1
|
Bae WY, Jung WH, Shin SL, Kim TR, Sohn M, Suk J, Jung I, Lee YI, Lee JH. Heat-treated Limosilactobacillus fermentum LM1020 with menthol, salicylic acid, and panthenol promotes hair growth and regulates hair scalp microbiome balance in androgenetic alopecia: A double-blind, randomized and placebo-controlled clinical trial. J Cosmet Dermatol 2024; 23:2943-2955. [PMID: 38807549 DOI: 10.1111/jocd.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common and chronic problem characterized by hair follicle miniaturization. AIMS In this study, heat-treated Limosilactobacillus fermentum LM1020 (HT-LM1020) was investigated in human follicle dermal papilla cell (HFDPC), scalp tissue, and clinical trials for patients with AGA. PATIENTS/METHODS Cell proliferation and the expression of cyclins and cyclin-dependent kinases (CDKs) were measured in HFDPC. The relative gene expression of 5α-reductase and growth factors were investigated in hair scalp. This double-blind, randomized, placebo-controlled clinical trial was conducted over 24 weeks. Primary efficacy was evaluated by measuring hair density, and secondary efficacy was assessed by experts and self-assessment. Changes in the microbiota of the hair scalps were analyzed using 16S metagenome amplicon sequencing. RESULTS HT-LM1020 promoted cell growth (p < 0.001) and cyclin B1 expression, and it reduced 5α-reductase and induced fibroblast growth factor 7 (FGF7), FGF10, and epithelial growth factor7 (EGF7) (p < 0.001). In the clinical trial, the experimental group demonstrated an increase in hair density from 133.70 to 148.87 n/cm2 at Week 24 (p < 0.001), while also expressing satisfaction with their hair density, reduced hair loss, and hairline. At Week 24, the total ratio of lactic acid bacteria operational taxonomic unit (OTU) in the scalp increased from 6.65% to 26.19%. At the same period, placebo-controlled group decreased Staphylococcus caprae OTU from 77.95% to 14.57% while experimental group decreased from 65.80% to 41.02%. CONCLUSIONS These present results showed that HT-LM1020 was a co-effector of ingredients for anti-hair loss contributing to cell proliferation and the expression of CDKs.
Collapse
Affiliation(s)
- Won-Young Bae
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Woo-Hyun Jung
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - So Lim Shin
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Minn Sohn
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Jangmi Suk
- Global Medical Research Center, Seoul, Republic of Korea
| | - Inhee Jung
- Global Medical Research Center, Seoul, Republic of Korea
| | - Young In Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yan H, Zhang S, Sun W, Li J, Xu J, Bi Y, Wu X, Song B. A bibliometric and visual analysis of the research status and hotspots of seborrheic dermatitis based on web of science. Skin Res Technol 2024; 30:e70048. [PMID: 39252564 PMCID: PMC11386261 DOI: 10.1111/srt.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Seborrheic dermatitis (SD) is a common chronic inflammatory skin disease. In recent years, significant progress has been made in the field of SD, but there has been no bibliometric research yet. This study aims to use bibliometric methods to analyze the current research status and hot topics of SD, to understand further the research trends and future development prospects in this field. METHODS Retrieve core literature on SD from the Web of Science database and conduct a detailed analysis using CiteSpace and VOSviewer software based on factors such as publication volume, countries (regions), research institutions, journals, authors, highly-cited papers, and keywords. RESULTS From 1996 to 2024, a total of 1436 publications were included in the bibliometric analysis. The number of publications has shown an increasing trend year by year. The USA is the leading country in this field of research. The University of California System is the primary research institution. The International Journal of Dermatology is the journal with the highest number of publications. The author Yang Won Lee has the highest number of publications, while the article "Seborrheic Dermatitis" (2004) by Gupta, A.K. has been cited the most. "Seborrheic dermatitis" is the most frequently occurring keyword. The main research hotspots and frontiers in SD are as follows: (1) The relationship between SD and other skin diseases is a popular research topic; (2) Malassezia and inflammation are current research hotspots in SD; and (3) Focusing on antifungal and anti-inflammatory treatments for SD is the current frontier direction in this field. CONCLUSION This study is a summary of the current status and hot trends of SD research, which helps clinical doctors and researchers quickly understand the insights and valuable information of SD research and provides reference for clinical decision-making and finding future research directions.
