1
|
Kang HYJ, Ko M, Ryu KS. Prediction model for survival of younger patients with breast cancer using the breast cancer public staging database. Sci Rep 2024; 14:25723. [PMID: 39468113 DOI: 10.1038/s41598-024-76331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer (BC) is a major contributor to female mortality worldwide, particularly in young women with aggressive tumors. Despite the need for accurate prognosis in this demographic, existing studies primarily focus on broader age groups, often using the SEER database, which has limitations in variable selection. This study aimed to develop an ML-based model to predict survival outcomes in young BC patients using the BC public staging database. A total of 3,401 patients with BC were included in the study. Patients were categorized as younger (n = 1574) and older (n = 1827). We applied several survival models-Random Survival Forest, Gradient Boosting Survival, Extra Survival Trees (EST), and penalized Cox models (Lasso and ElasticNet)-to compare mortality characteristics. The EST model outperformed others in predicting mortality for both age groups. Older patients exhibited a higher prevalence of comorbidities compared to younger patients. Tumor stage was the primary variable used to train the model for mortality prediction in both groups. COPD was a significant variable only in younger patients with BC. Other variables exhibited varying degrees of consistency in each group. These findings can help identify high-risk young female patients with BC who require aggressive treatment by predicting the risk of mortality.
Collapse
Affiliation(s)
- Ha Ye Jin Kang
- Department of Applied Artificial Intelligence, Hanyang University, Ansan-si, Gyeonggi- do, Republic of Korea
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Minsam Ko
- Department of Applied Artificial Intelligence, Hanyang University, Ansan-si, Gyeonggi- do, Republic of Korea
| | - Kwang Sun Ryu
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Pilehvari A, Kimmick G, You W, Bonilla G, Anderson R. Disparities in receipt of 1- st line CDK4/6 inhibitors with endocrine therapy for treatment of hormone receptor positive, HER2 negative metastatic breast cancer in the real-world setting. Breast Cancer Res 2024; 26:144. [PMID: 39425174 PMCID: PMC11488071 DOI: 10.1186/s13058-024-01902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE This study used real-world observational data to compare profiles of patients receiving different first-line treatment for hormone receptor positive (ER+), HER2 negative, metastatic breast cancer (MBC): CDK4/6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) versus ET alone. METHOD From a nationwide electronic health record-derived Flatiron Health de-identified database including 280 US cancer clinics, we identified patients with hormone receptor positive, HER2 negative, metastatic breast cancer receiving 1st -line therapy with ET alone or CDK4/6i plus ET between February 2015 and November 2021. Patient sociodemographic status, MBC treatment regimen and outcomes were the focus of this analysis. Patient characteristics were compared using t-tests and chi-square tests. Logistic regression analysis was performed to examine the association of patient characteristics with the likelihood of receiving 1st -line CDK4/6i plus ET vs. ET alone. Kaplan-Meier method and Cox proportional hazards were used to test the impact of 1st -line treatment regimen on real-world progression-free survival (PFS) and overall survival (OS). Baseline characteristics were balanced using inverse probability weighting (IPW). RESULTS The study population included 3,917 patients receiving CDK4/6i plus ET (n = 2170) and ET alone (n = 1747) for their MBC. Compared to patients receiving ET alone, those receiving CDK4/6i plus ET were younger (mean age 66.8 vs. 68.6, p < 0.001), more likely to present with de novo MBC (p < 0.001), had better performance status (50.2% vs. 40.5% patients with ECOG value 0, p = 0.001) and lower number of comorbidities (29.7% vs. 26.6% ≥ 1 comorbidity, p < 0.001). Logistic regression revealed increased odds of CDK4/6i plus ET in individuals aged 50-64 (OR: 3.42, 95% CI [2.41, 4.86]) and 65-74 (OR: 3.18, 95% CI [1.68, 6.02]) versus those aged 18-49 years of age. Black individuals had lower odds of CDK4/6i plus ET (OR: 0.76, 95% CI [0.58, 1.00]) compared to White individuals. Other characteristics associated with lower odds of CDK4/6i plus ET included patients with stage III disease (OR: 0.69, 95% CI [0.52, 0.92]), lower performance status (OR: 0.50, 95% CI [0.40, 0.62]), and Medicare insurance (OR: 0.73, 95% CI [0.30, 1.78]) compared to those with commercial and Medicaid insurance. After IPW adjustment, use of CDK4/6i plus ET as 1st -line treatment was associated with significantly longer median PFS compared to ET alone (27 vs. 17 months; hazard ratio [HR] = 0.61, p < 0.001). Median OS was 52 months in the CDK4/6i plus ET group and was 42 months with ET alone (HR = 0.74, p < 0.001). CONCLUSION In this real-world database, disparities in receiving 1st -line CDK4/6 inhibitors were seen by age, diagnosis stage, baseline performance status, comorbidity, and insurance status. In adjusted analysis, the use of 1st -line CDK4/6i plus ET yielded better PFS and OS rates than ET alone. Further efforts are essential to enhance equitable use of and access to this crucial drug class.
Collapse
Affiliation(s)
- Asal Pilehvari
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA.
| | - Gretchen Kimmick
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Wen You
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Gloribel Bonilla
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Roger Anderson
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
3
|
Glass K, Fines C, Coulter P, Jena L, McCarthy HO, Buckley N. Development and Characterization of a Peptide-Bisphosphonate Nanoparticle for the Treatment of Breast Cancer. Mol Pharm 2024; 21:4970-4982. [PMID: 39196792 PMCID: PMC11462496 DOI: 10.1021/acs.molpharmaceut.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/30/2024]
Abstract
In women, breast cancer (BC) is the most common cancer, and despite advancements in diagnosis and treatment, 20-30% of early stage BC patients develop metastatic disease. Metastatic BC is deemed an incurable disease, which accounts for 90% of BC related deaths, with only 26% of metastatic patients reaching a 5 year survival rate. Therefore, there is an unmet need for the prevention or treatment of metastasis in early stage breast cancer patients. Bisphosphonates (BPs) are potent inhibitors of bone resorption and are extensively used for the prevention of osteoporosis and other skeletal disorders, as well as for the treatment of secondary bone cancer in BC patients. Furthermore, the direct anticancer activity of BPs has been established in primary tumor models. However, these studies were limited by the need for dosages far above the clinical range to overcome BPs' high affinity for bones and poor accumulation in the tumor itself, which leads to toxicity, including osteonecrosis of the jaw. To decrease BP dosage, increase bioavailability, and direct anticancer activity, we used the RALA (R-) peptide delivery system to form highly stable NPs with the nitrogen containing BP, risedronate (R-RIS). In vitro studies showed that, in comparison to RIS, R-RIS nanoparticles increased cytotoxicity and reduced metastatic features such as proliferation, migration, invasion, and adhesion of metastatic BC cells to bones. Furthermore, in an in vivo model, R-RIS had increased tumor accumulation while still maintaining similar bone accumulation to RIS alone. This increase in tumor accumulation corresponded with decreased tumor volume and lungs metastasis. R-RIS has great potential to be used in combination with standard of care chemotherapy for the treatment of primary BC and its metastasis while still having its bone resorption inhibiting properties.
Collapse
Affiliation(s)
- Kimberley Glass
- School of Pharmacy, Queen’s
University Belfast, 97 Lisburn Road, BT9 7BL Northern Ireland, U.K.
| | - Cory Fines
- School of Pharmacy, Queen’s
University Belfast, 97 Lisburn Road, BT9 7BL Northern Ireland, U.K.
| | - Paula Coulter
- School of Pharmacy, Queen’s
University Belfast, 97 Lisburn Road, BT9 7BL Northern Ireland, U.K.
| | - Lynn Jena
- School of Pharmacy, Queen’s
University Belfast, 97 Lisburn Road, BT9 7BL Northern Ireland, U.K.
