1
|
Nakata H, Iseki S. Three-dimensional analysis of partial restoration of spermatogenesis in vitamin A-deficient mice. Andrology 2024. [PMID: 38831688 DOI: 10.1111/andr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND An animal model of the partial restoration of spermatogenesis may be useful in the field of reproductive biology and medicine. Vitamin A deficiency (VAD) induces the restorable arrest of spermatogenesis at the level of spermatogonia and is used as a mouse model of spermatogenesis disorder. OBJECTIVE We aimed to establish an animal model in which spermatogenesis is partially restored by switching a vitamin A deficiency diet to a normal vitamin A-containing diet and conduct a comprehensive analysis to identify vulnerable sites in the seminiferous tubules that affect the efficient restoration of spermatogenesis in this model. MATERIALS AND METHODS Mice fed a vitamin A deficiency diet until 12 weeks old and then reared with a normal diet for 15 weeks served as the restoration model. We performed three-dimensional reconstructions of the seminiferous tubules and analyzed the three-dimensional distribution of restored spermatogenesis throughout the testis. RESULTS Fifteen weeks after the switch to the normal diet, spermatogenesis was restored in 78% of the length of seminiferous tubules. The percentage of restored spermatogenesis was lower in longer seminiferous tubules. An analysis of the distribution of spermatogenesis throughout the testis in this model revealed that it was restored less in portions of seminiferous tubules near the rete testis and hairpin curves and also in those located in the caudal region of the testis. These sites tended to correspond to sites with fewer spermatogonia in the vitamin A deficiency testis. DISCUSSION AND CONCLUSIONS We established an animal model of the partial restoration of spermatogenesis and examined the three-dimensional distribution of restored spermatogenesis in seminiferous tubules. The results obtained provide insights into the mechanisms underlying spermatogenesis disorders and may contribute to better clinical practices, such as the screening of drugs or therapeutic interventions for human male infertility and improvements in fertility preservation techniques for individuals undergoing chemotherapy.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| |
Collapse
|
2
|
Nakata H, Iseki S, Mizokami A. Three-dimensional analysis of junctions between efferent and epididymal ducts in the human caput epididymis. Andrology 2024; 12:87-97. [PMID: 37129932 DOI: 10.1111/andr.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Due to the scarcity of studies using human tissues, the limited information is currently available on the gross structure of the caput epididymis in humans, at which efferent ducts connect to the epididymal duct. OBJECTIVE The present study investigated the three-dimensional structures of efferent and caput epididymal ducts in humans, with a focus on junctions between the former and the latter. MATERIALS AND METHODS We examined three sets of human efferent and caput epididymal ducts in specimens obtained from prostatic carcinoma patients. They were reconstructed from serial paraffin sections using a segmentation model created by a deep learning protocol and high-performance three-dimensional reconstruction software. RESULTS Serial sections and three-dimensional images of human efferent and caput epididymal ducts were combined to obtain the detailed anatomical information. When a single efferent duct was defined as a duct connecting to both the extra-testicular rete testis and epididymal duct, there were 14.7 efferent ducts with a total length of 3.0 m per specimen on average. The cranial portion of the efferent ducts joined to a single duct and terminated at the end of the epididymal duct, whereas other efferent ducts terminated independently on the side of the epididymal duct. These two types of junctions between the efferent and epididymal ducts differed in the patterns of the epithelial-type switch. The epididymal duct consisted of multiple segments, which were separated by a minimal amount of connective tissue septa or even without them. Efferent ducts occupied most of the volume of the caput epididymis. DISCUSSION AND CONCLUSIONS By utilizing deep learning, we reconstructed human efferent and caput epididymal ducts and revealed their precise three-dimensional structures, which differed from those of rodents in several aspects. The present results may be useful for analyzing anatomical abnormalities related to some types of male infertility.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
3
|
van Melis V, Roa-de la Cruz L, Hermann BP. Isolation of Undifferentiated Spermatogonia from Adult and Developing Mouse Testes. Methods Mol Biol 2023; 2656:179-193. [PMID: 37249872 DOI: 10.1007/978-1-0716-3139-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the mammalian testis, the mitotic complements of spermatogenic cells are spermatogonia, including spermatogonial stem cells (SSCs) which form the basis of life-long spermatogenesis and male fertility. Thus, investigating spermatogonia and subdivisions thereof is essential to increase our understanding of male germline development and infertility. This protocol describes the isolation of spermatogonia from both adult and developing [postnatal day 6 (P6)] mouse testes. Cell suspensions of the adult mouse testis from the Id4-Egfp transgenic mouse line are obtained through a two-step enzymatic digestion and are subjected to Percoll pre-enrichment before spermatogonia are isolated by selecting testis cells that are CD9bright and ID4-EGFP+ through FACS. For P6 mice, the testis is digested using trypsin-DNase, and spermatogonia are isolated by FACS selection of ID4-EGFP+ testis cells. In both cases, nearly pure populations of undifferentiated spermatogonia are obtained that can be further subdivided using additional parameters (e.g., EGFP intensity, cell surface protein immunostaining), and recovered for use in various downstream applications, such as biochemical analyses (e.g., transcriptome/epigenome), functional analyses by SSC transplantation or propagation in vitro.