Collapse
Affiliation(s)
- Huixin Yan
- Changchun University of Chinese MedicineChangchunChina
| | - Shaobo Zhang
- Changchun University of Chinese MedicineChangchunChina
| | - Weichen Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Jingnan Li
- Changchun University of Chinese MedicineChangchunChina
| | - Jing Xu
- Changchun University of Chinese MedicineChangchunChina
| | - Yunpeng Bi
- Changchun University of Chinese MedicineChangchunChina
| | - Xingquan Wu
- Affiliated Hospital of Changchun University of Chinese MedicineChangchunChina
| | - Bailin Song
- Changchun University of Chinese MedicineChangchunChina
| |
Collapse
|
3
|
Ferček I, Ozretić P, Tambić-Andrašević A, Trajanoski S, Ćesić D, Jelić M, Geber G, Žaja O, Paić J, Lugović-Mihić L, Čivljak R. Comparison of the Skin Microbiota in the Periocular Region between Patients with Inflammatory Skin Diseases and Healthy Participants: A Preliminary Study. Life (Basel) 2024; 14:1091. [PMID: 39337875 PMCID: PMC11433335 DOI: 10.3390/life14091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
(1) Background: Periocular or periorbital dermatitis is a common term for all inflammatory skin diseases affecting the area of skin around the eyes. The clear etiopathogenesis of periocular dermatitis is still not fully understood. Advances in molecular techniques for studying microorganisms living in and on our bodies have highlighted the microbiome as a possible contributor to disease, as well as a promising diagnostic marker and target for innovative treatments. The aim of this study was to compare the composition and diversity of the skin microbiota in the periocular region between healthy individuals and individuals affected by the specific entity of periocular dermatitis. (2) Methods: A total of 35 patients with periocular dermatitis and 39 healthy controls were enrolled in the study. After a skin swab from the periocular region was taken from all participants, DNA extraction and 16S rRNA gene amplicon sequencing using Illumina NovaSeq technology were performed. (3) Results: Staphylococcus and Corynebacterium were the most abundant bacterial genera in the microbiota of healthy skin. Analysis of alpha diversity revealed a statistically significant change (p < 0.05) in biodiversity based on the Faith's PD index between patients and healthy individuals. We did not observe changes in beta diversity. The linear discriminant analysis effect size (LEfSe) revealed that Rothia, Corynebacterium, Bartonella, and Paracoccus were enriched in patients, and Anaerococcus, Bacteroides, Porphyromonas, and Enhydrobacter were enriched in healthy controls. (4) Conclusions: According to the results obtained, we assume that the observed changes in the bacterial microbiota on the skin, particularly Gram-positive anaerobic cocci and skin commensals of the genus Corynebacterium, could be one of the factors in the pathogenesis of the investigated inflammatory diseases. The identified differences in the microbiota between healthy individuals and patients with periocular dermatitis should be further investigated.
