1
|
Juszczak A, Gilligan LC, Hughes BA, Hassan-Smith ZK, McCarthy MI, Arlt W, Tomlinson JW, Owen KR. Altered cortisol metabolism in individuals with HNF1A-MODY. Clin Endocrinol (Oxf) 2020; 93:269-279. [PMID: 32395877 DOI: 10.1111/cen.14218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE AND CONTEXT Maturity onset diabetes of the young due to variants in HNF1A (HNF1A-MODY) is the most common form of monogenic diabetes. Individuals with HNF1A-MODY usually have a lean phenotype which contrasts with type 2 diabetes (T2DM). Data from hepatocytes derived from Hnf1a knock-out mice demonstrated dysregulation of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which regulates glucocorticoid availability and action in target tissues, together with 11β-HSD2 and steroid A-ring reductases, 5α- and 5β-reductase. We proposed that altered glucocorticoid metabolism might underpin some of the phenotypic differences between patients with HNF1A-MODY and those with T2DM. DESIGN A retrospective matched cohort study. PATIENTS AND MEASUREMENTS 24-hours urine steroid metabolome profiling was carried out by gas chromatography-mass spectrometry in 35 subjects with HNF1A-MODY, 35 individuals with T2DM and 35 healthy controls matched for age, sex and BMI. The steroid metabolites were expressed as μg/L in all groups and measured in mid-morning urine in diabetic subjects and 24-hour urine collection in healthy controls. Hence, only ratios were compared not the individual steroids. Established ratios of glucocorticoid metabolites were used to estimate 11β-HSD1/2 and 5α- and 5β-reductase activities. RESULTS While 11β-HSD1 activity was similar in all groups, 11β-HSD2 activity was significantly lower in subjects with HNF1A-MODY and T2DM than in healthy controls. The ratio of 5β- to 5α-metabolites of cortisol was higher in subjects with HNF1A-MODY than in T2DM and healthy controls, probably due to increased activity of the 5β-reductase (AKR1D1) in HNF1A-MODY. CONCLUSIONS This is the first report of steroid metabolites in HNF1A-MODY. We have identified distinct differences in steroid metabolism pathways in subjects with HNF1A-MODY that have the potential to alter steroid hormone availability. Further studies are required to explore whether these changes link to phenotype.
Collapse
Affiliation(s)
- Agata Juszczak
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Zaki K Hassan-Smith
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
2
|
Fu J, Wang T, Liu J, Wang X, Zhang Q, Li M, Xiao X. Using Clinical Indices to Distinguish MODY2 (GCK Mutation) and MODY3 (HNF1A Mutation) from Type 1 Diabetes in a Young Chinese Population. Diabetes Ther 2019; 10:1381-1390. [PMID: 31214998 PMCID: PMC6612336 DOI: 10.1007/s13300-019-0647-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Accurate diagnosis of maturity-onset diabetes of the young (MODY) is required in order to select appropriate treatment options and to assess prognosis. The aim of this study was to explore potential clinical indicators that could be used to differentiate MODY2, MODY3, and type 1 diabetes (T1D) in young subjects. METHODS Twelve patients with MODY3 and 29 patients with MODY2 were characterized and compared to 26 patients with T1D. These three groups were matched for age and gender. Clinical profiles of the 67 patients were collected. Receiver operating characteristic (ROC) curves were used to identify the optimal cutoff values of clinical indicators. RESULTS Compared to patients with T1D, subjects with MODY3 had higher fasting C-peptide levels (1.34 ± 1.51 vs. 0.29 ± 0.22 ng/mL; P < 0.001) and lower high-sensitivity C-reactive protein (hsCRP) levels (0.18 ± 0.15 vs. 1.22 ± 1.49 mg/L, P = 0.004); patients with MODY2 had lower hsCRP (0.37 ± 0.39 vs. 1.22 ± 1.49 mg/L; P = 0.003), total cholesterol (4.12 ± 0.68 vs. 4.61 ± 0.81 mmol/L, P = 0.034), and low-density lipoprotein cholesterol (LDL-C) (2.24 ± 0.68 vs. 2.67 ± 0.79 ng/L, P = 0.002) levels and higher fasting C-peptide levels (0.96 ± 0.42 vs. 0.29 ± 0.22 ng/mL, P = 0.002). The ROC-derived hsCRP values for discriminating MODY2 from T1D, MODY3 from T1D, and MODY3 from MODY2 were 0.675, 0.833, and 0.763, respectively. The ROC-derived fasting C-peptide levels for discriminating MODY2 from T1D and MODY3 from T1D were 0.951 and 0.975, respectively. The ROC-derived total cholesterol and LDL-C values for discriminating MODY2 from T1D were 0.670 and 0.662, respectively; the ROC-derived triglyceride value for discriminating MODY3 from MODY2 was 0.756. Additionally, a combination of indicators permitted better discrimination of MODY subtypes than any single parameter. CONCLUSION Our findings suggest that fasting C-peptide, hsCRP, and lipid levels permit good discrimination among MODY2, MODY3, and T1D. These clinical indicators could be used as markers of MODY2 and MODY3 in young patients with diabetes.