Collapse
Affiliation(s)
- Vera van Melis
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
5
|
Yang R, Stendahl AM, Vigh-Conrad KA, Held M, Lima AC, Conrad DF. SATINN: an automated neural network-based classification of testicular sections allows for high-throughput histopathology of mouse mutants. Bioinformatics 2022; 38:5288-5298. [PMID: 36214638 PMCID: PMC9710558 DOI: 10.1093/bioinformatics/btac673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The mammalian testis is a complex organ with a cellular composition that changes smoothly and cyclically in normal adults. While testis histology is already an invaluable tool for identifying and describing developmental differences in evolution and disease, methods for standardized, digital image analysis of testis are needed to expand the utility of this approach. RESULTS We developed SATINN (Software for Analysis of Testis Images with Neural Networks), a multi-level framework for automated analysis of multiplexed immunofluorescence images from mouse testis. This approach uses residual learning to train convolutional neural networks (CNNs) to classify nuclei from seminiferous tubules into seven distinct cell types with an accuracy of 81.7%. These cell classifications are then used in a second-level tubule CNN, which places seminiferous tubules into one of 12 distinct tubule stages with 57.3% direct accuracy and 94.9% within ±1 stage. We further describe numerous cell- and tubule-level statistics that can be derived from wild-type testis. Finally, we demonstrate how the classifiers and derived statistics can be used to rapidly and precisely describe pathology by applying our methods to image data from two mutant mouse lines. Our results demonstrate the feasibility and potential of using computer-assisted analysis for testis histology, an area poised to evolve rapidly on the back of emerging, spatially resolved genomic and proteomic technologies. AVAILABILITY AND IMPLEMENTATION The source code to reproduce the results described here and a SATINN standalone application with graphic-user interface are available from http://github.com/conradlab/SATINN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ran Yang
- To whom correspondence should be addressed. or or
| | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Madison Held
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Ana C Lima
- To whom correspondence should be addressed. or or
| | | |
Collapse
|
6
|
Pinkert-Leetsch D, Rost JU, Schmiedeknecht MUH, Stadelmann C, Alves F, Missbach-Guentner J. The murine male reproductive organ at a glance: Three-dimensional insights and virtual histology using label-free light sheet microcopy. Andrology 2022; 10:1660-1672. [PMID: 36082398 DOI: 10.1111/andr.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The unique anatomy of the male reproductive organ reflects its complex function from sperm maturation to their storage for months until emission. Since light microscopy in two dimensions (2d) cannot sufficiently demonstrate its complex morphology, a comprehensive visualization is required to identify pathologic alterations in its entire anatomical context. OBJECTIVES Aim of this study was to use three-dimensional (3d) light sheet fluorescence microscopy (LSFM) to visualize entire murine testes in 3d, label-free and at subcellular resolution, and to assign local autofluorescence to testicular and deferent structures. MATERIALS AND METHODS Murine testes were fixed with four different fixatives and subsequently cleared with benzoic acid/benzyl benzoate. Hereafter, complete murine testes were scanned with LSFM with different fluorescence filter sets and subsequently embedded in paraffin for further conventional planar histology. RESULTS