Collapse
Affiliation(s)
- Iva Ferček
- Department of Ophthalmology, Zabok General Hospital and Croatian Veterans' Hospital, 49210 Zabok, Croatia
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Arjana Tambić-Andrašević
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University Graz, 8010 Graz, Austria
| | - Diana Ćesić
- Department of Dermatology and Venereology, Medikol Clinic, 10000 Zagreb, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Goran Geber
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Orjena Žaja
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pediatrics, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Josipa Paić
- Department of Ophthalmology and Optometry, Šibenik General Hospital, 22000 Šibenik, Croatia
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Rok Čivljak
- Department for Respiratory Infections, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Shah RR, Larrondo J, Dawson T, Mcmichael A. Scalp microbiome: a guide to better understanding scalp diseases and treatments. Arch Dermatol Res 2024; 316:495. [PMID: 39073596 DOI: 10.1007/s00403-024-03235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
The scalp microbiome represents an array of microorganisms important in maintaining scalp homeostasis and mediating inflammation. Scalp microbial dysregulation has been implicated in dermatologic conditions including alopecia areata (AA), dandruff/seborrheic dermatitis (D/SD), scalp psoriasis (SP) and folliculitis decalvans (FD). Understanding the impact of scalp microbial dysbiosis gives insight on disease pathophysiology and guides therapeutic decision making. Herein we review the scalp microbiome and its functional role in scalp conditions by analysis of metagenomic medical literature in alopecia, D/SD, SP, and other dermatologic disease.Increased abundance of Malassezia, Staphylococcus, and Brevibacterium was associated with SD compared to healthy controls. A higher proportion of Corynebacterium, actinobacteria, and firmicutes are present in AA patients, and lower proportions of Staphylococcus caprae are associated with worse clinical outcomes. Decreased prevalence of actinobacteria and Propionibacterium and increased firmicutes, staphylococcus, and streptococcus are associated with scalp psoriasis. Studies of central centrifugal cicatricial alopecia (CCCA) suggest scalp microbial composition contributes to CCCA's pro-inflammatory status. The most common organisms associated with FD include methicillin-resistant S. aureus and S. lugdunensis. Antifungals have been a mainstay treatment for these diseases, while other alternatives including coconut oils and shampoos with heat-killed probiotics have shown considerable potential efficacy by replenishing the scalp microbiome.
Collapse
Affiliation(s)
- Rohan R Shah
- Rutgers New Jersey Medical School, Newark, NJ, USA.
- Penn State Hershey Department of Dermatology, Hershey, PA, USA.
| | - Jorge Larrondo
- Department of Dermatology, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Thomas Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), 11 Mandalay Rd, #17-01, Singapore, 308232, Republic of Singapore
| | - Amy Mcmichael
- Wake Forest School of Medicine Department of Dermatology, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Myers T, Bouslimani A, Huang S, Hansen ST, Clavaud C, Azouaoui A, Ott A, Gueniche A, Bouez C, Zheng Q, Aguilar L, Knight R, Moreau M, Song SJ. A multi-study analysis enables identification of potential microbial features associated with skin aging signs. FRONTIERS IN AGING 2024; 4:1304705. [PMID: 38362046 PMCID: PMC10868648 DOI: 10.3389/fragi.2023.1304705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 02/17/2024]
Abstract
Introduction: During adulthood, the skin microbiota can be relatively stable if environmental conditions are also stable, yet physiological changes of the skin with age may affect the skin microbiome and its function. The microbiome is an important factor to consider in aging since it constitutes most of the genes that are expressed on the human body. However, severity of specific aging signs (one of the parameters used to measure "apparent" age) and skin surface quality (e.g., texture, hydration, pH, sebum, etc.) may not be indicative of chronological age. For example, older individuals can have young looking skin (young apparent age) and young individuals can be of older apparent age. Methods: Here we aim to identify microbial taxa of interest associated to skin quality/aging signs using a multi-study analysis of 13 microbiome datasets consisting of 16S rRNA amplicon sequence data and paired skin clinical data from the face. Results: We show that there is a negative relationship between microbiome diversity and transepidermal water loss, and a positive association between microbiome diversity and age. Aligned with a tight link between age and wrinkles, we report a global positive association between microbiome diversity and Crow's feet wrinkles, but with this relationship varying significantly by sub-study. Finally, we identify taxa potentially associated with wrinkles, TEWL and corneometer measures. Discussion: These findings represent a key step towards understanding the implication of the skin microbiota in skin aging signs.