Collapse
Affiliation(s)
- Junling Fu
- Peking Union Medical College Hospital, Beijing, China
| | - Tong Wang
- Peking Union Medical College Hospital, Beijing, China
| | - Jieying Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xiaojing Wang
- Peking Union Medical College Hospital, Beijing, China
| | - Qian Zhang
- Peking Union Medical College Hospital, Beijing, China
| | - Ming Li
- Peking Union Medical College Hospital, Beijing, China
| | - Xinhua Xiao
- Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
3
|
Tan J, Xu J, Wei G, Zhang L, Sun L, Wang G, Li F, Jiang F. HNF1 α Controls Liver Lipid Metabolism and Insulin Resistance via Negatively Regulating the SOCS-3-STAT3 Signaling Pathway. J Diabetes Res 2019; 2019:5483946. [PMID: 31223625 PMCID: PMC6541945 DOI: 10.1155/2019/5483946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/30/2023] Open
Abstract
This study is aimed at evaluating the effects, functions, and mechanism of HNF1α on hepatic glycolipid metabolism. In this study, free fatty acid- (FFA-) induced steatosis of hepatocyte liver cell LO2 was used as an in vitro model. The methods of Oil Red O staining, RT-qPCR, western blot, and immunofluorescence staining were used to detect LO2-regulated HNF1α expression and its effects on FFA-induced LO2 cell steatosis, the insulin signaling and SOCS-3-STAT3 signaling pathways, the expression of lipid metabolism-related regulators, and phosphorylation. With increased FFA induction time, the expression of HNF1α in the LO2 fatty degeneration hepatic cells gradually decreased. Downregulation of HNF1α expression aggravated FFA-induced steatosis of LO2 hepatocytes. HNF1α promotes activation of the insulin pathway and oxidative breakdown of fat and inhibits lipid anabolism. Inhibitors of STAT3 can reverse the regulation of decreased HNF1α expression on the insulin signaling pathway and fat metabolism. We also confirmed this pathway using HNF1α-/- mice combining treatment with STAT3 inhibitor NSC 74859 in vivo. HNF1α regulates hepatic lipid metabolism by promoting the expression of SOCS-3 and negatively regulating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jiaorong Tan
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guohua Wei
- Department of Gastroenterology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Lijuan Zhang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Long'e Sun
- Department of Gastroenterology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Guangyu Wang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Fei Li
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Fengxiang Jiang
- Department of Gastroenterology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| |
Collapse
|
4
|
Ferkingstad E, Oddsson A, Gretarsdottir S, Benonisdottir S, Thorleifsson G, Deaton AM, Jonsson S, Stefansson OA, Norddahl GL, Zink F, Arnadottir GA, Gunnarsson B, Halldorsson GH, Helgadottir A, Jensson BO, Kristjansson RP, Sveinbjornsson G, Sverrisson DA, Masson G, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Holm H, Jonsdottir I, Olafsson S, Steingrimsdottir T, Rafnar T, Bjornsson ES, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat Commun 2018; 9:5101. [PMID: 30504769 PMCID: PMC6269469 DOI: 10.1038/s41467-018-07460-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
Gallstones are responsible for one of the most common diseases in the Western world and are commonly treated with cholecystectomy. We perform a meta-analysis of two genome-wide association studies of gallstone disease in Iceland and the UK, totaling 27,174 cases and 736,838 controls, uncovering 21 novel gallstone-associated variants at 20 loci. Two distinct low frequency missense variants in SLC10A2, encoding the apical sodium-dependent bile acid transporter (ASBT), associate with an increased risk of gallstone disease (Pro290Ser: OR = 1.36 [1.25-1.49], P = 2.1 × 10-12, MAF = 1%; Val98Ile: OR = 1.15 [1.10-1.20], P = 1.8 × 10-10, MAF = 4%). We demonstrate that lower bile acid transport by ASBT is accompanied by greater risk of gallstone disease and highlight the role of the intestinal compartment of the enterohepatic circulation of bile acids in gallstone disease susceptibility. Additionally, two low frequency missense variants in SERPINA1 and HNF4A and 17 common variants represent novel associations with gallstone disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Florian Zink
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | | | | | | | | | | | | | | | | | - Gisli Masson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspítali University Hospital, Reykjavik, 101, Iceland
| | | | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, 600, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Sigurdur Olafsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | | | - Einar S Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Patrick Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.
