mandible, pectoral girdle, and pubis. Despite metatarsals clearly exhibiting autapomorphies of Elmisaurus rarus, overlapping elements are identical to those of Nomingia gobiensis, and add to a growing body of evidence that these taxa represent a single morphotype. In the absence of any positive evidence for two caenagnathid taxa in the Nemegt Formation, Nomingia gobiensis is best regarded as a junior synonym of Elmisaurus rarus. Low caenagnathid diversity in the Nemegt Formation may reflect broader coexistence patterns with other oviraptorosaur families, particularly oviraptorids. In contrast to North America, competition with the exceptionally diverse oviraptorids may have restricted caenagnathids to marginal roles in Late Cretaceous Asian ecosystems.
Collapse
Affiliation(s)
- Gregory F. Funston
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip J. Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chinzorig Tsogtbaatar
- NC Museum of Natural Sciences, Department of Biological Sciences, NC State University, Raleigh, NC, United States of America
| | | |
Collapse
|
17
|
Whitebone SA, Bari ASMH, Gavrilova ML, Anderson JS. A multimethod approach to the differentiation of enthesis bone microstructure based on soft tissue type. J Morphol 2021; 282:1362-1373. [PMID: 34181767 DOI: 10.1002/jmor.21391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Whereas there is a wealth of research studying the nature of various soft tissues that attach to bone, comparatively little research focuses on the bone's microscopic properties in the area where these tissues attach. Using scanning electron microscopy to generate a dataset of 1600 images of soft tissue attachment sites, an image classification program with novel convolutional neural network architecture can categorize images of attachment areas by soft tissue type based on observed patterns in microstructure morphology. Using stained histological thin section and liquid crystal cross-polarized microscopy, it is determined that soft tissue type can be quantitatively determined from the microstructure. The primary diagnostic characters are the orientation of collagen fibers and heterogeneity of collagen density throughout the attachment area thickness. These determinations are made across broad taxonomic sampling and multiple skeletal elements.
Collapse
Affiliation(s)
- S Amber Whitebone
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - A S M Hossain Bari
- Departments of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Marina L Gavrilova
- Departments of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Jason S Anderson
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Hanson M, Hoffman EA, Norell MA, Bhullar BAS. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 2021; 372:601-609. [PMID: 33958471 DOI: 10.1126/science.abb4305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
Reptiles, including birds, exhibit a range of behaviorally relevant adaptations that are reflected in changes to the structure of the inner ear. These adaptations include the capacity for flight and sensitivity to high-frequency sound. We used three-dimensional morphometric analyses of a large sample of extant and extinct reptiles to investigate inner ear correlates of locomotor ability and hearing acuity. Statistical analyses revealed three vestibular morphotypes, best explained by three locomotor categories-quadrupeds, bipeds and simple fliers (including bipedal nonavialan dinosaurs), and high-maneuverability fliers. Troodontids fall with Archaeopteryx among the extant low-maneuverability fliers. Analyses of cochlear shape revealed a single instance of elongation, on the stem of Archosauria. We suggest that this transformation coincided with the origin of both high-pitched juvenile location, alarm, and hatching-synchronization calls and adult responses to them.
Collapse
Affiliation(s)
- Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Eva A Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. .,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Smith DK. Forelimb musculature and function in the therizinosaur Nothronychus (Maniraptora, Theropoda). J Anat 2021; 239:307-335. [PMID: 33665832 PMCID: PMC8273597 DOI: 10.1111/joa.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022] Open
Abstract
Therizinosaurs are unusual theropods from the Upper Cretaceous of Asia and North America. North American representatives include Falcarius utahensis from central Utah, Nothronychus mckinleyi from west central New Mexico, and N. graffami from southern Utah. Nothronychus was quite large, with well-developed forelimbs and pectoral girdle. In many respects, however, these structures were typical for conventional carnivorous theropods, although therizinosaurs have been hypothesized to be herbivorous using anatomical and functional inferences. There is no indication of increased range of motion within the forelimbs, as might be predicted for derived non-avian theropods. The muscular anatomy of the pectoral girdle and forelimb of Nothronychus is reconstructed using visible muscle scars, data from extant birds and crocodilians, and models for other theropods. The osteology and inferred musculature is a mosaic of primitive and derived characters for theropods. A fossa pneumotricipitales may have been present in the proximal humerus. There was a well-developed fossa brachialis in the distal humerus. The epicleidium of the furcula is deflected, reflecting either taphonomic deformation or possibly accommodation of M. supracoracoideus in a triosseal canal, but such a development has yet to be described in any non-avian theropod. In many respects, the other muscular results were quite similar to those inferred for dromaeosaurs.