Collapse
Affiliation(s)
- Tyler Myers
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| | | | - Shi Huang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Shalisa T. Hansen
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | - Alban Ott
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | - Charbel Bouez
- L’Oréal Research and Innovation, Clark, NJ, United States
| | - Qian Zheng
- L’Oréal Research and Innovation, Clark, NJ, United States
| | - Luc Aguilar
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
- Shu Chien-Gene Lay Department of Engineering, University of California San Diego, La Jolla, CA, United States
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, United States
| | - Magali Moreau
- L’Oréal Research and Innovation, Clark, NJ, United States
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Filatov VA, Ilin EA, Kulyak OY, Kalenikova EI. Development and Validation of a Gas Chromatography-Mass Spectrometry Method for the Analysis of the Novel Plant-Based Substance with Antimicrobial Activity. Antibiotics (Basel) 2023; 12:1558. [PMID: 37887259 PMCID: PMC10603869 DOI: 10.3390/antibiotics12101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The research into new pharmaceutical substances based on essential oils, individual biologically active phytochemicals, and plant extracts is a priority in field of pharmaceutical sciences. A novel multicomponent substance based on Melaleuca alternifolia (M. alternifolia) leaf oil (TTO), 1,8-cineole (eucalyptol), and (-)-α-bisabolol with potent synergetic antimicrobial activity was investigated and suggested for the treatment of seborrheic dermatitis (SD) and dandruff. The objective of this research was to establish and validate a specific, accurate, and precise gas chromatography-mass spectrometry (GC-MS) method for further quantitative and qualitative analysis in order to ensure quality control. The main parameters of validation were suitability, specificity, linearity, accuracy, and intermediate precision according to the European Pharmacopoeia (XI edition), Russian Pharmacopoeia (XIV edition), and some parameters of ICH requirements. The peaks of fifteen chemical phytoconstituents were identified in the test sample solution with the prevalence of (-)-α-bisabolol (27.67%), 1,8-cineole (25.63%), and terpinen-4-ol (16.98%). These phytochemicals in the novel substance were chosen for standardization and validation of the GC-MS method. The chosen chromatographic conditions were confirmed for testing of the plant-based substance in a suitability test. It was established that the GC-MS method provides a significant separation, symmetry of peaks and resolution between phytochemicals. The calibration curves of each phytochemical had good linearity (R2 > 0.999) in five concentrations. In the same concertation range, the accuracy of terpinen-4-ol, 1,8-cineol, and (-)-α-bisabolol determination using the method of additives was 98.3-101.60%; the relative standard deviation (RSD) ranged from 0.89% to 1.51% and corresponded to requirements. The intraday and interday precision was ≤2.56%. Thus, the GC-MS method was validated to be specific, sensitive, linear, accurate, and precise. This GC-MS method could be recommended as a routine analytic technique for multicomponent plant-based substances-enriched terpenes.
Collapse
Affiliation(s)
- Viktor A. Filatov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.Y.K.); (E.I.K.)
- Science Center, SkyLab AG, 1066 Lausanne, Switzerland
| | - Egor A. Ilin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Olesya Yu. Kulyak
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.Y.K.); (E.I.K.)
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia
| | - Elena I. Kalenikova
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.Y.K.); (E.I.K.)
| |
Collapse
|
7
|
Nakao Y, Asada M, Uesawa Y. Comprehensive Study of Drug-Induced Pruritus Based on Adverse Drug Reaction Report Database. Pharmaceuticals (Basel) 2023; 16:1500. [PMID: 37895971 PMCID: PMC10610247 DOI: 10.3390/ph16101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Drug-induced pruritus triggers a desire to scratch, thereby diminishing one's quality of life. Certain instances of this phenomenon follow complex mechanisms of action that diverge from histamine-mediated pathways, known contributors to pruritus. However, investigations into the relationship between drugs and pruritus are limited. In this study, data mining techniques were employed to comprehensively analyze the characteristics of drugs linked to pruritus, using the FDA's Adverse Event Reporting System (FAERS) data. Reports linked to pruritus demonstrated noteworthy differences in gender, age, and weight when compared with non-pruritus cases. Among the leading candidates for drugs prompting pruritus were ophthalmic drugs, systemic antibacterials, contrast media, dermatological antifungals, and dermatological preparations. A principal component analysis showed that the second principal component served as an indicator for distinguishing between onsets at mucous membranes or the skin's surface. Additionally, the third principal component functioned as an indicator for categorizing administration methods as either invasive or noninvasive. Furthermore, a hierarchical cluster analysis conducted on these obtained principal components revealed the potential for classifying drugs based on the site of pruritus onset and the method of drug administration. These findings contribute to the development of targeted prevention and treatment strategies for avoiding pruritus in clinical practice.