Autofluorescence signals of the murine reproductive organ allowed the unambiguous identification of the testicular anatomy from the seminiferous tubules to the vas deferens with their specific stratification independent of the used fixative. Blood vessels were visualized from the pampiniform plexus to the small capillaries of single tubules. Moreover, due to the specific intrinsic fluorescence properties of the efferent ducts and the epididymis, luminal caliber, the epithelial stratification and retronuclear cytoplasmic inclusions gave a unique insight into the interface of both morphological structures. Subsequent 2d histology confirmed the identified morphological structures. DISCUSSION LSFM analysis of the murine reproductive organ allows due to its intrinsic fluorescence a simple, label-free 3d assessment of its entire duct morphology, the epithelial composition and the associated blood supply in its anatomical relation. CONCLUSION LSFM provides the technical basis for comprehensive analyses of pathologically altered murine testes in its entirety by depicting specific autofluorescence. Thereby it facilitates mouse studies of testicular disease or their drug related alterations in more detail potentially for clinical translation assessing human testicular biopsies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - John Uwe Rost
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Department of Hematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Jeannine Missbach-Guentner
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
7
|
Córdoba-Sosa G, Nicolás-Toledo L, Cervantes-Rodríguez M, Xelhuantzi-Arreguin N, Arteaga-Castañeda MDL, Zambrano E, Cuevas-Romero E, Rodríguez-Antolín J. Maternal and Offspring Sugar Consumption Increases Perigonadal Adipose Tissue Hypertrophy and Negatively Affects the Testis Histological Organization in Adult Rats. Front Cell Dev Biol 2022; 10:893099. [PMID: 35784458 PMCID: PMC9247188 DOI: 10.3389/fcell.2022.893099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Sugar intake has been associated with the development of male reproductive pathologies because of the increase and dysfunction in different adipose tissue depots. The establishment of these dysfunctions in the early stages of development is unknown. We evaluated the effect of maternal (pregnancy and lactation) and male offspring (from weaning to adulthood) consumption of 5% sucrose on perigonadal adipose tissue (PAT) and testis in adulthood. Moreover, two rat groups were compared, both including pregnant and lactating females: Control (C—drinking tap water) and sugar (S—consuming 5% sucrose solution). From weaning to adulthood with male offspring, four subgroups were formed: Control Mother → Control and Sugar offspring (CC, CS) and Sugar Mother → Control and Sugar offspring (SC, SS). At 120 postnatal days, the testes and PAT were collected and morphologically described. Furthermore, we quantified the number and cross-sectional area of perigonadal adipocytes and their distribution. We found that the males from SC and SS groups showed high PAT weight (p < 0.005), a high number (p < 0.05), and a relative frequency of large adipocytes (p < 0.05), establishing these results during gestational and lactation stages, and enhancing in adulthood since postnatal diet and its interaction. More macrophages, mast cells, and Leydig cells were observed in the interstitial space of the testis for the CS, SC, and SS groups, concluding that consumption of a high-carbohydrate maternal diet, program hypertrophy processes in adult PAT, developing and enhancing with sugar consumption during postnatal life. Furthermore, they are associated with inflammatory processes within the interstitial space of the testis.