Collapse
Affiliation(s)
- David K Smith
- Biology Department, Northland Pioneer College, Holbrook, AZ, USA
| |
Collapse
|
20
|
Hattori S, Tsuihiji T. Homology and osteological correlates of pedal muscles among extant sauropsids. J Anat 2021; 238:365-399. [PMID: 32974897 PMCID: PMC7812136 DOI: 10.1111/joa.13307] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/04/2022] Open
Abstract
Archosaurs displayed an evolutionary trend toward increasing bipedalism in their evolutionary history, that is, forelimbs tend to be reduced in contrast to the development of hindlimbs becoming major weight-bearing and locomotor appendages. The archosaurian locomotion has been extensively discussed based on their limb morphology because the latter reflects their locomotor modes very well. However, despite some attempts of reconstructing the hindlimb musculature in Archosauria, that of the most distal portion, the pes, has often been neglected. In order to rectify this trend, detailed homologies of pedal muscles among sauropsids were established based on dissections and literature reviews of adult conditions. As a result, homologies of some pedal muscles between non-avian sauropsids and avians were revised, challenging classical hypotheses. The present new hypothesis postulates that the avian m. tibialis cranialis and non-avian m. extensor digitorum longus, as well as the avian m. extensor digitorum longus and non-avian m. tibialis anterior, are homologous with each other, respectively. This is more plausible because it requires no drastical change in the attachment sites between the avian and non-avian homologues unlike the classical hypothesis. Many interosseous muscles in non-archosaurian sauropsids that have long been regarded as a part of short digital extensors or flexors are also divided into multiple distinct muscles so that they can be homologized with short pedal muscles among all sauropsids. In addition, osteological correlates of attachments are identified for most of the pedal muscles, contributing to future attempts of reconstruction of this muscle system in fossil archosaurs.
Collapse
Affiliation(s)
- Soki Hattori
- Institute of Dinosaur ResearchFukui Prefectural UniversityEiheiji‐choFukuiJapan
- Fukui Prefectural Dinosaur MuseumKatsuyamaFukuiJapan
| | - Takanobu Tsuihiji
- Department of Geology and PaleontologyNational Museum of Nature and ScienceTsukubaIbarakiJapan
- Department of Earth and Planetary ScienceThe University of TokyoBunkyo‐kuTokyoJapan
| |
Collapse
|
21
|
Klingler JJ. The evolution of the pectoral extrinsic appendicular and infrahyoid musculature in theropods and its functional and behavioral importance. J Anat 2020; 237:870-889. [PMID: 32794182 DOI: 10.1111/joa.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/13/2023] Open
Abstract
Birds have lost and modified the musculature joining the pectoral girdle to the skull and hyoid, called the pectoral extrinsic appendicular and infrahyoid musculature. These muscles include the levator scapulae, sternomandibularis, sternohyoideus, episternocleidomastoideus, trapezius, and omohyoideus. As non-avian theropod dinosaurs are the closest relatives to birds, it is worth investigating what conditions they may have exhibited to learn when and how these muscles were lost or modified. Using extant phylogenetic bracketing, osteological correlates and non-osteological influences of these muscles are identified and discussed. Compsognathids and basal Maniraptoriformes were found to have been the likeliest transition points of a derived avian condition of losing or modifying these muscles. Increasing needs to control the feather tracts of the neck and shoulder, for insulation, display, or tightening/readjustment of the skin after dynamic neck movements may have been the selective force that drove some of these muscles to be modified into dermo-osseous muscles. The loss and modification of shoulder protractors created a more immobile girdle that would later be advantageous for flight in birds. The loss of the infrahyoid muscles freed the hyolarynx, trachea, and esophagus which may have aided in vocal tract filtering.
Collapse
Affiliation(s)
- Jeremy J Klingler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Jasinski SE, Sullivan RM, Dodson P. New Dromaeosaurid Dinosaur (Theropoda, Dromaeosauridae) from New Mexico and Biodiversity of Dromaeosaurids at the end of the Cretaceous. Sci Rep 2020; 10:5105. [PMID: 32218481 PMCID: PMC7099077 DOI: 10.1038/s41598-020-61480-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/21/2020] [Indexed: 12/03/2022] Open
Abstract
Dromaeosaurids (Theropoda: Dromaeosauridae), a group of dynamic, swift predators, have a sparse fossil record, particularly at the time of their extinction near the Cretaceous-Paleogene boundary. Here we report on a new dromaeosaurid, Dineobellator notohesperus, gen. and sp. nov., consisting of a partial skeleton from the Upper Cretaceous (Maastrichtian) of New Mexico, the first diagnostic dromaeosaurid to be recovered from the latest Cretaceous of the southern United States (southern Laramidia). The holotype includes elements of the skull, axial, and appendicular skeleton. The specimen reveals a host of morphologies that shed light on new behavioral attributes for these feathered dinosaurs. Unique features on its forelimbs suggest greater strength capabilities in flexion than the normal dromaeosaurid condition, in conjunction with a relatively tighter grip strength in the manual claws. Aspects of the caudal vertebrae suggest greater movement near the tail base, aiding in agility and predation. Phylogenetic analysis places Dineobellator within Velociraptorinae. Its phylogenetic position, along with that of other Maastrichtian taxa (Acheroraptor and Dakotaraptor), suggests dromaeosaurids were still diversifying at the end of the Cretaceous. Furthermore, its recovery as a second North American Maastrichtian velociraptorine suggests vicariance of North American velociraptorines after a dispersal event during the Campanian-Maastrichtian from Asia. Features of Dineobellator also imply that dromaeosaurids were active predators that occupied discrete ecological niches while living in the shadow of Tyrannosaurus rex, until the end of the dinosaurs' reign.