| |
Collapse
|
5
|
Kleinberger JW, Copeland KC, Gandica RG, Haymond MW, Levitsky LL, Linder B, Shuldiner AR, Tollefsen S, White NH, Pollin TI. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet Med 2018; 20:583-590. [PMID: 29758564 PMCID: PMC5955780 DOI: 10.1038/gim.2017.150] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
PurposeMonogenic diabetes accounts for 1-2% of diabetes cases. It is often undiagnosed, which may lead to inappropriate treatment. This study was performed to estimate the prevalence of monogenic diabetes in a cohort of overweight/obese adolescents diagnosed with type 2 diabetes (T2D).MethodsSequencing using a custom monogenic diabetes gene panel was performed on a racially/ethnically diverse cohort of 488 overweight/obese adolescents with T2D in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) clinical trial. Associations between having a monogenic diabetes variant and clinical characteristics and time to treatment failure were analyzed.ResultsMore than 4% (22/488) had genetic variants causing monogenic diabetes (seven GCK, seven HNF4A, five HNF1A, two INS, and one KLF11). Patients with monogenic diabetes had a statistically, but not clinically, significant lower body mass index (BMI) z-score, lower fasting insulin, and higher fasting glucose. Most (6/7) patients with HNF4A variants rapidly failed TODAY treatment across study arms (hazard ratio = 5.03, P = 0.0002), while none with GCK variants failed treatment.ConclusionThe finding of 4.5% of patients with monogenic diabetes in an overweight/obese cohort of children and adolescents with T2D suggests that monogenic diabetes diagnosis should be considered in children and adolescents without diabetes-associated autoantibodies and maintained C-peptide, regardless of BMI, as it may direct appropriate clinical management.
Collapse
Affiliation(s)
- Jeffrey W. Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | - Rachelle G. Gandica
- Naomi Berrie Diabetes Center, Columbia University Medical Center,
New York, NY
| | | | | | - Barbara Linder
- Division of Diabetes, Endocrinology and Metabolic Diseases, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
- Regeneron Genetics Center, Regeneron, Tarrytown, NY
| | | | - Neil H. White
- Washington University School of Medicine, St. Louis, MO
| | - Toni I. Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - for the TODAY Study Group
- Address for correspondence: Toni I. Pollin, M.S., Ph.D.,
University of Maryland School of Medicine, 660 West Redwood Street, Room 445C,
Baltimore, MD 21201.;
| |
Collapse
|
6
|
Hepatocyte nuclear factor 1A deficiency causes hemolytic anemia in mice by altering erythrocyte sphingolipid homeostasis. Blood 2017; 130:2786-2798. [PMID: 29109103 DOI: 10.1182/blood-2017-03-774356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor (HNF) family regulates complex networks of metabolism and organ development. Human mutations in its prototypical member HNF1A cause maturity-onset diabetes of the young (MODY) type 3. In this study, we identified an important role for HNF1A in the preservation of erythrocyte membrane integrity, calcium homeostasis, and osmotic resistance through an as-yet unrecognized link of HNF1A to sphingolipid homeostasis. HNF1A-/- mice displayed microcytic hypochromic anemia with reticulocytosis that was partially compensated by avid extramedullary erythropoiesis at all erythroid stages in the spleen thereby excluding erythroid differentiation defects. Morphologically, HNF1A-/- erythrocytes resembled acanthocytes and displayed increased phosphatidylserine exposure, high intracellular calcium, and elevated osmotic fragility. Sphingolipidome analysis by mass spectrometry revealed substantial and tissue-specific sphingolipid disturbances in several tissues including erythrocytes with the accumulation of sphingosine as the most prominent common feature. All HNF1A-/- erythrocyte defects could be simulated by exposure of wild-type (WT) erythrocytes to sphingosine in vitro and attributed in part to sphingosine-induced suppression of the plasma-membrane Ca2+-ATPase activity. Bone marrow transplantation rescued the anemia phenotype in vivo, whereas incubation with HNF1A-/- plasma increased the osmotic fragility of WT erythrocytes in vitro. Our data suggest a non-cell-autonomous erythrocyte defect secondary to the sphingolipid changes caused by HNF1A deficiency. Transcriptional analysis revealed 4 important genes involved in sphingolipid metabolism to be deregulated in HNF1A deficiency: Ormdl1, sphingosine kinase-2, neutral ceramidase, and ceramide synthase-5. The considerable erythrocyte defects in murine HNF1A deficiency encourage clinical studies to explore the hematological consequences of HNF1A deficiency in human MODY3 patients.