Collapse
Affiliation(s)
- Gabriela Córdoba-Sosa
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Nicté Xelhuantzi-Arreguin
- Licenciatura en Medicina, Universidad Popular del Estado de Tlaxcala, Tlaxcala, Mexico
- Licenciatura en Enfermería y Obstetricia, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Elena Zambrano
- Departamento de Biología Reproductiva, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
- *Correspondence: Jorge Rodríguez-Antolín,
| |
Collapse
|
8
|
Komninos D, Ramos L, van der Heijden GW, Morrison MC, Kleemann R, van Herwaarden AE, Kiliaan AJ, Arnoldussen IAC. High fat diet-induced obesity prolongs critical stages of the spermatogenic cycle in a Ldlr -/-.Leiden mouse model. Sci Rep 2022; 12:430. [PMID: 35017550 PMCID: PMC8752771 DOI: 10.1038/s41598-021-04069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity can disturb spermatogenesis and subsequently affect male fertility and reproduction. In our study, we aim to elucidate at which cellular level of adult spermatogenesis the detrimental effects of obesity manifest. We induced high fat diet (HFD) obesity in low-density lipoprotein receptor knock-out Leiden (Ldlr−/−.Leiden) mice, and studied the morphological structure of the testes and histologically examined the proportion of Sertoli cells, spermatocytes and spermatids in the seminiferous tubules. We examined sperm DNA damage and chromatin condensation and measured plasma levels of leptin, testosterone, cholesterol and triglycerides. HFD-induced obesity caused high plasma leptin and abnormal testosterone levels and induced an aberrant intra-tubular organisation (ITO) which is associated with an altered spermatids/spermatocytes ratio (2:1 instead of 3:1). Mice fed a HFD had a higher level of tubules in stages VII + VIII in the spermatogenic cycle. The stages VII + VII indicate crucial processes in spermatogenic development like initiation of meiosis, initiation of spermatid elongation, and release of fully matured spermatids. In conclusion, HFD-induced obese Ldlr−/−.Leiden mice develop an aberrant ITO and alterations in the spermatogenic cycle in crucial stages (stages VII and VII). Thereby, our findings stress the importance of lifestyle guidelines in infertility treatments.
Collapse
Affiliation(s)
- D Komninos
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - L Ramos
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - G W van der Heijden
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - M C Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands.,Department of Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - R Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - A E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - A J Kiliaan
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ, Nijmegen, The Netherlands.
| | - I A C Arnoldussen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Three-dimensional morphological analysis of spermatogenesis in aged mouse testes. Sci Rep 2021; 11:23007. [PMID: 34837027 PMCID: PMC8626501 DOI: 10.1038/s41598-021-02443-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Spermatogenesis, which is a continuous process from undifferentiated spermatogonia to spermatozoa in the seminiferous tubules, declines with age. To investigate changes in spermatogenesis with aging, we reconstructed the seminiferous tubules of 12 mice aged 12 to 30 months from serial sections and examined age-related and region-specific alterations in the seminiferous epithelium and spermatogenic waves in three dimensions. The basic structure of the seminiferous tubules, including the numbers of tubules, terminating points, branching points, and total tubule length, did not change with age. Age-related alterations in spermatogenesis, primarily assessed by the formation of vacuoles in Sertoli cells, were detected in the seminiferous tubules at 12 months. The proportion of altered tubule segments with impaired spermatogenesis further increased by 24 months, but remained unchanged thereafter. Altered tubule segments were preferentially distributed in tubule areas close to the rete testis and those in the center of the testis. Spermatogenic waves became shorter in length with age. These results provide a basis for examining the decline of spermatogenesis not only with aging, but also in male infertility.
Collapse
|
10
|
Nakata H, Iseki S, Mizokami A. Three-dimensional reconstruction of testis cords/seminiferous tubules. Reprod Med Biol 2021; 20:402-409. [PMID: 34646067 PMCID: PMC8499590 DOI: 10.1002/rmb2.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to the development of novel equipment for the acquisition of two-dimensional serial images and software capable of displaying three-dimensional (3D) images from serial images, the accurate 3D reconstruction of organs and tissues has become possible. METHODS Based on published studies, this review summarizes techniques for the 3D reconstruction of the testis cords/seminiferous tubules, with special reference to our method using serial paraffin sections and 3D visualization software. MAIN FINDINGS The testes of mice, rats, and hamsters of various ages were 3D reconstructed and species and age differences in the structures of the testis cords/seminiferous tubules were analyzed. Our method is advantageous because conventional paraffin-embedded normal and pathological specimens may be utilized for the 3D analysis without the need for complicated and expensive equipment. CONCLUSION By further decreasing the time and labor required for the procedure and adding information on molecular localization, the technique for 3D reconstruction will contribute to the elucidation of not only the structures, but also the functions of various organs, including the testis.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology Graduate School of Medical Sciences Kanazawa University Kanazawa Japan