Collapse
Affiliation(s)
- Steven E Jasinski
- University of Pennsylvania, Department of Earth and Environmental Science, Philadelphia, PA, 19104-6316, USA.
- State Museum of Pennsylvania, Section of Paleontology and Geology, 300 North Street, Harrisburg, PA, 17120-0024, USA.
- Don Sundquist Center of Excellence in Paleontology, Johnson City, TN, 37614-1709, USA.
| | - Robert M Sullivan
- New Mexico Museum of Natural History and Science, 1801 Mountain Road N.W., Albuquerque, NM, 87104, USA
| | - Peter Dodson
- School of Veterinary Science, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
| |
Collapse
|
23
|
Voegele KK, Ullmann PV, Lamanna MC, Lacovara KJ. Appendicular myological reconstruction of the forelimb of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani. J Anat 2020; 237:133-154. [PMID: 32141103 DOI: 10.1111/joa.13176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/06/2020] [Accepted: 01/29/2020] [Indexed: 01/08/2023] Open
Abstract
Soft tissues are variably preserved in the fossil record with external tissues, such as skin and feathers, more frequently preserved than internal tissues (e.g. muscles). More commonly, soft tissues leave traces of their locations on bones and, for muscles, these clues can be used to reconstruct the musculature of extinct vertebrates, thereby enhancing our understanding of how these organisms moved and the evolution of their locomotor patterns. Herein we reconstruct the forelimb and shoulder girdle musculature of the giant titanosaurian sauropod Dreadnoughtus schrani based on observations of osteological correlates and dissections of taxa comprising the Extant Phylogenetic Bracket of non-avian dinosaurs (crocodilians and birds). Fossils of Dreadnoughtus exhibit remarkably well-preserved, well-developed, and extensive muscle scars. Furthermore, this taxon is significantly larger-bodied than any titanosaurian for which a myological reconstruction has previously been attempted, rendering this myological study highly informative for the clade. In total, 28 muscles were investigated in this study, for which 46 osteological correlates were identified; these osteological correlates allowed the reconstruction of 16 muscles on the basis of Level I or Level II inferences (i.e. not Level I' or Level II' inferences). Comparisons with other titanosaurians suggest widespread myological variation in the clade, although potential phylogenetic patterns are often obscured by fragmentary preservation, infrequent myological studies, and lack of consensus on the systematic position of many taxa. By identifying myological variations within the clade, we can begin to address specific evolutionary and biomechanical questions related to the locomotor evolution in these sauropods.
Collapse
Affiliation(s)
| | - Paul V Ullmann
- Department of Geolgoy, Rowan University, Glassboro, NJ, USA
| | - Matthew C Lamanna
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | |
Collapse
|
24
|
Fahn-Lai P, Biewener AA, Pierce SE. Broad similarities in shoulder muscle architecture and organization across two amniotes: implications for reconstructing non-mammalian synapsids. PeerJ 2020; 8:e8556. [PMID: 32117627 PMCID: PMC7034385 DOI: 10.7717/peerj.8556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The evolution of upright limb posture in mammals may have enabled modifications of the forelimb for diverse locomotor ecologies. A rich fossil record of non-mammalian synapsids holds the key to unraveling the transition from "sprawling" to "erect" limb function in the precursors to mammals, but a detailed understanding of muscle functional anatomy is a necessary prerequisite to reconstructing postural evolution in fossils. Here we characterize the gross morphology and internal architecture of muscles crossing the shoulder joint in two morphologically-conservative extant amniotes that form a phylogenetic and morpho-functional bracket for non-mammalian synapsids: the Argentine black and white tegu Salvator merianae and the Virginia opossum Didelphis virginiana. By combining traditional physical dissection of cadavers with nondestructive three-dimensional digital dissection, we find striking similarities in muscle organization and architectural parameters. Despite the wide phylogenetic gap between our study species, distal muscle attachments are notably similar, while differences in proximal muscle attachments are driven by modifications to the skeletal anatomy of the pectoral girdle that are well-documented in transitional synapsid fossils. Further, correlates for force production, physiological cross-sectional area (PCSA), muscle gearing (pennation), and working range (fascicle length) are statistically indistinguishable for an unexpected number of muscles. Functional tradeoffs between force production and working range reveal muscle specializations that may facilitate increased girdle mobility, weight support, and active stabilization of the shoulder in the opossum-a possible signal of postural transformation. Together, these results create a foundation for reconstructing the musculoskeletal anatomy of the non-mammalian synapsid pectoral girdle with greater confidence, as we demonstrate by inferring shoulder muscle PCSAs in the fossil non-mammalian cynodont Massetognathus pascuali.