Collapse
|
7
|
Abstract
Purpose Hepatocyte nuclear factor 1 alpha (HNF1α) defects cause Mature Onset Diabetes of the Young type 3 (MODY3), characterized by defects in beta-cell insulin secretion. However, HNF1α is involved in many other metabolic pathways with relevance for monogenic or polygenic type 2 diabetes. We aimed to investigate gut hormones, lipids, and insulin regulation in response to a meal test in HNF1α defect carriers (MODY3) compared to non-diabetic subjects (controls) and type 2 diabetes (T2D). Methods We administered a standardized liquid meal to each participant. Over 6 hours, we measured post-meal responses of insulin regulation (blood glucose, c-peptide, insulin), gut hormones (ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1) and lipids (non-esterified fatty acids [NEFA] and triglycerides). Results We found that MODY3 participants had lower insulin secretion indices than controls and T2D participants, showing the expected β-cell defect. MODY3 had similar glycated hemoglobin levels (HbA1c median [IQR]: 6.5 [5.6–7.6]%) compared to T2D (median: 6.6 [6.2–6.9]%; P<0.05). MODY3 had greater insulin sensitivity (Matsuda index: 71.9 [29.6; 125.5]) than T2D (3.2 [4.0; 6.0]; P<0.05). MODY3 experienced a larger decrease in the ratio of NEFA to insulin (NEFA 30–0 / insulin 30–0: -39 [-78; -30] x104) in the early post-prandial period (0–30 minutes) compared to controls and to T2D (-2.0 [-0.6; -6.4] x104; P<0.05). MODY3 had lower fasting (0.66 [0.46; 1.2] mM) and post-meal triglycerides levels compared to T2D (fasting: 2.3 [1.7; 2.7] mM; P<0.05). We did not detect significant post-meal differences in ghrelin and incretins between MODY3 and other groups. Conclusion In response to a standard meal test, MODY3 showed greater early post-prandial NEFA diminution in response to relatively low early insulin secretion, and they maintained very low post-prandial triglycerides levels.
Collapse
|
8
|
Najmi LA, Aukrust I, Flannick J, Molnes J, Burtt N, Molven A, Groop L, Altshuler D, Johansson S, Bjørkhaug L, Njølstad PR. Functional Investigations of HNF1A Identify Rare Variants as Risk Factors for Type 2 Diabetes in the General Population. Diabetes 2017; 66:335-346. [PMID: 27899486 PMCID: PMC5860263 DOI: 10.2337/db16-0460] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022]
Abstract
Variants in HNF1A encoding hepatocyte nuclear factor 1α (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73-5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to <60% of normal (wild-type) activity was strongly associated with diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99-12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population.
Collapse
Affiliation(s)
- Laeya Abdoli Najmi
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Janne Molnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Noel Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Center, Lund University, Malmö, Sweden
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA
- Departments of Molecular Biology and Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Biomedical Laboratory Sciences, Bergen University College, Bergen, Norway
| | - Pål Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Tang J, Tang CY, Wang F, Guo Y, Tang HN, Zhou CL, Tan SW, Liu SP, Zhou ZG, Zhou HD. Genetic diagnosis and treatment of a Chinese ketosis-prone MODY 3 family with depression. Diabetol Metab Syndr 2017; 9:5. [PMID: 28105082 PMCID: PMC5240193 DOI: 10.1186/s13098-016-0198-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To analyze the gene mutation and mental disorder of a Chinese ketosis-prone diabetes (KPD) family, and to make a precise diagnosis and give a treatment for them. METHODS We studied a Chinese family with a clinical diagnosis of maturity-onset diabetes of the young (MODY). The clinical data and the blood samples were collected. The promotor and coding regions inclusive intron exon boundaries of the HNF1A, HNF4A were detected by polymerase chain reaction (PCR) and direct sequencing. The missense mutation was also analyzed by bioinformatics. Genetic counseling was performed twice a month to relieve the mental disorder of the persons. RESULTS The missense mutation c.779 C>T (p.T260M) in exon4 of HNF1A gene was detected, and the symptom heterogenicity among persons in this family were found. All the members were retreated with Gliclazide and stopped to use other medicine, the blood glucose of them were well controlled. We also performed an active genetic counseling to them and the mental disorder of the proband's sister was relieved. CONCLUSIONS A missense mutation of HNF1A gene was first found in Chinese ketosis-prone MODY family with manifestations heterogenicity among the persons. Sulphonylureas medicine and genetic counseling are efficiency ways to treat MODY 3 and its' mental disorder respectively.