| | - Shoichi Iseki
- Department of Clinical Engineering Faculty of Health Sciences Komatsu University Komatsu Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology Kanazawa University Graduate School of Medical Science Kanazawa Japan
| |
Collapse
|
11
|
Nakata H, Omotehara T, Itoh M, Iseki S, Mizokami A. Three-dimensional structure of testis cords in mice and rats. Andrology 2021; 9:1911-1922. [PMID: 34128333 DOI: 10.1111/andr.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Testis cord elongation and coiling, which occur in the final stage of testis formation, have been attributed to Sertoli cell proliferation; however, the underlying mechanisms remain unclear. OBJECTIVE The aim of the present study was to clarify the precise three-dimensional structure of testis cords in the final stage of testis formation in mice and rats. MATERIALS AND METHODS We reconstructed whole testis cords in the final stage of testis formation in mice (on embryonic days 15.5 and 18.5) and rats (on embryonic days 16.5 and 19.5) using serial paraffin sections and high-performance three-dimensional reconstruction software. RESULTS Detailed morphometric parameters were calculated for three-dimensionally reconstructed testis cords in six mouse and rat testes each. The mean numbers of testis cords in mice and rats were 12.7 and 27.8, respectively. The mean number of branching points per testis cord was 1.52 in mice, whereas it was only 0.30 in rats. In contrast, the mean ratio of the inner cords, that is, cords not in contact with the tunica albuginea, was 23.0% in rats, whereas it was only 6.5% in mice. In both species, the cords on the cranial side coiled more strongly than those on the caudal side, consistent with the greater expansion of the testis volume on the caudal side. All cords formed right-handed helices from the rete testis side. DISCUSSION AND CONCLUSIONS The present results suggest that testis cords undergo anastomosis at a higher frequency in mice than in rats and that the coiling of testis cords proceeds from the cranial to caudal side of the testis in both species.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shoichi Iseki
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Spermatogonial Stem Cell Transplantation in Large Animals. Animals (Basel) 2021; 11:ani11040918. [PMID: 33805058 PMCID: PMC8064064 DOI: 10.3390/ani11040918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The spermatogonial stem cell (SSC) is the only adult stem cell in males to transmit genetic information to offspring. SSC transplantation (SSCT) is a laboratory technique to regenerate spermatogenesis in recipient males, thus can be used as a novel breeding tool to benefit animal production. Although successful SSCT in rodent models has been established, progress in realizing SSCT in large animals has been limited. Here we discuss what we learned in this area from past experiments and highlight possible directions in developing effective SSCT protocol in large animals. Abstract Spermatogonial stem cell transplantation (SSCT) can restore male fertility through transfer of germline between donor and recipient males. From an agricultural perspective, SSCT could be an important next-generation reproductive and breeding tool in livestock production. Current SSCT approaches in large animals remain inefficient and many technical details need further investigation. This paper reviews the current knowledge on SSCT in large animals, addressing (1) donor spermatogonial stem cell (SSC) preparation, (2) recipient male treatment, and (3) SSC injection, homing, and detection. The major studies showing unequivocal evidence of donor SSC-derived spermatogenesis in large animals (mainly in livestock for breeding purpose) are summarized to discuss the current status of the field and future directions.
Collapse
|
13
|
Kawamura M, Sugihara K, Takigawa-Imamura H, Ogawa T, Miura T. Mathematical Modeling of Dynamic Cellular Association Patterns in Seminiferous Tubules. Bull Math Biol 2021; 83:33. [PMID: 33594605 DOI: 10.1007/s11538-021-00863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
In vertebrates, sperm is generated in testicular tube-like structures called seminiferous tubules. The differentiation stages of spermatogenesis exhibit a dynamic spatiotemporal wavetrain pattern. There are two types of pattern-the vertical type, which is observed in mice, and the helical type, which is observed in humans. The mechanisms of this pattern difference remain little understood. In the present study, we used a three-species reaction-diffusion model to reproduce the wavetrain pattern observed in vivo. We hypothesized that the wavelength of the pattern in mice was larger than that in humans and undertook numerical simulations. We found complex patterns of helical and vertical pattern frequency, which can be understood by pattern selection using boundary conditions. From these theoretical results, we predicted that a small number of vertical patterns should be present in human seminiferous tubules. We then found vertical patterns in histological sections of human tubules, consistent with the theoretical prediction. Finally, we showed that the previously reported irregularity of the human pattern could be reproduced using two factors: a wider unstable wavenumber range and the irregular geometry of human compared with mouse seminiferous tubules. These results show that mathematical modeling is useful for understanding the pattern dynamics of seminiferous tubules in vivo.