Collapse
Affiliation(s)
- Philip Fahn-Lai
- Museum of Comparative Zoology, Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew A. Biewener
- Concord Field Station and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
25
|
Piechowski R, Tałanda M. The locomotor musculature and posture of the early dinosauriform Silesaurus opolensis provides a new look into the evolution of Dinosauromorpha. J Anat 2020; 236:1044-1100. [PMID: 32003023 DOI: 10.1111/joa.13155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/27/2019] [Accepted: 12/29/2019] [Indexed: 11/30/2022] Open
Abstract
It is widely accepted that ornithodirans (bird lineage) and some pseudosuchians (crocodilian lineage) achieved fully erect limb posture in different ways. Ornithodirans have buttress-erected hindlimbs, while some advanced pseudosuchians have pillar-erected hindlimbs. Analysis of the musculoskeletal apparatus of the early dinosauriform Silesaurus opolensis challenges this view. This ornithodiran had pillar-erected hindlimbs like some pseudosuchians. This condition could be autapomorphic or represents a transitional state between adductor-controlled limb posture of early dinosauromorphs and the buttress-erected hindlimbs of dinosaurs. This sequence of changes is supported by Triassic tracks left by animals of the dinosaurian lineage. It was associated with the strong development of knee flexors and extensors. Furthermore, the forelimbs of Silesaurus were fully erect, analogously to those of early sauropods. Members of both lineages reduced the muscles related to the protraction, retraction and bending of the limb. They used forelimbs more as a body support and less for propulsion. A similar scapula and humerus construction can be found in the Lagerpetidae and Lewisuchus, suggesting that long, slender, fully erected forelimbs are primitive for all Dinosauromorpha, not just Silesauridae. Early dinosaurs redeveloped several muscle attachments on the forelimb, probably in relation to bipedality.
Collapse
Affiliation(s)
- Rafał Piechowski
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland.,Department of Palaeobiology and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Mateusz Tałanda
- Department of Palaeobiology and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Bribiesca‐Contreras F, Parslew B, Sellers WI. A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes). Anat Rec (Hoboken) 2019; 302:1808-1823. [DOI: 10.1002/ar.24195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/03/2018] [Accepted: 12/31/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ben Parslew
- School of Mechanical, Aerospace and Civil EngineeringThe University of Manchester Manchester UK
| | - William I. Sellers
- School of Earth and Environmental SciencesThe University of Manchester Manchester UK
| |
Collapse
|
27
|
Rauhut OWM, Tischlinger H, Foth C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 2019; 8:e43789. [PMID: 31084702 PMCID: PMC6516837 DOI: 10.7554/elife.43789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
The Late Jurassic 'Solnhofen Limestones' are famous for their exceptionally preserved fossils, including the urvogel Archaeopteryx, which has played a pivotal role in the discussion of bird origins. Here we describe a new, non-archaeopterygid avialan from the Lower Tithonian Mörnsheim Formation of the Solnhofen Archipelago, Alcmonavis poeschli gen. et sp. nov. Represented by a right wing, Alcmonavis shows several derived characters, including a pronounced attachment for the pectoralis muscle, a pronounced tuberculum bicipitale radii, and a robust second manual digit, indicating that it is a more derived avialan than Archaeopteryx. Several modifications, especially in muscle attachments of muscles that in modern birds are related to the downstroke of the wing, indicate an increased adaptation of the forelimb for active flapping flight in the early evolution of birds. This discovery indicates higher avialan diversity in the Late Jurassic than previously recognized.
Collapse
Affiliation(s)
- Oliver WM Rauhut
- Staatliche naturwissenschaftliche Sammlungen Bayerns (SNSB)Bayerische Staatssammlung für Paläontologie und GeologieMünchenGermany
- Department for Earth and Environmental Sciences, Palaeontology and GeobiologyLudwig-Maximilians-UniversitätMünchenGermany
- GeoBioCenterLudwig-Maximilians-UniversitätMünchenGermany
| | | | - Christian Foth
- Department of GeosciencesUniversité de FribourgFribourgSwitzerland
| |
Collapse
|
28
|
Klinkhamer AJ, Mallison H, Poropat SF, Sloan T, Wroe S. Comparative Three‐Dimensional Moment Arm Analysis of the Sauropod Forelimb: Implications for the Transition to a Wide‐Gauge Stance in Titanosaurs. Anat Rec (Hoboken) 2018; 302:794-817. [DOI: 10.1002/ar.23977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/28/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ada J. Klinkhamer
- Function, Evolution and Anatomy Research Laboratory School of Environmental and Rural Science, University of New England Armidale New South Wales Australia
- Australian Age of Dinosaurs Museum of Natural History Winton Queensland Australia
| | | | - Stephen F. Poropat
- Australian Age of Dinosaurs Museum of Natural History Winton Queensland Australia
- Department of Chemistry and Biotechnology Swinburne University of Technology Hawthorn Victoria Australia
| | - Trish Sloan
- Australian Age of Dinosaurs Museum of Natural History Winton Queensland Australia
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory School of Environmental and Rural Science, University of New England Armidale New South Wales Australia
| |
Collapse
|
29
|