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s
University Belfast, 97 Lisburn Road, BT9 7BL Northern Ireland, U.K.
| | - Niamh Buckley
- School of Pharmacy, Queen’s
University Belfast, 97 Lisburn Road, BT9 7BL Northern Ireland, U.K.
| |
Collapse
|
4
|
Song HK, Kim JM, Noh EM, Youn HJ, Lee YR. Role of NOX1 and NOX5 in protein kinase C/reactive oxygen species‑mediated MMP‑9 activation and invasion in MCF‑7 breast cancer cells. Mol Med Rep 2024; 30:188. [PMID: 39219290 PMCID: PMC11350630 DOI: 10.3892/mmr.2024.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
NADPH oxidases (NOXs) are a family of membrane proteins responsible for intracellular reactive oxygen species (ROS) generation by facilitating electron transfer across biological membranes. Despite the established activation of NOXs by protein kinase C (PKC), the precise mechanism through which PKC triggers NOX activation during breast cancer invasion remains unclear. The present study aimed to investigate the role of NOX1 and NOX5 in the invasion of MCF‑7 human breast cancer cells. The expression and activity of NOXs and matrix metalloprotease (MMP)‑9 were assessed by reverse transcription‑quantitative PCR and western blotting, and the activity of MMP‑9 was monitored using zymography. Cellular invasion was assessed using the Matrigel invasion assay, whereas ROS levels were quantified using a FACSCalibur flow cytometer. The findings suggested that NOX1 and NOX5 serve crucial roles in 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced MMP‑9 expression and invasion of MCF‑7 cells. Furthermore, a connection was established between PKC and the NOX1 and 5/ROS signaling pathways in mediating TPA‑induced MMP‑9 expression and cellular invasion. Notably, NOX inhibitors (diphenyleneiodonium chloride and apocynin) significantly attenuated TPA‑induced MMP‑9 expression and invasion in MCF‑7 cells. NOX1‑ and NOX5‑specific small interfering RNAs attenuated TPA‑induced MMP‑9 expression and cellular invasion. In addition, knockdown of NOX1 and NOX5 suppressed TPA‑induced ROS levels. Furthermore, a PKC inhibitor (GF109203X) suppressed TPA‑induced intracellular ROS levels, MMP‑9 expression and NOX activity in MCF‑7 cells. Therefore, NOX1 and NOX5 may serve crucial roles in TPA‑induced MMP‑9 expression and invasion of MCF‑7 breast cancer cells. Furthermore, the present study indicated that TPA‑induced MMP‑9 expression and cellular invasion were mediated through PKC, thus linking the NOX1 and 5/ROS signaling pathways. These findings offer novel insights into the potential mechanisms underlying their anti‑invasive effects in breast cancer.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Practical Research Division, Honam National Institute of Biological Resources, Mokpo, Jeollanam 58762, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
5
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
6
|
Abdulla FAA, Demirkol A. A novel textile-based UWB patch antenna for breast cancer imaging. Phys Eng Sci Med 2024; 47:851-861. [PMID: 38530575 PMCID: PMC11408408 DOI: 10.1007/s13246-024-01409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer is the second leading cause of death for women worldwide, and detecting cancer at an early stage increases the survival rate by 97%. In this study, a novel textile-based ultrawideband (UWB) microstrip patch antenna was designed and modeled to work in the 2-11.6 GHz frequency range and a simulation was used to test its performance in early breast cancer detection. The antenna was designed with an overall size of 31*31 mm2 using a denim substrate and 100% metal polyamide-based fabric with copper, silver, and nickel to provide comfort for the wearer. The designed antenna was tested in four numerical breast models. The models ranged from simple tumor-free to complex models with small tumors. The size, structure, and position of the tumor were modified to test the suggested ability of the antenna to detect cancers with different shapes, sizes, and positions. The specific absorption rate (SAR), return loss (S11), and voltage standing wave ratio (VSWR) were calculated for each model to measure the antenna performance. The simulation results showed that SAR values were between 1.6 and 2 W/g (10 g SAR) and were within the allowed range for medical applications. Additionally, the VSWR remained in an acceptable range from 1.15 to 2. Depending on the size and location of the tumor, the antenna return losses of the four models ranged from - 36 to - 18.5 dB. The effect of bending was tested to determine the flexibility. The antenna proved to be highly effective and capable of detecting small tumors with diameters of up to 2 mm.
Collapse
Affiliation(s)
| | - Aşkin Demirkol
- Electrical and Electronics Engineering, Sakarya University, Sakarya, 54100, Turkey
| |
Collapse
|
7
|
Liu SM, Huang SY, Wu HM, Chang CL, Huang HY. Ovarian stimulation response and fertility outcomes in patients with breast cancer across different stages, grades, and hormone receptor status for fertility preservation. J Formos Med Assoc 2024:S0929-6646(24)00399-1. [PMID: 39214749 DOI: 10.1016/j.jfma.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aimed to explore the potential impact of stage, grade, and hormone receptor profile on ovarian stimulation response and fertility preservation outcomes. METHODS This retrospective cohort study evaluated data from breast cancer patients who underwent fertility preservation at a tertiary medical center between 2014 and 2022. The outcomes of women with low-stage cancer (stages I and II) were compared with those of women with high-stage disease (stages III and IV or lymph node metastasis). Similarly, we compared those with low-grade (grades 1 and 2) and high-grade (grade 3) malignancies. In addition, we compared different hormone statuses of breast cancer (1) estrogen receptor (ER) positive vs. ER-negative and (2) triple-negative breast cancer (TNBC) vs. non-TNBC. The primary outcome measured was the number of mature oocytes, while the secondary outcomes included the numbers of total oocytes retrieved, peak estradiol levels, and subsequent fertility preservation outcomes. RESULTS A total of 47 patients were included. Patients with high-grade tumors had a comparable number of mature oocytes (8 vs. 10, p = 0.08) compared to patients with low grade cancers. The stage-based analysis revealed a similar number of mature oocytes (8 vs. 10, p = 0.33) between high/low stage patients. In the hormone receptor-based analysis, no differences were seen in mature oocytes collected between the ER-positive/ER-negative group (9 vs. 9, p = 0.87) and the TNBC/non-TNBC group (11 vs. 9, p = 0.13). The utilization rate was 27.6% (13/47). CONCLUSION Our study showed similar ovarian stimulation response and fertility preservation outcomes among breast cancer patients with different prognostic factors.
Collapse
Affiliation(s)
- Shang-Min Liu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shang-Yu Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan
| | - Chia-Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan.
| |
Collapse
|
8
|
Yu J, Xu X, Griffin JI, Mu Q, Ho RJY. Drug Combination Nanoparticles Containing Gemcitabine and Paclitaxel Enable Orthotopic 4T1 Breast Tumor Regression. Cancers (Basel) 2024; 16:2792. [PMID: 39199565 PMCID: PMC11352501 DOI: 10.3390/cancers16162792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Early diagnosis, intervention, and therapeutic advancements have extended the lives of breast cancer patients; however, even with molecularly targeted therapies, many patients eventually progress to metastatic cancer. Recent data suggest that residual breast cancer cells often reside in the lymphatic system before rapidly spreading through the bloodstream. To address this challenge, an effective drug combination composed of gemcitabine (G) and paclitaxel (T) is administered intravenously in sequence at the metastatic stage, but intravenous GT infusion may limit lymphatic GT drug accessibility and asynchronous drug exposure in cancer cells within the lymph. To determine whether co-localization of intracellular gemcitabine and paclitaxel (referred to as GT) could overcome these limitations and enhance the efficacy of GT, we have evaluated a previously reported GT drug-combination formulated in nanoparticle (referred to as GT-in-DcNP) evaluated in an orthotopic breast tumor model. Previously, with indocyanine green-labeled nanoparticles, we reported that GT-in-DcNP particles after subcutaneous dosing were taken up rapidly and preferentially into the lymph instead of blood vessels. The pharmacokinetic study showed enhanced co-localization of GT within the tumors and likely through lymphatic access, before drug apparency in the plasma leading to apparent long-acting plasma time-course. The mechanisms may be related to significantly greater inhibitions of tumor growth-by 100 to 140 times-in both sub-iliac and axillary regions compared to the equivalent dosing with free-and-soluble GT formulation. Furthermore, GT-in-DcNP exhibited dose-dependent effects with significant tumor regression. In contrast, even at the highest dose of free GT combination, only a modest tumor growth reduction was notable. Preliminary studies with MDA-231-HM human breast cancer in an orthotopic xenograft model indicated that GT-in-DcNP may be effective in suppressing human breast tumor growth. Taken together, the synchronized delivery of GT-in-DcNP to mammary tumors through the lymphatic system offers enhanced cellular retention and greater efficacy.
Collapse
Affiliation(s)
- Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (J.Y.); (X.X.)
| | - Xiaolin Xu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (J.Y.); (X.X.)
| | - James Ian Griffin
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (J.Y.); (X.X.)
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (J.Y.); (X.X.)
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (J.Y.); (X.X.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Chang X, Tang X, Tang W, Weng L, Liu T, Zhu Z, Liu J, Zhu M, Zhang Y, Chen X. Synergistic Regulation of Targeted Organelles in Tumor Cells to Promote Photothermal-Immunotherapy Using Intelligent Core-Satellite-Like Nanoparticles for Effective Treatment of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400069. [PMID: 38634246 DOI: 10.1002/smll.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The normal operation of organelles is critical for tumor growth and metastasis. Herein, an intelligent nanoplatform (BMAEF) is fabricated to perform on-demand destruction of mitochondria and golgi apparatus, which also generates the enhanced photothermal-immunotherapy, resulting in the effective inhibition of primary and metastasis tumor. The BMAEF has a core of mesoporous silica nanoparticles loaded with brefeldin A (BM), which is connected to ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and folic acid co-modified gold nanoparticles (AEF). During therapy, the BMAEF first accumulates in tumor cells via folic acid-induced targeting. Subsequently, the schiff base/ester bond cleaves in lysosome to release brefeldin A and AEF with exposed EGTA. The EGTA further captures Ca2+ to block ion transfer among mitochondria, endoplasmic reticulum, and golgi apparatus, which not only induced dysfunction of mitochondria and golgi apparatus assisted by brefeldin A to suppress both energy and material metabolism against tumor growth and metastasis, but causes AEF aggregation for tumor-specific photothermal therapy and photothermal assisted immunotherapy. Moreover, the dysfunction of these organelles also stops the production of BMI1 and heat shock protein 70 to further enhance the metastasis inhibition and photothermal therapy, which meanwhile triggers the escape of cytochrome C to cytoplasm, leading to additional apoptosis of tumor cells.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
10
|
Mostafavi L, Homayounieh F, Lades F, Primak A, Muse V, Harris GJ, Kalra MK, Digumarthy SR. Correlation of Radiomics with Treatment Response in Liver Metastases. Acad Radiol 2024; 31:3133-3141. [PMID: 38087718 DOI: 10.1016/j.acra.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 08/31/2024]
Abstract
RATIONALE AND OBJECTIVES To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.