Collapse
Affiliation(s)
- Jun Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Chen-Yi Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Fang Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Yue Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Hao-Neng Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Ci-La Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Shu-Wen Tan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Shi-Ping Liu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Zhi-Guang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Hou-De Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| |
Collapse
|
10
|
Wu W, Patel A, Kyöstilä K, Lohi H, Mladkova N, Kiryluk K, Sun X, Lefkowitch JH, Worman HJ, Gharavi AG. Genome-wide association study in mice identifies loci affecting liver-related phenotypes including Sel1l influencing serum bile acids. Hepatology 2016; 63:1943-56. [PMID: 26857093 DOI: 10.1002/hep.28495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/28/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Using publicly available data from inbred mouse strains, we conducted a genome-wide association study to identify loci that accounted for liver-related phenotypes between C57BL/6J and A/J mice fed a Paigen diet. We confirmed genome-wide significant associations for hepatic cholesterol (chromosome 10A2) and serum total bile acid concentration (chromosome 12E) and identified a new locus for liver inflammation (chromosome 7C). Analysis of consomic mice confirmed that chromosome 12 A/J alleles accounted for the variance in serum total bile acid concentrations and had pleiotropic effects on liver mass, serum cholesterol, and serum alanine aminotransferase activity. Using an affected-only haplotype analysis among strains, we refined the chromosome 12E signal to a 1.95 Mb linkage disequilibrium block containing only one gene, sel-1 suppressor of lin-12-like (Sel1l). RNA sequencing and immunoblotting demonstrated that the risk allele locally conferred reduced expression of SEL1L in liver and distantly down-regulated pathways associated with hepatocyte nuclear factor 1 homeobox A (Hnf1a) and hepatocyte nuclear factor 4A (Hnf4a), known modifiers of bile acid transporters and metabolic traits. Consistent with these data, knockdown of SEL1L in HepG2 cells resulted in reduced HNF1A and HNF4A and increased bile acids in culture media; it further captured multiple molecular signatures observed in consomic mouse livers with reduced SEL1L. Finally, dogs harboring a SEL1L mutation and Sel1l(+/-) mice fed a Paigen diet had significantly increased serum total bile acid concentrations, providing independent confirmation linking SEL1L to bile acid metabolism. CONCLUSION Genetic analyses of inbred mouse strains identified loci affecting different liver-related traits and implicated Sel1l as a significant determinant of serum bile acid concentration. (Hepatology 2016;63:1943-1956).
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ami Patel
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kaisa Kyöstilä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Nikol Mladkova
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Krzysztof Kiryluk
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Xiaoyun Sun
- JP Sulzberger Columbia Genome Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jay H Lefkowitch
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ali G Gharavi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
11
|
von Wnuck Lipinski K, Sattler K, Peters S, Weske S, Keul P, Klump H, Heusch G, Göthert JR, Levkau B. Hepatocyte Nuclear Factor 1A Is a Cell-Intrinsic Transcription Factor Required for B Cell Differentiation and Development in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:1655-65. [PMID: 26800876 DOI: 10.4049/jimmunol.1500897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Abstract
The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function.
Collapse
Affiliation(s)
- Karin von Wnuck Lipinski
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Katherine Sattler
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Susann Peters
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Sarah Weske
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Petra Keul
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; and
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany;
| |
Collapse
|
12
|
de Vries AGM, Bakker-van Waarde WM, Dassel ACM, Losekoot M, Duiker EW, Gouw ASH, Bodewes FAJA. A novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) gene mutation, presenting with neonatal cholestasis. J Hepatol 2015; 63:1295-7. [PMID: 26307397 DOI: 10.1016/j.jhep.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/04/2022]
Affiliation(s)
- Aleida G M de Vries
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Willie M Bakker-van Waarde
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne C M Dassel
- Department of Pediatrics, Deventer Hospital, Deventer, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Evelien W Duiker
- Department of Pathology and Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Annette S H Gouw
- Department of Pathology and Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frank A J A Bodewes
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|