Collapse
Affiliation(s)
- Mari Kawamura
- Academic Society of Mathematical Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Ogawa
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
Fiorentino G, Parrilli A, Garagna S, Zuccotti M. Three-dimensional imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive scientist. Mol Hum Reprod 2021; 27:6129265. [PMID: 33544861 DOI: 10.1093/molehr/gaab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
The 3D functional reconstruction of a whole organ or organism down to the single cell level and to the subcellular components and molecules is a major future scientific challenge. The recent convergence of advanced imaging techniques with an impressively increased computing power allowed early attempts to translate and combine 2D images and functional data to obtain in-silico organ 3D models. This review first describes the experimental pipeline required for organ 3D reconstruction: from the collection of 2D serial images obtained with light, confocal, light-sheet microscopy or tomography, followed by their registration, segmentation and subsequent 3D rendering. Then, we summarise the results of investigations performed so far by applying these 3D image analyses to the study of the female and male mammalian gonads. These studies highlight the importance of working towards a 3D in-silico model of the ovary and testis as a tool to gain insights into their biology during the phases of differentiation or adulthood, in normal or pathological conditions. Furthermore, the use of 3D imaging approaches opens to key technical improvements, ranging from image acquisition to optimisation and development of new processing tools, and unfolds novel possibilities for multidisciplinary research.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
15
|
Nakata H, Yoshiike M, Nozawa S, Sato Y, Iseki S, Iwamoto T, Mizokami A. Three-dimensional structure of seminiferous tubules in the Syrian hamster. J Anat 2021; 238:86-95. [PMID: 33189084 PMCID: PMC7754951 DOI: 10.1111/joa.13287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/31/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
The hamster is useful for the study of male reproductive biology. However, unlike in the mouse and rat, the gross structure of seminiferous tubules in the hamster is largely unknown. The aim of the present study was to clarify the precise 3-dimensional (3D) structure of seminiferous tubules in hamsters. We reconstructed all seminiferous tubules in 3 and 1 testes from 0-day (P0) and 10-week (adult) Syrian hamsters, respectively, using serial paraffin sections and high-performance 3D reconstruction software. In P0 hamsters, the average numbers of seminiferous tubules, terminating points, branching points, and blind ends per testis were 9.0, 89.7, 93.0, and 0.7, respectively. There were two types of tubules: shorter and dominant ones. The dominant tubules, 2-4 in number per testis and accounting for 86% of the total tubule length, had many terminating and branching points and appeared to be derived from the anastomosis of many shorter tubules. In an adult hamster, there were 11 seminiferous tubules with a total length of 22 m, 98 terminating points, 88 branching points, and 2 blind ends per testis. Three of the 11 tubules were dominant ones, accounting for 83% of the total length, and occupied the testis from the surface over the circumference to the center, while the others were short and occupied only one side of the testis. The amplitude and direction of the curves of tubules were random, and there were no funnel-shaped networks of tubules present, in contrast to the mouse testis. The present study revealed the 3D structure of seminiferous tubules in developing and adult Syrian hamsters, which is different from that in mice and rats.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell BiologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Miki Yoshiike
- Department of UrologySt Marianna University School of MedicineKawasakiJapan
| | - Shiari Nozawa
- Department of UrologySt Marianna University School of MedicineKawasakiJapan
| | - Yoko Sato
- Department of BiologySchool of Biological SciencesTokai UniversitySapporoJapan
| | - Shoichi Iseki
- Department of Clinical EngineeringFaculty of Health SciencesKomatsu UniversityKomatsuJapan
| | - Teruaki Iwamoto
- Division of Male InfertilitySanno HospitalCenter for Human Reproduction for IVFInternational University of Health and WelfareNasushiobaraJapan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and UrologySchool of Medical SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
16
|
Nakata H, Nakano T, Iseki S, Mizokami A. Three-Dimensional Analysis of Busulfan-Induced Spermatogenesis Disorder in Mice. Front Cell Dev Biol 2020; 8:609278. [PMID: 33392198 PMCID: PMC7773783 DOI: 10.3389/fcell.2020.609278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