Collapse
Affiliation(s)
- Leila Mostafavi
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.).
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Felix Lades
- Siemens Healthcare GmbH, Forchheim, Germany (F.L.)
| | - Andrew Primak
- Siemens Healthineers, Malvern, Pennsylvania, USA (A.P.)
| | - Victorine Muse
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.)
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| |
Collapse
|
11
|
Kaur J, Jung SY, Austdal M, Arun AK, Helland T, Mellgren G, Lende TH, Janssen EAM, Søiland H, Aneja R. Quantitative proteomics reveals serum proteome alterations during metastatic disease progression in breast cancer patients. Clin Proteomics 2024; 21:52. [PMID: 39075362 PMCID: PMC11285292 DOI: 10.1186/s12014-024-09496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/05/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Tumor recurrence and metastatic progression remains the leading cause for breast cancer related mortalities. However, the proteomes of patient- matched primary breast cancer (BC) and metastatic lesions have not yet been identified, due to the lack of clinically annotated longitudinal samples. In this study, we evaluated the global-proteomic landscape of BC patients with and without distant metastasis as well as compared the proteome of distant metastatic disease with its corresponding primary BC, within the same patient. METHODS We performed mass spectrometry-based proteome profiling of 73 serum samples from 51 BC patients. Among the 51 patients with BC, 29 remained metastasis-free (henceforth called non-progressors), and 22 developed metastases (henceforth called progressors). For the 22 progressors, we obtained two samples: one collected within a year of diagnosis, and the other collected within a year before the diagnosis of metastatic disease. MS data were analyzed using intensity-based absolute quantification and normalized before differential expression analysis. Significantly differentially expressed proteins (DEPs; absolute fold-change ≥ 1.5, P-value < 0.05 and 30% abundance per clinical group) were subjected to pathway analyses. RESULTS We identified 967 proteins among 73 serum samples from patients with BC. Among these, 39 proteins were altered in serum samples at diagnosis, between progressors and non-progressors. Among these, 4 proteins were further altered when the progressors developed distant metastasis. In addition, within progressors, 20 proteins were altered in serum collected at diagnosis versus at the onset of metastasis. Pathway analysis showed that these proteins encoded pathways that describe metastasis, including epithelial-mesenchymal transition and focal adhesion that are hallmarks of metastatic cascade. CONCLUSIONS Our results highlight the importance of examining matched samples from distant metastasis with primary BC samples collected at diagnosis to unravel subset of proteins that could be involved in BC progression in serum. This study sets the foundation for additional future investigations that could position these proteins as non-invasive markers for clinically monitoring breast cancer progression in patients.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marie Austdal
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Aaditya Krishna Arun
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tone Hoel Lende
- Department of Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Morgaenko K, Arneja A, Ball AG, Putelo AM, Munson JM, Rutkowski MR, Pompano RR. Ex vivo model of breast cancer cell invasion in live lymph node tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.601753. [PMID: 39091774 PMCID: PMC11291011 DOI: 10.1101/2024.07.18.601753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the co-evolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion towards CXCL13-rich domains. Finally, we extended this system to pre-metastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells. The reduced invasion was not due to diminished chemokine secretion, but it correlated with elevated intranodal IL-21. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow isolation of specific factors that make TDLNs resistant to cancer cell invasion, which are challenging to dissect in vivo.
Collapse
Affiliation(s)
- Katerina Morgaenko
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Alexander G Ball
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Audrey M Putelo
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Jennifer M Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Melanie R Rutkowski
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Rebecca R Pompano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Shah M, Green J, Hudacko R, Cohen AJ. Clinical Response to Olaparib in a Patient With Leptomeningeal Carcinomatosis in Newly Diagnosed Breast Cancer With Germline BRCA2 Mutation. JCO Precis Oncol 2024; 8:e2400063. [PMID: 38991180 DOI: 10.1200/po.24.00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Case of LMC in a BRCA2-mutated breast cancer patient shows clinical improvement with Olaparib therapy.
Collapse
Affiliation(s)
- Manali Shah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Jeremy Green
- Department of Radiology, Newark Beth Israel Medical Center, Newark, NJ
| | - Rachel Hudacko
- Department of Pathology, Newark Beth Israel Medical Center, Newark, NJ
| | - Alice J Cohen
- Frederick B. Cohen Comprehensive Cancer & Blood Disorders Center, Newark Beth Israel Medical Center, Newark, NJ
| |
Collapse
|
14
|
Basaad A, Basurra S, Vakaj E, Eldaly AK, Abdelsamea MM. A BERT-GNN Approach for Metastatic Breast Cancer Prediction Using Histopathology Reports. Diagnostics (Basel) 2024; 14:1365. [PMID: 39001255 PMCID: PMC11241069 DOI: 10.3390/diagnostics14131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Metastatic breast cancer (MBC) continues to be a leading cause of cancer-related deaths among women. This work introduces an innovative non-invasive breast cancer classification model designed to improve the identification of cancer metastases. While this study marks the initial exploration into predicting MBC, additional investigations are essential to validate the occurrence of MBC. Our approach combines the strengths of large language models (LLMs), specifically the bidirectional encoder representations from transformers (BERT) model, with the powerful capabilities of graph neural networks (GNNs) to predict MBC patients based on their histopathology reports. This paper introduces a BERT-GNN approach for metastatic breast cancer prediction (BG-MBC) that integrates graph information derived from the BERT model. In this model, nodes are constructed from patient medical records, while BERT embeddings are employed to vectorise representations of the words in histopathology reports, thereby capturing semantic information crucial for classification by employing three distinct approaches (namely univariate selection, extra trees classifier for feature importance, and Shapley values to identify the features that have the most significant impact). Identifying the most crucial 30 features out of 676 generated as embeddings during model training, our model further enhances its predictive capabilities. The BG-MBC model achieves outstanding accuracy, with a detection rate of 0.98 and an area under curve (AUC) of 0.98, in identifying MBC patients. This remarkable performance is credited to the model's utilisation of attention scores generated by the LLM from histopathology reports, effectively capturing pertinent features for classification.
Collapse
Affiliation(s)
- Abdullah Basaad
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (A.B.); (S.B.); (E.V.)
| | - Shadi Basurra
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (A.B.); (S.B.); (E.V.)
| | - Edlira Vakaj
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (A.B.); (S.B.); (E.V.)
| | - Ahmed Karam Eldaly
- Department of Computer Science, University of Exeter, North Park Road, Exeter EX4 4QF, UK;
| | - Mohammed M. Abdelsamea
- Department of Computer Science, University of Exeter, North Park Road, Exeter EX4 4QF, UK;
| |
Collapse
|
15
|
Huang J, Xu Y, Qi S, Zheng Q, Cui C, Liu L, Liu F. The potent potential of MFAP2 in prognosis and immunotherapy of triple-negative breast cancer. Discov Oncol 2024; 15:202. [PMID: 38822944 PMCID: PMC11144179 DOI: 10.1007/s12672-024-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUNDS Microfibril-associated protein 2 (MFAP2) is a protein presenting in the extracellular matrix that governs the activity of microfibrils through its interaction with fibrillin. While the involvement of MFAP2 in metabolic disorders has been documented, its expression and prognostic significance in triple-negative breast cancer (TNBC) remain unexplored. METHODS We acquired datasets pertaining to breast cancer (BC) from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Next, a Venn diagram was used to identify the differentially expressed genes (DEGs). The DEGs were used to perform Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), immune and survival analysis. The expressions of MFAP2, PD-1 and PD-L1 were examined by immunohistochemistry and western blot and their relationship with clinical pathological parameters were analyzed by clinical specimen samples from patients with TNBC. Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/ ) was adopted to calculate the immune infiltration level of TNBC. The link between gene expression and tumor mutational burden (TMB) was described using Spearman's correlation analysis. RESULTS We identified 66 differentially expressed genes (DEGs) that were up-regulated. Among these DEGs, MFAP2 was found to be overexpressed in TNBC and was associated with a lower probability of survival. This finding was confirmed through the use of immunohistochemistry and western blot techniques. Additionally, MFAP2 was found to be related to various pathological parameters in TNBC patients. Mechanistically, gene set enrichment analysis (GSEA) revealed that MFAP2 primarily influenced cellular biological behavior in terms of epithelial mesenchymal transition, glycolysis, and apical junction. Notably, MFAP2 expression was positively correlated with the abundance of macrophages, while a negative correlation was observed with the abundance of B cells, CD4 + T cells, CD8 + T cells, neutrophils and dendritic cells through immune analysis. Furthermore, it was observed that MFAP2 displayed a negative correlation not only with tumor mutational burden (TMB), a recognized biomarker for PD-1/PD-L1 immunotherapy, but also with PD-L1 in samples of TNBC. CONCLUSION MFAP2 may be an important prognostic biomarker for TNBC, as well as a viable target for immunotherapy in this disease.