Marsh AD, Rowe TB. Anatomy and systematics of the sauropodomorph Sarahsaurus aurifontanalis from the Early Jurassic Kayenta Formation. PLoS One 2018; 13:e0204007. [PMID: 30304035 PMCID: PMC6179219 DOI: 10.1371/journal.pone.0204007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Sarahsaurus aurifontanalis, from the Kayenta Formation of Arizona, is one of only three sauropodomorph dinosaurs known from the Early Jurassic of North America. It joins Anchisaurus polyzelus, from the older Portland Formation of the Hartford Basin, and Seitaad reussi, from the younger Navajo Sandstone of Utah, in representing the oldest North American sauropodomorphs. If it is true that sauropodomorphs were absent from North America during the Late Triassic, the relationship among these three dinosaurs offers a test of the mechanisms that drove recovery in North American biodiversity following the end-Triassic extinction event. Here we provide the first thorough description of Sarahsaurus aurifontanalis based on completed preparation and computed tomographic imaging of the holotype and referred specimens. With new anatomical data, our phylogenetic analysis supports the conclusion that Sarahsaurus aurifontanalis is nested within the primarily Gondwanan clade Massospondylidae, while agreeing with previous analyses that the three North American sauropodomorphs do not themselves form an exclusive clade. A revised diagnosis and more thorough understanding of the anatomy of Sarahsaurus aurifontanalis support the view that independent dispersal events were at least partly responsible for the recovery in North American vertebrate diversity following a major extinction event.
Collapse
Affiliation(s)
- Adam D. Marsh
- The Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, United States of America
- Division of Science and Resource Management, Petrified Forest National Park, Arizona, United States of America
| | - Timothy B. Rowe
- The Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
30
|
Otero A. Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia). PLoS One 2018; 13:e0198988. [PMID: 29975691 PMCID: PMC6033415 DOI: 10.1371/journal.pone.0198988] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
This contribution presents the forelimb muscular arrangement of sauropodomorph dinosaurs as inferred by comparisons with living archosaurs (crocodiles and birds) following the Extant Phylogenetic Bracket approach. Forty-one muscles were reconstructed, including lower limb and manus musculature, which prior information available was scarce for sauropodomorphs. A strong emphasis was placed on osteological correlates (such as tubercles, ridges and striae) and comparisons with primitive archosauromorphs are included in order to track these correlates throughout the clade. This should help to elucidate how widespread among other archosaurian groups are these osteological correlates identified in Sauropodomorpha. The ultimate goal of this contribution was to provide an exhaustive guide to muscular identification in fossil archosaurs and to offer solid anatomical bases for future studies based on osteology, myology, functional morphology and systematics.
Collapse
Affiliation(s)
- Alejandro Otero
- CONICET - División Paleontología de Vertebrados, Museo de La Plata, La Plata, Argentina
- * E-mail: ,
| |
Collapse
|
31
|
Müller RT, Langer MC, Bronzati M, Pacheco CP, Cabreira SF, Dias-Da-Silva S. Early evolution of sauropodomorphs: anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Rodrigo T Müller
- Centro de Apoio à Pesquisa Paleontológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Max C Langer
- Laboratório de Paleontologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de Sâo Paulo, Ribeirão Preto, SP, Brazil
| | - Mario Bronzati
- Ludwig-Maximilians-Universität and Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Cristian P Pacheco
- Programa de Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sérgio F Cabreira
- Museu de Ciências Naturais, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Sérgio Dias-Da-Silva
- Centro de Apoio à Pesquisa Paleontológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
32
|
Abstract
Understanding ontogenetic patterns is important in vertebrate paleontology because the assessed skeletal maturity of an individual often has implications for paleobiogeography, species synonymy, paleobiology, and body size evolution of major clades. Further, for many groups the only means of confidently determining ontogenetic status of an organism is through the destructive process of histological sampling. Although the ontogenetic patterns of Late Jurassic and Cretaceous dinosaurs are better understood, knowledge of the ontogeny of the earliest dinosaurs is relatively poor because most species-level growth series known from these groups are small (usually, maximum of n ~ 5) and incomplete. To investigate the morphological changes that occur during ontogeny in early dinosaurs, I used ontogenetic sequence analysis (OSA) to reconstruct developmental sequences of morphological changes in the postcranial ontogeny of the early theropods Coelophysis bauri and Megapnosaurus rhodesiensis, both of which are known from large sample sizes (n = 174 and 182, respectively). I found a large amount of sequence polymorphism (i.e. intraspecific variation in developmental patterns) in both taxa, and especially in C. bauri, which possesses this variation in every element analyzed. Megapnosaurus rhodesiensis is similar, but it possesses no variation in the sequence of development of ontogenetic characters in the tibia and tarsus. Despite the large amount of variation in development, many characters occur consistently earlier or later in ontogeny and could therefore be important morphological features for assessing the relative maturity of other early theropods. Additionally, there is a phylogenetic signal to the order in which homologous characters appear in ontogeny, with homologous characters appearing earlier or later in developmental sequences of early theropods and the close relatives of dinosaurs, silesaurids. Many of these morphological features are important characters for the reconstruction of archosaurian phylogeny (e.g. trochanteric shelf). Because these features vary in presence or appearance with ontogeny, these characters should be used with caution when undertaking phylogenetic analyses in these groups, since a specimen may possess certain character states owing to ontogenetic stage, not evolutionary relationships.