Collapse
Affiliation(s)
| | | | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan (M.A.)
| |
Collapse
|
8
|
Jung WH. Alteration in skin mycobiome due to atopic dermatitis and seborrheic dermatitis. BIOPHYSICS REVIEWS 2023; 4:011309. [PMID: 38505818 PMCID: PMC10903429 DOI: 10.1063/5.0136543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2024]
Abstract
A microbiome consists of viruses, bacteria, archaea, fungi, and other microeukaryotes. It influences host immune systems and contributes to the development of various diseases, such as obesity, diabetes, asthma, and skin diseases, including atopic dermatitis and seborrheic dermatitis. The skin is the largest organ in the human body and has various microorganisms on its surface. Several studies on skin microbiomes have illustrated the effects of their composition, metabolites, and interactions with host cells on diseases. However, most studies have focused on the bacterial microbiome rather than the fungal microbiome, namely, mycobiome, although emerging evidence indicates that fungi also play a critical role in skin microbiomes through interactions with the host cells. I briefly summarize the current progress in the analysis of mycobiomes on human skin. I focused on alteration of the skin mycobiome caused by atopic and seborrheic dermatitis, with an emphasis on the Malassezia genus, which are the most dominant fungi residing here.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| |
Collapse
|
9
|
Filatov VA, Kulyak OY, Kalenikova EI. Chemical Composition and Antimicrobial Potential of a Plant-Based Substance for the Treatment of Seborrheic Dermatitis. Pharmaceuticals (Basel) 2023; 16:ph16030328. [PMID: 36986428 PMCID: PMC10053605 DOI: 10.3390/ph16030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Seborrheic dermatitis (SD) is the most prevalent dermatological disease, occurring in up to 50% of newborns, children, and adults around the world. The antibacterial and antifungal resistance contributed to the search for new natural substances and the development of a novel substance based on Melaleuca alternifolia (M. alternifolia) leaf oil (TTO), 1,8-cineole (eucalyptol), and α-(-)-bisabolol. Thus, this work aimed to determine the chemical composition of the novel plant-based substance and to evaluate its antimicrobial activity against standard microorganisms involved in the pathogenesis of SD. Moreover, the chemical composition of the substance was analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), Micrococcus luteus (M. luteus), and Candida albicans (C. albicans) were used for antimicrobial and antifungal assays by means of the broth microdilution method to determine the minimal inhibitory concentration (MIC). Finally, the substance’s ability to inhibit Malassezia furfur (M. furfur) was evaluated. Eighteen compounds from different chemical groups were identified by GC/MS. The major biologically active compounds of the substance were terpinen-4-ol (20.88%), 1,8-cineole (22.28%), (-)-α-bisabolol (25.73%), and o-cymene (8.16%). The results showed that the substance has a synergistic antimicrobial and antifungal activity, while S. epidermidis and C. albicans strains were the most susceptible. Furthermore, the substance inhibited M. furfur, which is a main pathogen involved in the pathogenesis of SD and clinical manifestations. It can be concluded that the novel plant-based substance has a promising potential against M. furfur and scalp commensal bacteria and may be helpful for the development of new drugs for treatment of dandruff and SD.