Collapse
Affiliation(s)
- Jing Huang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Yuting Xu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Shengnan Qi
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, 266121, China
| | - Qi Zheng
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Can Cui
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China.
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China.
| |
Collapse
|
16
|
Al-Khafaji ASK, Salman MI, Hassan HA, Al-Shammari AM. The Effect of NF-κB Deactivation on Cancer Cell Response to ALA Mediated Photodynamic Therapy. Asian Pac J Cancer Prev 2024; 25:2051-2058. [PMID: 38918667 PMCID: PMC11382837 DOI: 10.31557/apjcp.2024.25.6.2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE Breast cancer is one of the most widespread tumors among women worldwide, which is difficult to treat due to the presence of chemoresistance and the risk of tumor recurrence and metastasis. There is a pressing necessity to develop efficient treatments to improve response for treatment and increase prolong survival of breast cancer patients. Photodynamic therapy (PDT) has attracted interest for its features as a noninvasive and relatively selective cancer treatment. This method relies on light-activated photosensitizers that, upon absorbing light, generate reactive oxygen species (ROS) with powerful cell-killing outcomes. Nuclear factor kappa B (NF-κB), a transcription factor, plays a key role in cancer development by regulating cell proliferation, differentiation, and survival. Inhibiting NF-κB can sensitize tumor cells to chemotherapeutic agents. Dimethyl fumarate (DMF), an NF-κB inhibitor approved by the FDA for multiple sclerosis treatment, has further shown promise in suppressing breast cancer cell growth in vitro. We hypothesized that combining PDT with Dimethyl fumarate (DMF) could further enhance therapeutic efficacy for both treatment modalities. METHODS In the current study, we explored the PDT effect of 1 and 2 mM aminolaevulinic acid (ALA) and low-power He-Ne laser irradiation combined with different concentrations of DMF (2.5, 1.25, or 0.652 µg/ml) against hormone nonresponsive AMJ13 breast cancer cell line that is derived from Iraqi patient. RESULTS Our results demonstrated that co-administration with all tested DMF concentrations significantly enhanced the cytotoxicity of PDT antitumor effect. The combination index analysis showed presence of synergism in combining PDT with DMF. CONCLUSION This finding suggests that the combination of PDT with DMF could be a promising novel strategy against triple negative breast cancer that could be applied clinically due to the fact that both of these treatments are already clinically approved therapies.
Collapse
Affiliation(s)
- Ahmed S K Al-Khafaji
- Department of Biology, College of Science, University of Baghdad, Baghdad, 10071, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, 56001, Iraq
| | - Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, 10071, Iraq
| | - Haider A Hassan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, 10071, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
17
|
Wu Y, Li Z, Lee AV, Oesterreich S, Luo B. Liver tropism of ER mutant breast cancer is characterized by unique molecular changes and immune infiltration. Breast Cancer Res Treat 2024; 205:371-386. [PMID: 38427312 DOI: 10.1007/s10549-024-07255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Hotspot estrogen receptor alpha (ER/ESR1) mutations are recognized as the driver for both endocrine resistance and metastasis in advanced ER-positive (ER+) breast cancer, but their contributions to metastatic organ tropism remain insufficiently understood. In this study, we aim to comprehensively profile the organotropic metastatic pattern for ESR1 mutant breast cancer. METHODS The organ-specific metastatic pattern of ESR1 mutant breast cancer was delineated using multi-omics data from multiple publicly available cohorts of ER+ metastatic breast cancer patients. Gene mutation/copy number variation (CNV) and differential gene expression analyses were performed to identify the genomic and transcriptomic alterations uniquely associated with ESR1 mutant liver metastasis. Upstream regulator, downstream pathway, and immune infiltration analysis were conducted for subsequent mechanistic investigations. RESULTS ESR1 mutation-driven liver tropism was revealed by significant differences, encompassing a higher prevalence of liver metastasis in patients with ESR1 mutant breast cancer and an enrichment of mutations in liver metastatic samples. The significant enrichment of AGO2 copy number amplifications (CNAs) and multiple gene expression changes were revealed uniquely in ESR1 mutant liver metastasis. We also unveiled alterations in downstream signaling pathways and immune infiltration, particularly an enrichment of neutrophils, suggesting potential therapeutic vulnerabilities. CONCLUSION Our data provide a comprehensive characterization of the behaviors and mechanisms of ESR1 mutant liver metastasis, paving the way for the development of personalized therapy to target liver metastasis for patients with ESR1 mutant breast cancer.
Collapse
Affiliation(s)
- Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Zheqi Li
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Luo
- Department of General Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
18
|
Obeid E, Parikh RC, Esterberg E, Arondekar B, Hitchens A, Arruda LS, Niyazov A, Whitaker K. Clinical characteristics, treatment patterns, and outcomes in adult patients with germline BRCA1/2-mutated, HER2-negative advanced breast cancer: a retrospective medical record review in the United States. Front Oncol 2024; 14:1341665. [PMID: 38817906 PMCID: PMC11137205 DOI: 10.3389/fonc.2024.1341665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024] Open
Abstract
Aim To examine clinical characteristics, real-world treatment patterns, and health outcomes among patients with germline BRCA1/2-mutated, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer (ABC). Methods A retrospective analysis was conducted using medical records from patients with HER2-negative ABC with BRCA1/2 mutation who received cytotoxic chemotherapy. Data were stratified into groups with triple-negative breast cancer (TNBC) or hormone receptor-positive (HR+)/HER2-negative diagnoses. Time-to-event outcomes (i.e., real-world progression-free survival [rwPFS] and overall survival [OS]) were calculated to summarize health outcomes. Results When diagnosed with ABC, most patients were younger than 60 years (mean age = 57.3 years), were white (76.4%), and had a family history of BRCA-related cancer (71.5%). A total of 305 patient records were examined; 194 patients (63.6%) had advanced TNBC, and 111 patients (36.4%) had HR+/HER2-negative ABC. Chemotherapy was primarily used as first-line treatment for both subgroups, but the TNBC subgroup received poly (ADP-ribose) polymerase (PARP) inhibitors at triple the rate as a second-line treatment and double the rate as a third-line treatment compared with the HR+/HER2-negative subgroup. Two-year OS rates were similar between the TNBC (73.9%) and the HR+/HER2-negative subgroups (77.0%), and anemia, nausea, and neutropenia were the most commonly reported toxicities across all treatments. Conclusion Clinicians should consider the use of targeted agents such as PARP inhibitors in earlier lines of therapy for ABC given the growing evidence that PARP inhibitors may improve PFS compared with chemotherapy while potentially offering a more manageable toxicity profile and improved quality of life.
Collapse
Affiliation(s)
- Elias Obeid
- Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Rohan C. Parikh
- Health Economics, RTI Health Solutions, Research Triangle Park, NC, United States
| | - Elizabeth Esterberg
- Health Economics, RTI Health Solutions, Research Triangle Park, NC, United States
| | | | - Abigail Hitchens
- Health Economics, RTI Health Solutions, Research Triangle Park, NC, United States
| | | | - Alexander Niyazov
- Pfizer Inc., Department of HTA, Value and Evidence, New York, NY, United States
| | - Kristen Whitaker
- Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
19
|
Roy M, Hussain F. Mitigation of Breast Cancer Cells' Invasiveness via Down Regulation of ETV7, Hippo, and PI3K/mTOR Pathways by Vitamin D3 Gold-Nanoparticles. Int J Mol Sci 2024; 25:5348. [PMID: 38791386 PMCID: PMC11120902 DOI: 10.3390/ijms25105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Metastasis in breast cancer is the major cause of death in females (about 30%). Based on our earlier observation that Vitamin D3 downregulates mTOR, we hypothesized that Vitamin D3 conjugated to gold nanoparticles (VD3-GNPs) reduces breast cancer aggressiveness by downregulating the key cancer controller PI3K/AKT/mTOR. Western blots, migration/invasion assays, and other cell-based, biophysical, and bioinformatics studies are used to study breast cancer cell aggressiveness and nanoparticle characterization. Our VD3-GNP treatment of breast cancer cells (MCF-7 and MDA-MB-231) significantly reduces the aggressiveness (cancer cell migration and invasion rates > 45%) via the simultaneous downregulation of ETV7 and the Hippo pathway. Consistent with our hypothesis, we, indeed, found a downregulation of the PI3K/AKT/mTOR pathway. It is surprising that the extremely low dose of VD3 in the nano formulation (three orders of magnitude lower than in earlier studies) is quite effective in the alteration of cancer invasiveness and cell signaling pathways. Clearly, VD3-GNPs are a viable candidate for non-toxic, low-cost treatment for reducing breast cancer aggressiveness.