Collapse
Affiliation(s)
- C. T. Griffin
- Department of GeosciencesVirginia TechBlacksburgVAUSA
| |
Collapse
|
33
|
Gianechini FA, Makovicky PJ, Apesteguía S, Cerda I. Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia. PeerJ 2018; 6:e4558. [PMID: 29607264 PMCID: PMC5875404 DOI: 10.7717/peerj.4558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
Here we provide a detailed description of the postcranial skeleton of the holotype and referred specimens of Buitreraptor gonzalezorum. This taxon was recovered as an unenlagiine dromaeosaurid in several recent phylogenetic studies and is the best represented Gondwanan dromaeosaurid discovered to date. It was preliminarily described in a brief article, but a detailed account of its osteology is emerging in recent works. The holotype is the most complete specimen yet found, so an exhaustive description of it provides much valuable anatomical information. The holotype and referred specimens preserve the axial skeleton, pectoral and pelvic girdles, and both fore- and hindlimbs. Diagnostic postcranial characters of this taxon include: anterior cervical centra exceeding the posterior limit of neural arch; eighth and ninth cervical vertebral centra with lateroventral tubercles; pneumatic foramina only in anteriormost dorsals; middle and posterior caudal centra with a complex of shallow ridges on lateral surfaces; pneumatic furcula with two pneumatic foramina on the ventral surface; scapular blade transversely expanded at mid-length; well-projected flexor process on distal end of the humerus; dorsal rim of the ilium laterally everted; and concave dorsal rim of the postacetabular iliac blade. A paleohistological study of limb bones shows that the holotype represents an earlier ontogenetic stage than one of the referred specimens (MPCA 238), which correlates with the fusion of the last sacral vertebra to the rest of the sacrum in MPCA 238. A revised phylogenetic analysis recovered Buitreraptor as an unenlagiine dromaeosaurid, in agreement with previous works. The phylogenetic implications of the unenlagiine synapomorphies and other characters, such as the specialized pedal digit II and the distal ginglymus on metatarsal II, are discussed within the evolutionary framework of Paraves.
Collapse
Affiliation(s)
- Federico A Gianechini
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET-Universidad Nacional de San Luis, San Luis, Argentina
| | - Peter J Makovicky
- Section of Earth Sciences, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Sebastián Apesteguía
- CONICET, Fundación de Historia Natural 'Félix de Azara', CEBBAD, Universidad Maimónides, Buenos Aires, Argentina
| | - Ignacio Cerda
- CONICET, Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, General Roca, Río Negro, Argentina
| |
Collapse
|
34
|
Hirasawa T, Kuratani S. Evolution of the muscular system in tetrapod limbs. ZOOLOGICAL LETTERS 2018; 4:27. [PMID: 30258652 PMCID: PMC6148784 DOI: 10.1186/s40851-018-0110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
35
|
Barta DE, Nesbitt SJ, Norell MA. The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation. J Anat 2018; 232:80-104. [PMID: 29114853 PMCID: PMC5735062 DOI: 10.1111/joa.12719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 11/27/2022] Open
Abstract
The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not proceed in a neat, stepwise fashion, but was characterized by multiple losses and possible gains of carpals, metacarpals and phalanges. Taken together, the high degree of intra- and interspecific variability in the number and identities of carpals, and the state of reduction of the fourth and fifth digits suggest the presence of a 'zone of developmental variability' in early dinosaur manus evolution, from which novel avian-like morphologies eventually emerged and became channelized among later theropod clades.
Collapse
Affiliation(s)
- Daniel E. Barta
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNYUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Sterling J. Nesbitt
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of GeosciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Mark A. Norell
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNYUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
36
|
Otero A, Allen V, Pol D, Hutchinson JR. Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha). PeerJ 2017; 5:e3976. [PMID: 29188140 PMCID: PMC5703147 DOI: 10.7717/peerj.3976] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture.