We examined if the distribution of impaired or normal spermatogenesis differs along the length of seminiferous tubules in disorders of spermatogenesis. For this purpose, three-dimensional (3D) reconstruction of seminiferous tubules was performed in mice with experimental spermatogenesis disorder induced by intraperitoneal injection of busulfan, and the areas of impaired and normal spermatogenesis were analyzed microscopically. The volume of the testis and length of seminiferous tubules decreased, and the proportion of tubule areas with impaired spermatogenesis increased depending on the dose of busulfan. With the highest dose of busulfan, although the proportion of impaired spermatogenesis was similar among individual seminiferous tubules, it was slightly but significantly higher in shorter tubules and in tubule areas near branching points. The tubule areas with impaired and normal spermatogenesis consisted of many segments of varying lengths. With increasing doses of busulfan, the markedly impaired segments increased in length without changing in number, whereas normal segments, although reduced in number and length, remained even with the highest dose of busulfan. Individual remaining normal segments consisted of several different stages, among which stage I and XII were found at higher frequencies, and stage VI at a lower frequency than expected in normal seminiferous tubules. We also examined if the distribution of impaired or normal spermatogenesis differs among different 3D positions in the testis without considering the course of seminiferous tubules. Although the proportions of impaired spermatogenesis with the minimum dose of busulfan and normal spermatogenesis with the highest dose of busulfan greatly varied by location within a single testis, there were no 3D positions with these specific proportions common to different testes, suggesting that the factors influencing the severity of busulfan-induced spermatogenesis disorder are not fixed in location among individual mice.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Taito Nakano
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
18
|
Nakata H, Iseki S. Three-dimensional structure of efferent and epididymal ducts in mice. J Anat 2019; 235:271-280. [PMID: 31148153 DOI: 10.1111/joa.13006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to clarify the detailed morphology of efferent and epididymal ducts in adult mice using three-dimensional (3D) analysis. We reconstructed efferent and epididymal ducts in three adult mice using serial paraffin sections and high-performance 3D reconstruction software to draw the core lines of all ducts. By comparing the 3D core lines with the histological features in serial sections, we obtained detailed information on the gross characteristics of the ducts and identified the duct divisions accurately. The intra-testicular rete testis penetrated the tunica albuginea at one place and turned into the extra-testicular rete testis, which branched once or twice to give rise to four efferent ducts within 0.5 mm from the tunica albuginea. As these ducts approached the epididymis, they converged into one again and changed abruptly into the initial segment (IS) of the epididymis. The average length from the tunica albuginea to the IS was 19.7 ± 3.1 mm. In one mouse, we found four additional efferent ducts diverging from the common region with blind ends. The epididymal duct was a single highly convoluted duct with no branch and an average length of 767 ± 26 mm. By dividing the epididymal duct into five regions based on its cytological features and periodic acid-Schiff stainability, we calculated the length and diameter of individual regions accurately. Furthermore, we clearly showed locations of the connective tissue septa that divide the head epididymis into several segments. The epididymal duct followed a complicated, winding path within each segment while drawing a large spiral overall along the circumference of the epididymis. Sometimes the direction of this spiral reversed between adjacent segments. The present study revealed the detailed 3D structures of efferent and epididymal ducts in adult mice.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Health Sciences, Department of Clinical Engineering, Komatsu University, Komatsu, Japan
| |
Collapse
|
19
|
Yoshida S. Open niche regulation of mouse spermatogenic stem cells. Dev Growth Differ 2018; 60:542-552. [PMID: 30443901 PMCID: PMC11520966 DOI: 10.1111/dgd.12574] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
In mammalian testes, robust stem cell functions ensure the continual production of sperm. In testicular seminiferous tubules, spermatogenic stem cells (SSCs) are highly motile and are interspersed between their differentiating progeny, while undergoing self-renewal and differentiation. In such an "open niche" microenvironment, some SSCs proliferate, while others exit the stem cell compartment through differentiation; therefore, self-renewal and differentiation are perfectly balanced at the population (or tissue) level, a dynamics termed "population asymmetry." This is in stark contrast to the classical perception of tissue stem cells being cells that are clustered in a specialized "closed niche" region and that invariantly undergo asymmetric divisions. However, despite its importance, how the self-renewal and differentiation of SSCs are balanced in an open niche environment is poorly understood. Recent studies have thrown light on the key mechanism that enables SSCs to follow heterogeneous fates, although they are equally exposed to signaling molecules controlling self-renewal and differentiation. In particular, SSCs show heterogeneous susceptibilities to differentiation-promoting signals such as Wnt and retinoic acid. Heterogeneous susceptibility to the ubiquitously distributed fate-controlling extracellular signal might be a key generic mechanism for the heterogeneous fate of tissue stem cells in open niche microenvironments.