Collapse
Affiliation(s)
- Moumita Roy
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
20
|
Guo W, Jia L, Xie L, Kiang JG, Wang Y, Sun F, Lin Z, Wang E, Zhang Y, Huang P, Sun T, Zhang X, Bian Z, Tang T, Guo J, Ferrone S, Wang X. Turning anecdotal irradiation-induced anticancer immune responses into reproducible in situ cancer vaccines via disulfiram/copper-mediated enhanced immunogenic cell death of breast cancer cells. Cell Death Dis 2024; 15:298. [PMID: 38678042 PMCID: PMC11055882 DOI: 10.1038/s41419-024-06644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Irradiation (IR) induces immunogenic cell death (ICD) in tumors, but it rarely leads to the abscopal effect (AE); even combining IR with immune checkpoint inhibitors has shown only anecdotal success in inducing AEs. In this study, we aimed to enhance the IR-induced immune response and generate reproducible AEs using the anti-alcoholism drug, disulfiram (DSF), complexed with copper (DSF/Cu) to induce tumor ICD. We measured ICD in vitro and in vivo. In mouse tumor models, DSF/Cu was injected intratumorally followed by localized tumor IR, creating an in situ cancer vaccine. We determined the anticancer response by primary tumor rejection and assessed systemic immune responses by tumor rechallenge and the occurrence of AEs relative to spontaneous lung metastasis. In addition, we analyzed immune cell subsets and quantified proinflammatory and immunosuppressive chemokines/cytokines in the tumor microenvironment (TME) and blood of the vaccinated mice. Immune cell depletion was investigated for its effects on the vaccine-induced anticancer response. The results showed that DSF/Cu and IR induced more potent ICD under hypoxia than normoxia in vitro. Low-dose intratumoral (i.t.) injection of DSF/Cu and IR(12Gy) demonstrated strong anti-primary and -rechallenged tumor effects and robust AEs in mouse models. These vaccinations also increased CD8+ and CD4+ cell numbers while decreasing Tregs and myeloid-derived suppressor cells in the 4T1 model, and increased CD8+, dendritic cells (DC), and decreased Treg cell numbers in the MCa-M3C model. Depleting both CD8+ and CD4+ cells abolished the vaccine's anticancer response. Moreover, vaccinated tumor-bearing mice exhibited increased TNFα levels and reduced levels of immunosuppressive chemokines/cytokines. In conclusion, our novel approach generated an anticancer immune response that results in a lack of or low tumor incidence post-rechallenge and robust AEs, i.e., absence of or decreased spontaneous lung metastasis in tumor-bearing mice. This approach is readily translatable to clinical settings and may increase IR-induced AEs in cancer patients.
Collapse
Affiliation(s)
- Wei Guo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- China Pharmaceutical University, Nanjing, China
| | - Lin Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ling Xie
- Division of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Juliann G Kiang
- Radiation Combined Injury Program, AFRRI USU F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Yangyang Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fengfei Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zunwen Lin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Enwen Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yida Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ting Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiao Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Tiejun Tang
- China Pharmaceutical University, Nanjing, China
| | | | - Soldano Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Faccio R, Lee S, Ricci B, Tran J, Ye J, Clever D, Eul E, Wang J, Wong P, Ma C, Fehniger T. Cancer-associated fibroblast-derived Dickkopf-1 suppresses NK cell cytotoxicity in breast cancer. RESEARCH SQUARE 2024:rs.3.rs-4202878. [PMID: 38659818 PMCID: PMC11042392 DOI: 10.21203/rs.3.rs-4202878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Breast cancer is poorly immunogenic, hence able to evade T cell recognition and respond poorly to immune checkpoint blockade. Breast cancer cells can also evade NK cell-mediated immune surveillance, but the mechanism remains enigmatic. Dickkopf-1 (DKK1) is a Wnt/b-catenin inhibitor, whose levels are increased in breast cancer patients and correlate with reduced overall survival. DKK1 is expressed by cancer-associated fibroblasts (CAFs) in orthotopic breast tumors and patient samples, and at higher levels by bone cells. While bone-derived DKK1 contributes to the systemic elevation of DKK1 in tumor-bearing mice, CAFs represent the primary source of DKK1 at the tumor site. Systemic or bone-specific DKK1 targeting reduces primary tumor growth. Intriguingly, specific deletion of CAF-derived DKK1 also limits breast cancer progression, regardless of its elevated levels in circulation and in the bone. DKK1 does not support tumor proliferation directly but rather suppresses the activation and tumoricidal activity of NK cells. Importantly, increased DKK1 levels and reduced number of cytotoxic NK cells are detected in breast cancer patients with progressive bone metastases compared to those with stable disease. Our findings indicate that DKK1 creates a tumor-supporting environment through the suppression of NK cells in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Jiayu Ye
- Washington University in St. Louis
| | | | | | | | | | | | | |
Collapse
|
22
|
Tang W, Hu Y, Tu K, Gong Z, Zhu M, Yang T, Sarwar A, Dai B, Zhang D, Zhan Y, Zhang Y. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop. J Adv Res 2024; 58:193-210. [PMID: 37271476 PMCID: PMC10982870 DOI: 10.1016/j.jare.2023.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Tumor-associated calcium signal transducer 2 (Trop2) has been used as a transport gate for cytotoxic agents into cells in antibody-drug conjugate designs because of its expression in a wide range of solid tumors. However, the specific role of Trop2 itself in breast cancer progression remains unclear and small molecules targeting Trop2 have not yet been reported. OBJECTIVES To screen small molecules targeting Trop2, and to reveal its pharmacological effects and the molecular mechanisms of action. METHODS Small molecule targeting Trop2 was identified by cell membrane chromatography, and validated by cellular thermal shift assay and point mutation analyses. We investigated the pharmacological effects of Trop2 inhibitor using RNA-seq, human foreskin fibroblast (HFF)-derived extracellular matrix (ECM), Matrigel drop invasion assays, colony-forming assay, xenograft tumor model, 4T1 orthotopic metastasis model and 4T1 experimental metastasis model. The molecular mechanism was determined using immunoprecipitation, mass spectrometry, immunofluorescence, immunohistochemistry and Western blotting. RESULTS Here we identified Bruceine D (BD) as the inhibitor of Trop2, and demonstrated anti-metastasis effects of BD in breast cancer. Notably, Lys307 and Glu310 residues of Trop2 acted as critical sites for BD binding. Mechanistically, BD suppressed Trop2-induced cancer metastasis by blocking the formation of Trop2/β-catenin positive loop, in which the Trop2/β-catenin complex prevented β-catenin from being degraded via the ubiquitin-proteosome pathway. Destabilized β-catenin caused by BD reduced nucleus translocation, leading to the reduction of transcription of Trop2, the reversal of epithelial-mesenchymal transition (EMT) process, and the inhibition of ECM remodeling, further inhibiting cancer metastasis. Additionally, the inhibitory effects of BD on lung metastatic colonization and the beneficial effects of BD on prolongation of survival were validated in 4T1 experimental metastasis model. CONCLUSIONS These results support the tumor-promoting role of Trop2 in breast cancer by stabilizing β-catenin in Trop2/β-catenin positive loop, and suggest Bruceine D as a promising candidate for Trop2 inhibition.
Collapse
Affiliation(s)
- Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Kaihui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| |
Collapse
|
23
|
Zhou R, Wu ST, Yazdanifar M, Williams C, Sanders A, Brouwer C, Maher J, Mukherjee P. Mucin-1-Targeted Chimeric Antigen Receptor T Cells Are Effective and Safe in Controlling Solid Tumors in Immunocompetent Host. J Immunother 2024; 47:77-88. [PMID: 38270462 PMCID: PMC10913860 DOI: 10.1097/cji.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
The chimeric antigen receptor (CAR) T-cell therapy in solid epithelial tumors has been explored, however, with limited success. As much of the preclinical work has relied on xenograft models in immunocompromised animals, the immune-related efficacies and toxicities may have been missed. In this study, we engineered syngeneic murine CAR T cells targeting the tumor form of human mucin-1 (tMUC1) and tested the MUC1 CAR T cells' efficacy and toxicity in the immunocompetent human MUC1-expressing mouse models. The MUC1 CAR T cells significantly eliminated murine pancreatic and breast cancer cell lines in vitro. In vivo, MUC1 CAR T cells significantly slowed the mammary gland tumor progression in the spontaneous PyVMT×MUC1.Tg (MMT) mice, prevented lung metastasis, and prolonged survival. Most importantly, there was minimal short or long-term toxicity with acceptable levels of transient liver toxicity but no kidney toxicity. In addition, the mice did not show any signs of weight loss or other behavioral changes with the treatment. We also report that a single dose of MUC1 CAR T-cell treatment modestly reduced the pancreatic tumor burden in a syngeneic orthotopic model of pancreatic ductal adenocarcinoma given at late stage of an established tumor. Taken together, these findings suggested the further development of tMUC1-targeted CAR T cells as an effective and relatively safe treatment modality for various tMUC1-expressing solid tumors.