Collapse
Affiliation(s)
- Alejandro Otero
- División Paleontología de Vertebrados, Museo de la Plata, La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vivian Allen
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, London, UK
| | - Diego Pol
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Museo Egidio Feruglio, Trelew, Chubut, Argentina
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, London, UK
| |
Collapse
|
37
|
Burch SH. Myology of the forelimb of Majungasaurus crenatissimus (Theropoda, Abelisauridae) and the morphological consequences of extreme limb reduction. J Anat 2017; 231:515-531. [PMID: 28762500 DOI: 10.1111/joa.12660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Forelimb reduction occurred independently in multiple lineages of theropod dinosaurs. Although tyrannosaurs are renowned for their tiny, two-fingered forelimbs, the degree of their reduction in length is surpassed by abelisaurids, which possess an unusual morphology distinct from that of other theropods. The forelimbs of abelisaurids are short but robust and exhibit numerous crests, tubercles, and scars that allow for inferences of muscle attachment sites. Phylogenetically based reconstructions of the musculature were used in combination with close examination of the osteology in the Malagasy abelisaurid Majungasaurus to create detailed muscle maps of the forelimbs, and patterns of the muscular and bony morphology were compared with those of extant tetrapods with reduced or vestigial limbs. The lever arms of muscles crossing the glenohumeral joint are shortened relative to the basal condition, reducing the torque of these muscles but increasing the excursion of the humerus. Fusion of the antebrachial muscles into a set of flexors and extensors is common in other tetrapods and occurred to some extent in Majungasaurus. However, the presence of tubercles on the antebrachial and manual elements of abelisaurids indicates that many of the individual distal muscles acting on the wrist and digits were retained. Majungasaurus shows some signs of the advanced stages of forelimb reduction preceding limb loss, while also exhibiting features suggesting that the forelimb was not completely functionless. The conformation of abelisaurid forelimb musculature was unique among theropods and further emphasizes the unusual morphology of the forelimbs in this clade.
Collapse
Affiliation(s)
- Sara H Burch
- Department of Biology, SUNY Geneseo, Geneseo, New York, USA
| |
Collapse
|
38
|
Apesteguía S, Smith ND, Juárez Valieri R, Makovicky PJ. An Unusual New Theropod with a Didactyl Manus from the Upper Cretaceous of Patagonia, Argentina. PLoS One 2016; 11:e0157793. [PMID: 27410683 PMCID: PMC4943716 DOI: 10.1371/journal.pone.0157793] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Late Cretaceous terrestrial strata of the Neuquén Basin, northern Patagonia, Argentina have yielded a rich fauna of dinosaurs and other vertebrates. The diversity of saurischian dinosaurs is particularly high, especially in the late Cenomanian-early Turonian Huincul Formation, which has yielded specimens of rebacchisaurid and titanosaurian sauropods, and abelisaurid and carcharodontosaurid theropods. Continued sampling is adding to the known vertebrate diversity of this unit. METHODOLOGY/ PRINCIPAL FINDINGS A new, partially articulated mid-sized theropod was found in rocks from the Huincul Formation. It exhibits a unique combination of traits that distinguish it from other known theropods justifying erection of a new taxon, Gualicho shinyae gen. et sp. nov. Gualicho possesses a didactyl manus with the third digit reduced to a metacarpal splint reminiscent of tyrannosaurids, but both phylogenetic and multivariate analyses indicate that didactyly is convergent in these groups. Derived characters of the scapula, femur, and fibula supports the new theropod as the sister taxon of the nearly coeval African theropod Deltadromeus and as a neovenatorid carcharodontosaurian. A number of these features are independently present in ceratosaurs, and Gualicho exhibits an unusual mosaic of ceratosaurian and tetanuran synapomorphies distributed throughout the skeleton. CONCLUSIONS/ SIGNIFICANCE Gualicho shinyae gen. et sp. nov. increases the known theropod diversity of the Huincul Formation and also represents the first likely neovenatorid from this unit. It is the most basal tetatanuran to exhibit common patterns of digit III reduction that evolved independently in a number of other tetanuran lineages. A close relationship with Deltadromaeus from the Kem Kem beds of Niger adds to the already considerable biogeographic similarity between the Huincul Formation and coeval rock units in North Africa.
Collapse
Affiliation(s)
- Sebastián Apesteguía
- Área de Paleontología. Fundación de Historia Natural 'Félix de Azara', CEBBAD, Univ. Maimónides, Buenos Aires, Argentina
| | - Nathan D. Smith
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, United States of America
| | - Rubén Juárez Valieri
- Secretaría de Cultura, Gobierno de la Provincia de Río Negro, General Roca, Argentina
| | - Peter J. Makovicky
- Section of Earth Sciences, Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Dececchi TA, Larsson HC, Habib MB. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. PeerJ 2016; 4:e2159. [PMID: 27441115 PMCID: PMC4941780 DOI: 10.7717/peerj.2159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/27/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. METHODS Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. RESULTS None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can't reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. DISCUSSION Using our first principles approach we find that "near flight" locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory adaptations, and this separation is critical for our understanding of the origin of powered flight and avian evolution.