Collapse
Affiliation(s)
- Shosei Yoshida
- Division of Germ Cell BiologyNational Institute for Basic BiologyNational Institutes of Natural SciencesOkazakiJapan
- Department of Basic BiologySchool of Life ScienceSOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
| |
Collapse
|
20
|
Morphology of mouse seminiferous tubules. Anat Sci Int 2018; 94:1-10. [DOI: 10.1007/s12565-018-0455-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/11/2018] [Indexed: 02/01/2023]
|
21
|
Nakata H, Sonomura T, Iseki S. Three-dimensional analysis of seminiferous tubules and spermatogenic waves in mice. Reproduction 2017; 154:569-579. [DOI: 10.1530/rep-17-0391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023]
Abstract
The aim of the present study was to reconstruct seminiferous tubules and analyze spermatogenic waves in seminiferous epithelia in developing and adult mice using serial paraffin sections and high-performance three-dimensional (3D) reconstruction software. By labeling the basement membrane of seminiferous tubules with fluorescent immunohistochemistry or periodic acid-Schiff-hematoxylin staining, all seminiferous tubules were reconstructed in 9 testes from 9 different mice, 3 each at 0, 21 and 90 days (adult) postpartum. The 3D structure of seminiferous tubules, including the number and length of tubules as well as the number of connections with the rete testis, branching points and blind ends, was assessed accurately. Although tubules showed marked variations among individual mice, their overall structure was regular and retained from newborn to adult mice. Some seminiferous tubules contained inner portions running distant from the testis surface. In a representative testis at 21 days, the sites at which spermatids initially occurred were examined by labeling acrosomes and were found to be preferentially distributed in the upper and medial portions of the testis close to the rete testis. In a representative adult testis, 76 complete waves with an average length of 16.9 mm were found and their directions were analyzed. The methods used in the present study will be useful for investigating the structure and function of seminiferous tubules in mice and humans under normal and pathological conditions, such as infertility.
Collapse
|
22
|
Teletin M, Vernet N, Ghyselinck NB, Mark M. Roles of Retinoic Acid in Germ Cell Differentiation. Curr Top Dev Biol 2017; 125:191-225. [PMID: 28527572 DOI: 10.1016/bs.ctdb.2016.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The modalities of gametogenesis differ markedly between sexes. Female are born with a definitive reserve of oocytes whose size is crucial to ensure fertility. Male fertility, in contrast, relies on a tightly regulated balance between germ cell self-renewal and differentiation, which operates throughout life, according to recurring spatial and temporal patterns. Genetic and pharmacological studies conducted in the mouse and discussed in this review have revealed that all-trans retinoic acid and its nuclear receptors are major players of gametogenesis and are instrumental to fertility in both sexes.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
| |
Collapse
|
23
|
Maher GJ, Rajpert-De Meyts E, Goriely A, Wilkie AOM. Cellular correlates of selfish spermatogonial selection. Andrology 2016; 4:550-3. [PMID: 27115825 PMCID: PMC4879506 DOI: 10.1111/andr.12185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Affiliation(s)
- G J Maher
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - A Goriely
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - A O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proc Natl Acad Sci U S A 2016; 113:2454-9. [PMID: 26858415 DOI: 10.1073/pnas.1521325113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.
Collapse
|