Collapse
Affiliation(s)
- Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
| | - Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
- Medpace, Irving, TX
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
- Adaptive Biotechnologies, South San Francisco, CA
| | - Chandra Williams
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
- Pfizer, Cambridge, MA
| | - Alexa Sanders
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC
| | - Cory Brouwer
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, London, UK
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC
| |
Collapse
|
24
|
Hermawan A, Putri H. Bioinformatics Analysis of the Genetic and Epigenetic Alterations of Bone Morphogenetic Protein Receptors in Metastatic Breast Cancer. Biochem Genet 2024; 62:594-620. [PMID: 37486509 DOI: 10.1007/s10528-023-10445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
The leading cause of mortality in patients with breast cancer is metastasis, and bone morphogenetic protein (BMP) signaling activation regulates metastasis in breast cancer. This study explored the genetic and epigenetic modification of BMP receptor genes associated with metastatic breast cancer cells using bioinformatics. The genetic and epigenetic alterations of BMP receptors (BMPR1A, BMPR1B, BMPR2, ACVR2A, ACVR1, ACVR2B, ACVR1B, HJV, and ENG) were examined using cBioportal and methSurv, respectively. mRNA expression was analyzed using TNM plot and bcgenex, and protein expression was studied using Human Protein Atlas. Prognostic value and ROC were investigated using Kaplan-Meier (KM) and ROC plot, respectively. Finally, mutant function was predicted using several databases, including PolyPhen-2, FATHMM, Mutation Assessor, and PredictSNP. Oncoprint analysis showed genetic alterations in BMPR1A (39%), BMPR1B (13%), BMPR2 (34%), ACVR2A (14%), ACVR1 (7%), ACVR2B (13), ACVR1B (35%), HJV (40%), and ENG (33%) across the patients with breast cancer in The Metastatic Breast Cancer Project. The mRNA and protein levels of BMPR2 were increased in metastatic breast tumor tissues compared with those in normal and breast tumor tissues. BMPR1A and BMPR2 showed the highest and lowest levels of epigenetic alterations among the BMP receptors, respectively. The patients with breast cancer who had low levels of BMPR2 had a better overall survival (OS) than those with high levels of BMPR2. Functional mutation prediction showed that mutants in BMPR2 (R272L, E274K, and L685F), ACVR2A (S127L), and ACVR1B (R484H), are deleterious, probably damaging, and possess a cancer phenotype. ROC plot revealed no BMP receptors correlated with endocrine therapy sensitivity. BMPR1B, BMPR2, and ACVR2A levels were significantly linked as moderate prediction of anti-HER2, BMPR2, and ACVR1B demonstrated moderate predictive potential for chemotherapy sensitivity. This study contributed in fully comprehending the significance of genetic and epigenetic alterations in BMP receptors and BMP signaling in metastatic breast cancer cells for the development of breast cancer treatment plans.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
25
|
Wu M, Zhang W, Zhou X, Wang Z, Li S, Guo C, Yang Y, Zhang R, Zhang Z, Sun X, Gong T. An in situ forming gel co-loaded with pirarubicin and celecoxib inhibits postoperative recurrence and metastasis of breast cancer. Int J Pharm 2024; 653:123897. [PMID: 38360289 DOI: 10.1016/j.ijpharm.2024.123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.
Collapse
Affiliation(s)
- Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueru Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijun Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sha Li
- NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Bioanalytical Service Center of Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Chenqi Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuping Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Ding K, Chen L, Levine K, Sikora M, Tasdemir N, Dabbs D, Jankowitz R, Hazan R, Shah OS, Atkinson JM, Lee AV, Oesterreich S. Estrogen regulation and functional role of FGFR4 in estrogen receptor positive breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585626. [PMID: 38562741 PMCID: PMC10983957 DOI: 10.1101/2024.03.18.585626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Resistance to endocrine therapy is a major challenge of managing estrogen receptor positive (ER+) breast cancer. We previously reported frequent overexpression of FGFR4 in endocrine resistant cell lines and breast cancers that recurred and metastasized following endocrine therapy, suggesting FGFR4 as a potential driver of endocrine resistance. In this study, we investigated the role of FGFR4 in mediating endocrine resistance and explored the therapeutic potential of targeting FGFR4 in advanced breast cancer. Methods A gene expression signature of FGFR4 activity was examined in ER+ breast cancer pre- and post-neoadjuvant endocrine therapy and the association between FGFR4 expression and patient survival was examined. A correlation analysis was used to uncover potential regulators of FGFR4 overexpression. To investigate if FGFR4 is necessary to drive endocrine resistance, we tested response to FGFR4 inhibition in long term estrogen deprived (LTED) cells and their paired parental cells. Doxycycline inducible FGFR4 overexpression and knockdown cell models were generated to examine if FGFR4 was sufficient to confer endocrine resistance. Finally, we examined response to FGFR4 monotherapy or combination therapy with fulvestrant in breast cancer cell lines to explore the potential of FGFR4 targeted therapy for advanced breast cancer and assessed the importance of PAM50 subtype in response to FGFR4 inhibition. Results A FGFR4 activity gene signature was significantly upregulated post neoadjuvant aromatase inhibitor treatment, and high FGFR4 expression predicted poorer survival in patients with ER+ breast cancer. Gene expression association analysis using TCGA, METABRIC and SCAN-B datasets uncovered ER as the most significant gene negatively correlated with FGFR4 expression. ER negatively regulates FGFR4 expression at both the mRNA and protein level across multiple ER+ breast cancer cell lines. Despite robust overexpression of FGFR4, LTED cells did not show enhanced responses to FGFR4 inhibition compared to parental cells. Similarly, FGFR4 overexpression, knockdown or hotspot mutations did not significantly alter response to endocrine treatment in ER+ cell lines, nor did FGFR4 and fulvestrant combination treatment show synergistic effects. The HER2-like subtype of breast cancer showed elevated expression of FGFR4 and an increased response to FGFR4 inhibition relative to other breast cancer subtypes. Conclusions Despite ER-mediated upregulation of FGFR4 post endocrine therapy, our study does not support a general role of FGFR4 in mediating endocrine resistance in ER+ breast cancer. Our data suggests that specific genomic backgrounds such as HER2 expression may be required for FGFR4 function in breast cancer and should be further explored.
Collapse
|
27
|
Li T, Li Y, Chen H, Li J, Liu Y, Tan W. Engineering a Dual-Receptor Targeted Multivalent Probe for Enhanced Magnetic Resonance Imaging of Metastatic Cancer. Anal Chem 2024; 96:4394-4401. [PMID: 38451935 DOI: 10.1021/acs.analchem.3c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T1 relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Ting Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yazhou Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
29
|
Sabatelle RC, Chu NQ, Blessing W, Kharroubi H, Bressler E, Tsai L, Shih A, Grinstaff MW, Colson Y. Decreased Lung Metastasis in Triple Negative Breast Cancer Following Locally Delivered Supratherapeutic Paclitaxel-Loaded Polyglycerol Carbonate Nanoparticle Therapy. Biomacromolecules 2024; 25:1800-1809. [PMID: 38380618 PMCID: PMC11331584 DOI: 10.1021/acs.biomac.3c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Breast cancer is among the most prevalent malignancies, accounting for 685,000 deaths worldwide in 2020, largely due to its high metastatic potential. Depending on the stage and tumor characteristics, treatment involves surgery, chemotherapy, targeted biologics, and/or radiation therapy. However, current treatments are insufficient for treating or preventing metastatic disease. Herein, we describe supratherapeutic paclitaxel-loaded nanoparticles (81 wt % paclitaxel) to treat the primary tumor and reduce the risk of subsequent metastatic lesions in the lungs. Primary tumor volume and lung metastasis are reduced by day 30, compared to the paclitaxel clinical standard treatment. The ultrahigh levels of paclitaxel afford an immunotherapeutic effect, increasing natural killer cell activation and decreasing NETosis in the lung, which limits the formation of metastatic lesions.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215
| | - Ngoc-Quynh Chu
- Beth Israel Deaconess Medical Center, Department of Surgery, Boston, MA 02215
- Massachusetts General Hospital, Department of Surgery, Boston, MA 02114
| | - William Blessing
- Massachusetts General Hospital, Department of Surgery, Boston, MA 02114
| | - Hussein Kharroubi
- Massachusetts General Hospital, Department of Surgery, Boston, MA 02114
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215
| | - Lillian Tsai
- Beth Israel Deaconess Medical Center, Department of Surgery, Boston, MA 02215
| | - Angela Shih
- Massachusetts General Hospital, Department of Pathology, Boston, MA 02114
| | - Mark W. Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215
| | - Yolonda Colson
- Beth Israel Deaconess Medical Center, Department of Surgery, Boston, MA 02215
- Massachusetts General Hospital, Department of Surgery, Boston, MA 02114
| |
Collapse
|
30
|
Bekmurzayeva A, Nurlankyzy M, Abdossova A, Myrkhiyeva Z, Tosi D. All-fiber label-free optical fiber biosensors: from modern technologies to current applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1453-1473. [PMID: 38495725 PMCID: PMC10942689 DOI: 10.1364/boe.515563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Biosensors are established as promising analytical tools for detecting various analytes important in biomedicine and environmental monitoring. Using fiber optic technology as a sensing element in biosensors offers low cost, high sensitivity, chemical inertness, and immunity to electromagnetic interference. Optical fiber sensors can be used in in vivo applications and multiplexed to detect several targets simultaneously. Certain configurations of optical fiber technology allow the detection of analytes in a label-free manner. This review aims to discuss recent advances in label-free optical fiber biosensors from a technological and application standpoint. First, modern technologies used to build label-free optical fiber-based sensors will be discussed. Then, current applications where these technologies are applied are elucidated. Namely, examples of detecting soluble cancer biomarkers, hormones, viruses, bacteria, and cells are presented.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Marzhan Nurlankyzy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Albina Abdossova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
31
|
Ariffin NS. Increased RUNX1 mutations in breast cancer disease progression. Pathol Res Pract 2024; 254:155076. [PMID: 38219493 DOI: 10.1016/j.prp.2023.155076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Despite advances in screening, therapy and surveillance, breast cancer remains threatening to women. Worst, patients suffer from side effects of treatments and cancer cells become resistant. The emergence of RUNX1 in breast cancer has put it in a spotlight due to its roles in the disease progression. It also plays important roles in normal mammary glands such as for cell growth, proliferation, migration and stemness. However, mutations in the RUNX1 gene have changed the regulation of these phenotypes and the full spectrum of its implications in breast cancer patients is unknown. In this study therefore, the pattern of RUNX1 mutations in breast cancer patients was examined to understand its fundamental impacts on the disease. The perturbation of RUNX1 and its mutations in breast cancer was elucidated through different studies reported in cBioPortal in the past ten years. From our analyses, the majority of RUNX1 mutations were found in the primary breast cancer, with women constituted most of the mutations, especially on the left side of the breast. Similarly, increased number of mutations was observed in ER-positive breast cancer patients and this was also the case at the early stage of the disease development. The level of RUNX1 mutations also increased gradually as patients got older and the peak was highest in the patients of 60-70 years old. Altogether, these data indicated that the mutated RUNX1 gene contributed to the progression of breast cancer and understanding of its regulatory mechanisms is crucial to therapeutically target this gene in the future.