Collapse
Affiliation(s)
| | | | - Michael B. Habib
- Keck School of Medicine of USC, Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States
- Dinosaur Institute, Natural History Museum of Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
40
|
Foth C, Evers SW, Pabst B, Mateus O, Flisch A, Patthey M, Rauhut OWM. New insights into the lifestyle of Allosaurus (Dinosauria: Theropoda) based on another specimen with multiple pathologies. PeerJ 2015; 3:e940. [PMID: 26020001 PMCID: PMC4435507 DOI: 10.7717/peerj.940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/16/2015] [Indexed: 12/03/2022] Open
Abstract
Adult large-bodied theropods are often found with numerous pathologies. A large, almost complete, probably adult Allosaurus specimen from the Howe Stephens Quarry, Morrison Formation (Late Kimmeridgian–Early Tithonian), Wyoming, exhibits multiple pathologies. Pathologic bones include the left dentary, two cervical vertebrae, one cervical and several dorsal ribs, the left scapula, the left humerus, the right ischium, and two left pedal phalanges. These pathologies can be classified as follows: the fifth cervical vertebra, the scapula, several ribs and the ischium are probably traumatic, and a callus on the shaft of the left pedal phalanx II-2 is probably traumatic-infectious. Traumatically fractured elements exposed to frequent movement (e.g., the scapula and the ribs) show a tendency to develop pseudarthroses instead of a callus. The pathologies in the lower jaw and a reduced extensor tubercle of the left pedal phalanx II-2 are most likely traumatic or developmental in origin. The pathologies on the fourth cervical are most likely developmental in origin or idiopathic, that on the left humerus could be traumatic, developmental, infectious or idiopathic, whereas the left pedal phalanx IV-1 is classified as idiopathic. With exception of the ischium, all as traumatic/traumatic-infectious classified pathologic elements show unambiguous evidences of healing, indicating that the respective pathologies did not cause the death of this individual. Alignment of the scapula and rib pathologies from the left side suggests that all may have been caused by a single traumatic event. The ischial fracture may have been fatal. The occurrence of multiple lesions interpreted as traumatic pathologies again underlines that large-bodied theropods experienced frequent injuries during life, indicating an active predatory lifestyle, and their survival perhaps supports a gregarious behavior for Allosaurus. Alternatively, the frequent survival of traumatic events could be also related to the presence of non-endothermic metabolic rates that allow survival based on sporadic food consumption or scavenging behavior. Signs of pathologies consistent with infections are scarce and locally restricted, indicating a successful prevention of the spread of pathogens, as it is the case in extant reptiles (including birds).
Collapse
Affiliation(s)
- Christian Foth
- SNBS, Bayerische Staatssammlung für Paläontologie und Geologie , München , Germany ; Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität , München , Germany ; Department of Geosciences, University of Fribourg/Freiburg , Fribourg , Switzerland
| | - Serjoscha W Evers
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität , München , Germany ; Department of Earth Sciences, University of Oxford , Oxford , UK
| | - Ben Pabst
- Sauriermuseum Aathal , Aathal-Seegräben , Switzerland
| | - Octávio Mateus
- CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa , Caparica , Portugal ; Museu da Lourinhã , Rua João Luis de Moura, Lourinhã , Portugal
| | - Alexander Flisch
- Swiss Federal Laboratories for Materials Science and Technology , Center for X-ray Analytics, Düebendorf , Switzerland
| | - Mike Patthey
- Vetsuisse Fakulty, Universität Zürich , Zürich , Switzerland
| | - Oliver W M Rauhut
- SNBS, Bayerische Staatssammlung für Paläontologie und Geologie , München , Germany ; Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität , München , Germany
| |
Collapse
|
41
|
Evangelista D, Cam S, Huynh T, Kwong A, Mehrabani H, Tse K, Dudley R. Shifts in stability and control effectiveness during evolution of Paraves support aerial maneuvering hypotheses for flight origins. PeerJ 2014; 2:e632. [PMID: 25337460 PMCID: PMC4203027 DOI: 10.7717/peerj.632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/30/2014] [Indexed: 11/20/2022] Open
Abstract
The capacity for aerial maneuvering was likely a major influence on the evolution of flying animals. Here we evaluate consequences of paravian morphology for aerial performance by quantifying static stability and control effectiveness of physical models for numerous taxa sampled from within the lineage leading to birds (Paraves). Results of aerodynamic testing are mapped phylogenetically to examine how maneuvering characteristics correspond to tail shortening, forewing elaboration, and other morphological features. In the evolution of Paraves we observe shifts from static stability to inherently unstable aerial planforms; control effectiveness also migrated from tails to the forewings. These shifts suggest that a some degree of aerodynamic control and capacity for maneuvering preceded the evolution of a strong power stroke. The timing of shifts also suggests features normally considered in light of development of a power stroke may play important roles in control.
Collapse
Affiliation(s)
- Dennis Evangelista
- Department of Integrative Biology, University of California , Berkeley, CA , USA
| | - Sharlene Cam
- Department of Integrative Biology, University of California , Berkeley, CA , USA
| | - Tony Huynh
- Department of Integrative Biology, University of California , Berkeley, CA , USA
| | - Austin Kwong
- Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Homayun Mehrabani
- Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Kyle Tse
- Department of Mechanical Engineering, University of California , Berkeley, CA , USA
| | - Robert Dudley
- Department of Integrative Biology, University of California , Berkeley, CA , USA ; Smithsonian Tropical Research Institute , Balboa , Panama
| |
Collapse
|