Collapse
Affiliation(s)
- Viktor A. Filatov
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
- SkyLab AG, 1066 Lausanne, Switzerland
- Correspondence:
| | - Olesya Yu. Kulyak
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia
| | - Elena I. Kalenikova
- Department of Pharmaceutical Chemistry, Pharmacognosy and Organization of Pharmaceutical Business, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Avenue, 119991 Moscow, Russia
| |
Collapse
|
10
|
Vysochanska V, Koval G. MALASSEZIA COLONIZATION CORRELATES WITH THE SEVERITY OF SEBORRHEIC DERMATITIS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1371-1377. [PMID: 37463370 DOI: 10.36740/wlek202306107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE The aim: To compare the number of fungi of the genus Malassezia on inflated and healthy areas of the skin and to correlate them with the severity of seborrheic dermatitis. PATIENTS AND METHODS Materials and methods: 168 patients with typical manifestations of seborrheic dermatitis on the scalp and face and 30 healthy individuals were recruited. SD severity was assessed by SEDASI. Samples from lesions on scalp, face and intact chest skin were cultivated and/or stained with methylene blue or cotton and inoculated onto Malassezia Leeming & Notman Agar Modified (MLNA). RESULTS Results: A statistical difference in colonization intensity between all body zones (Dwass-Steel-Critchlow-Flinger pairwise comparisons p≤0,001). Face zone with lesions of SD patients was two times more colonized with funguses than in the control group (38,5 vs 16,5 p=0,003). The sternal area with no skin lesions was more colonized in the SD group (25,0 vs 9,0 p=0,013). The SEDASI was positively correlated with the amount of CFU on the face (Spearman's rho 0,849; p≤0,001) and trunk (0,714; p≤0,001). CONCLUSION Conclusions: Our results demonstrate that inflamed seborrheic areas are more colonized with Malassezia fungi than intact areas. The intensity of Malassezia growth is correlated with the severity of the symptoms of seborrheic dermatitis. The level of colonization may be a potential biomarker to indicate the efficiency of new treatment approaches.
Collapse
Affiliation(s)
| | - Galina Koval
- UZHHGOROD NATIONAL UNIVERSITY, UZHHGOROD, UKRAINE
| |
Collapse
|
11
|
Dityen K, Soonthornchai W, Kueanjinda P, Kullapanich C, Tunsakul N, Somboonna N, Wongpiyabovorn J. Analysis of cutaneous bacterial microbiota of Thai patients with seborrheic dermatitis. Exp Dermatol 2022; 31:1949-1955. [PMID: 36076320 DOI: 10.1111/exd.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
Seborrheic dermatitis (SD) is a chronic inflammatory skin condition that occurs in body areas that contain profuse sebaceous glands. Skin microbiota are diverse across ethnic groups and its dysbiosis has been implicated in the pathogenesis of SD. Here, we reported the contribution of cutaneous bacterial microbiota to SD in the Thai population. Healthy individuals and patients with scalp SD were recruited into the study. Normal skin, scalp skin lesion (SL) and non-lesion sites (SNL) samples were collected using a tape stripping method and next-generation sequencing of 16S rRNA for microbiome analysis. Although bacterial diversity in all sample groups was not statistically different, a population of bacteria commonly found on skin of scalp showed signs of dysbiosis. Apart from the reduction of Corynebacterium spp., SD-specific microbiota was dominated by Firmicutes at taxa level and Pseudomonas spp., Staphylococcus spp. and Micrococcus spp. at genus level. The dysbiosis of the skin microbiota in SD was specifically described as an alteration of bacteria populations commonly found on scalp skin, implying that managing and controlling the cutaneous bacterial microbiome can alleviate and prevent SD and pave the way for the development of new SD treatments.
Collapse
Affiliation(s)
- Kanthaporn Dityen
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wipasiri Soonthornchai
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,School of Science, University of Phayao, Phayao, Thailand
| | - Patipark Kueanjinda
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chitrasak Kullapanich
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Naruemon Tunsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Jongkonnee Wongpiyabovorn
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Lesnichaya M, Tsivileva O. Arabinogalactan-Stabilized Selenium Sulfide Nanoparticles and Their Fungistatic Activity Against Phytophthora cactorum. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|