Collapse
Affiliation(s)
- Nur Syamimi Ariffin
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
32
|
Ozer LY, Fayed HS, Ericsson J, Al Haj Zen A. Development of a cancer metastasis-on-chip assay for high throughput drug screening. Front Oncol 2024; 13:1269376. [PMID: 38239643 PMCID: PMC10794518 DOI: 10.3389/fonc.2023.1269376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Metastasis is the cause of most triple-negative breast cancer deaths, yet anti-metastatic therapeutics remain limited. To develop new therapeutics to prevent metastasis, pathophysiologically relevant assays that recapitulate tumor microenvironment is essential for disease modeling and drug discovery. Here, we have developed a microfluidic metastasis-on-chip assay of the early stages of cancer metastasis integrated with the triple-negative breast cancer cell line (MDA-MB-231), stromal fibroblasts and a perfused microvessel. High-content imaging with automated quantification methods was optimized to assess the tumor cell invasion and intravasation within the model. Cell invasion and intravasation were enhanced when fibroblasts co-cultured with a breast cancer cell line (MDA-MB-231). However, the non-invasive breast cancer cell line, MCF7, remained non-invasive in our model, even in the presence of fibroblasts. High-content screening of a targeted anti-cancer therapy drug library was conducted to evaluate the drug response sensitivity of the optimized model. Through this screening, we identified 30 compounds that reduced the tumor intravasation by 60% compared to controls. Multi-parametric phenotypic analysis was applied by combining the data from the metastasis-on-chip, cell proliferation and 2D cell migration screens, revealing that the drug library was clustered into eight distinct groups with similar drug responses. Notably, MEK inhibitors were enriched in cluster cell invasion and intravasation. In contrast, drugs with molecular targets: ABL, KIT, PDGF, SRC, and VEGFR were enriched in the drug clusters showing a strong effect on tumor cell intravasation with less impact on cell invasion or cell proliferation, of which, Imatinib, a multi-kinase inhibitor targeting BCR-ABL/PDGFR/KIT. Further experimental analysis showed that Imatinib enhanced endothelial barrier stability as measured by trans-endothelial electrical resistance and significantly reduced the trans-endothelial invasion activity of tumor cells. Our findings demonstrate the potential of our metastasis-on-chip assay as a powerful tool for studying cancer metastasis biology, drug discovery aims, and assessing drug responses, offering prospects for personalized anti-metastatic therapies for triple-negative breast cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| |
Collapse
|
33
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
34
|
Grote I, Poppe A, Lehmann U, Christgen M, Kreipe H, Bartels S. Frequency of genetic alterations differs in advanced breast cancer between metastatic sites. Genes Chromosomes Cancer 2024; 63:e23199. [PMID: 37672607 DOI: 10.1002/gcc.23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
About 20%-30% of breast cancer (BC) patients will develop distant metastases, preferentially in bones, liver, lung, and brain. BCs with different intrinsic subtypes prefer different sites for metastasis. These subtypes vary in the abundance of genetic alterations which may influence the localization of metastases. Currently, information about the relation between metastatic site and mutational profile of BC is limited. In this study, n = 521 BC metastases of the most frequently affected sites (bone, brain, liver, and lung) were investigated for the frequency of AKT1, ERBB2, ESR1, PIK3CA, and TP53 mutations via NGS and pyrosequencing. Somatic mutations were present in 64% cases. PIK3CA and TP53 were the most frequently mutated genes under study. We provide an analysis of the mutational profile of BCs and the affected metastatic site. Genetic alterations differed significantly depending on the organ site affected by metastases. TP53 mutations were mostly observed in brain metastases (51.0%), metastases outside of the brain revealed a much lower proportion of TP53 mutated samples. PIK3CA mutations are frequent in liver (40.6%), lung (36.8%), and bone metastases (35.7%), whereas less common in brain metastases (18.4%). The highest percentage of ESR1 mutations was observed in liver and lung metastases (about 30% each), whereas metastatic lesions in the brain showed significantly less ESR1 mutations, only in 2.0% of the cases. In summary, we found significant differences of mutational status in mBC depending on the affected organ and intrinsic subtype. Organotropism of metastatic cancer spread may be influenced by the mutational profile of individual BCs.
Collapse
Affiliation(s)
- Isabel Grote
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Alexandra Poppe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Stephan Bartels
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
36
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
37
|
Wu G, Qin S, Gu K, Zhou Y. PYCR2, induced by c-Myc, promotes the invasiveness and metastasis of breast cancer by activating AKT signalling pathway. Int J Biochem Cell Biol 2024; 166:106506. [PMID: 38101533 DOI: 10.1016/j.biocel.2023.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Pyrroline-5-carboxylate reductase 2 (PYCR2) expression is aberrantly upregulated in colon cancer. However, the functions and underlying mechanisms of PYCR2 in breast cancer remain elusive. The primary objective of the present study was to elucidate the function of PYCR2 in breast cancer and investigate whether PYCR2 may be transcriptionally regulated by c-Myc to activate the AKT signaling pathway. METHODS Immunohistochemical analysis was performed to examine the expression of PYCR2 in breast cancer and adjacent non-cancerous tissues. Western blot and RT-qPCR were utilized to detect PYCR2 expression in breast cancer cells. Cellular functionalities were evaluated through Transwell assays in vitro and lung metastasis formation assays in vivo. Moreover, the impact of PYCR2 on the activation of AKT signaling was determined through western blot and immunohistochemistry analysis. The transcriptional regulation of PYCR2 expression by c-Myc was evaluated via both western blot analysis and luciferase gene reporter assay. RESULTS PYCR2 overexpression was noted in breast cancer. Silencing PYCR2 expression attenuated the invasive and metastatic abilities of breast cancer cells. Furthermore, the activation of the AKT signaling pathway is indispensable for the promotion of invasion and metastasis mediated by PYCR2. Lastly, the binding of c-Myc to the promoter sequence of PYCR2 resulted in the upregulation of PYCR2 transcription. CONCLUSION Taken together, these results indicate that PYCR2 is transcriptionally regulated by c-Myc and promotes invasion and metastasis in breast cancer through the activation of the AKT pathway.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi 214062, China.
| | | | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi 214062, China.
| | - Yanjun Zhou
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi 214062, China.
| |
Collapse
|
38
|
Saini S, Gulati N, Awasthi R, Arora V, Singh SK, Kumar S, Gupta G, Dua K, Pahwa R, Dureja H. Monoclonal Antibodies and Antibody-drug Conjugates as Emerging Therapeutics for Breast Cancer Treatment. Curr Drug Deliv 2024; 21:993-1009. [PMID: 37519200 DOI: 10.2174/1567201820666230731094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
When breast cells divide and multiply out of control, it is called breast cancer. Symptoms include lump formation in the breast, a change in the texture or color of the breast, or a discharge from the nipple. Local or systemic therapy is frequently used to treat breast cancer. Surgical and radiation procedures limited to the affected area are examples of local management. There has been significant worldwide progress in the development of monoclonal antibodies (mAbs) since 1986, when the first therapeutic mAb, Orthoclone OKT3, became commercially available. mAbs can resist the expansion of cancer cells by inducing the destruction of cellular membranes, blocking immune system inhibitors, and preventing the formation of new blood vessels. mAbs can also target growth factor receptors. Understanding the molecular pathways involved in tumor growth and its microenvironment is crucial for developing effective targeted cancer therapeutics. Due to their unique properties, mAbs have a wide range of clinical applications. Antibody-drug conjugates (ADCs) are drugs that improve the therapeutic index by combining an antigen-specific antibody with a payload. This review focuses on the therapeutic applications, mechanistic insights, characteristics, safety aspects, and adverse events of mAbs like trastuzumab, bevacizumab, pertuzumab, ertumaxomab, and atezolizumab in breast cancer treatment. The creation of novel technologies utilizing modified antibodies, such as fragments, conjugates, and multi-specific antibodies, must be a central focus of future studies. This review will help scientists working on developing mAbs to treat cancers more effectively.
Collapse
Affiliation(s)
- Swati Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248 007, Uttarakhand, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, 250005, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
39
|
Orbach SM, DeVaull CY, Bealer EJ, Ross BC, Jeruss JS, Shea LD. An engineered niche delineates metastatic potential of breast cancer. Bioeng Transl Med 2024; 9:e10606. [PMID: 38193115 PMCID: PMC10771563 DOI: 10.1002/btm2.10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 01/10/2024] Open
Abstract
Metastatic breast cancer is often not diagnosed until secondary tumors have become macroscopically visible and millions of tumor cells have invaded distant tissues. Yet, metastasis is initiated by a cascade of events leading to formation of the pre-metastatic niche, which can precede tumor formation by a matter of years. We aimed to distinguish the potential for metastatic disease from nonmetastatic disease at early times in triple-negative breast cancer using sister cell lines 4T1 (metastatic), 4T07 (invasive, nonmetastatic), and 67NR (nonmetastatic). We used a porous, polycaprolactone scaffold, that serves as an engineered metastatic niche, to identify metastatic disease through the characteristics of the microenvironment. Analysis of the immune cell composition at the scaffold was able to distinguish noninvasive 67NR tumor-bearing mice from 4T07 and 4T1 tumor-bearing mice but could not delineate metastatic potential between the two invasive cell lines. Gene expression in the scaffolds correlated with the up-regulation of cancer hallmarks (e.g., angiogenesis, hypoxia) in the 4T1 mice relative to 4T07 mice. We developed a 9-gene signature (Dhx9, Dusp12, Fth1, Ifitm1, Ndufs1, Pja2, Slc1a3, Soga1, Spon2) that successfully distinguished 4T1 disease from 67NR or 4T07 disease throughout metastatic progression. Furthermore, this signature proved highly effective at distinguishing diseased lungs in publicly available datasets of mouse models of metastatic breast cancer and in human models of lung cancer. The early and accurate detection of metastatic disease that could lead to early treatment has the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sophia M. Orbach
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | | | - Elizabeth J. Bealer
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Brian C. Ross
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline S. Jeruss
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
- Department of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Lonnie D. Shea
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
40
|
Stone A, Lin KM, Ghelani GH, Patel S, Benjamin S, Graziano S, Kotula L. Breast Cancer Treatment: To tARget or Not? That Is the Question. Cancers (Basel) 2023; 15:5664. [PMID: 38067367 PMCID: PMC10705204 DOI: 10.3390/cancers15235664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
To assess AR's role in TNBC treatment, various existing and completed clinical trials targeting AR or co-targeting AR with other pertinent signaling molecules were analyzed. Cyclin-dependent kinase 4/6 (CDK4/6), cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17 lyase), and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway were some of the most prevalent biomarkers used in combination therapy with AR inhibitors in these trials. Studying how AR functions in tandem with these molecules can have increasing breakthroughs in the treatment options for TNBC. Previous studies have been largely unsuccessful in utilizing AR as the sole drug target for systemic targeted treatment in TNBC. However, there is a lack of other commonly used drug target biomarkers in the treatment of this disease, as well. Thus, analyzing the clinical benefit rate (CBR) within clinical trials that use combination therapy can prove to be imperative to the progression of improving treatment options and prognoses.
Collapse
Affiliation(s)
- Alexandra Stone
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| | - Kevin M. Lin
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| | - Ghanshyam H. Ghelani
- Department of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA; (G.H.G.); (S.B.); (S.G.)
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Sanik Patel
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| | - Sam Benjamin
- Department of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA; (G.H.G.); (S.B.); (S.G.)
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Stephen Graziano
- Department of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA; (G.H.G.); (S.B.); (S.G.)
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| |
Collapse
|
41
|
Dhakan C, Anemone A, Ventura V, Carella A, Corrado A, Pirotta E, Villano D, Romdhane F, Gammaraccio F, Aime S, Longo DL. Assessing the Therapeutic Efficacy of Proton Transport Inhibitors in a Triple-Negative Breast Cancer Murine Model with Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer Tumor pH Imaging. Metabolites 2023; 13:1161. [PMID: 37999256 PMCID: PMC10673543 DOI: 10.3390/metabo13111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Proton transporters play a key role in maintaining the acidic tumor microenvironment; hence, their inhibition has been proposed as a new therapeutic treatment, although few methods can accurately assess their effect in vivo. In this study, we investigated whether MRI-CEST (Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer) tumor pH imaging can be a useful tool to evaluate in vivo the therapeutic efficacy of several Proton Pump Inhibitors (PPIs) in breast cancer. Cell viability and extracellular pH assays were carried out in breast cancer cells cultured at physiological pH (7.4) or acid-adapted (pH of 6.5 and 6.8) following the exposure to inhibitors of V-ATPase (Lansoprazole, Esomeprazole) or NHE1 (Amiloride, Cariporide) at several concentrations. Next, triple-negative breast cancer 4T1 tumor-bearing mice were treated with Lansoprazole or Amiloride and MRI-CEST tumor pH imaging was utilized to assess the in vivo efficacy. Only Lansoprazole induced, in addition to breast cancer cell toxicity, a significant inhibition of proton extrusion. A significant reduction in tumor volume, prolonged survival, and increase in extracellular tumor pH after 1 and 2 weeks were observed after Lansoprazole treatment, whereas no significant changes were detected upon Amiloride treatment. Our results suggested that MRI-CEST tumor pH imaging can monitor the therapeutic efficacy of PPIs in breast cancer murine models.
Collapse
Affiliation(s)
- Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Vittoria Ventura
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Elisa Pirotta
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| | - Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Silvio Aime
- IRCCS SynLAB SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
42
|
Reinhardt F, Coen L, Rivandi M, Franken A, Setyono ESA, Lindenberg T, Eberhardt J, Fehm T, Niederacher D, Knopf F, Neubauer H. DanioCTC: Analysis of Circulating Tumor Cells from Metastatic Breast Cancer Patients in Zebrafish Xenografts. Cancers (Basel) 2023; 15:5411. [PMID: 38001672 PMCID: PMC10670801 DOI: 10.3390/cancers15225411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Circulating tumor cells (CTCs) serve as crucial metastatic precursor cells, but their study in animal models has been hindered by their low numbers. To address this challenge, we present DanioCTC, an innovative xenograft workflow that overcomes the scarcity of patient-derived CTCs in animal models. By combining diagnostic leukapheresis (DLA), the Parsortix microfluidic system, flow cytometry, and the CellCelector setup, DanioCTC effectively enriches and isolates CTCs from metastatic breast cancer (MBC) patients for injection into zebrafish embryos. Validation experiments confirmed that MDA-MB-231 cells, transplanted following the standard protocol, localized frequently in the head and blood-forming regions of the zebrafish host. Notably, when MDA-MB-231 cells spiked (i.e., supplemented) into DLA aliquots were processed using DanioCTC, the cell dissemination patterns remained consistent. Successful xenografting of CTCs from a MBC patient revealed their primary localization in the head and trunk regions of zebrafish embryos. DanioCTC represents a major step forward in the endeavors to study the dissemination of individual and rare patient-derived CTCs, thereby enhancing our understanding of metastatic breast cancer biology and facilitating the development of targeted interventions in MBC. Summary statement: DanioCTC is a novel workflow to inject patient-derived CTCs into zebrafish, enabling studies of the capacity of these rare tumor cells to induce metastases.
Collapse
Affiliation(s)
- Florian Reinhardt
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Luisa Coen
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Eunike Sawitning Ayu Setyono
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Tobias Lindenberg
- Anatomical Institute, Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | | | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
- Life Science Center, Merowingerplatz 1 A, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Dubey A, Agrawal S, Agrawal V, Dubey T, Jaiswal A. Breast Cancer and the Brain: A Comprehensive Review of Neurological Complications. Cureus 2023; 15:e48941. [PMID: 38111443 PMCID: PMC10726093 DOI: 10.7759/cureus.48941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer, one of the most prevalent malignancies globally, poses a substantial health burden with its diverse neurological complications. This comprehensive review examines the intricate landscape of breast cancer's neurological effects, encompassing brain metastases, non-metastatic complications, and their profound influence on the quality of life, prognosis, and survival of affected individuals. The mechanisms, clinical manifestations, and treatment modalities of brain metastasis and the critical role of interdisciplinary collaboration in their management are explored. Additionally, we address non-metastatic neurological complications, including paraneoplastic syndromes, treatment-related side effects, leptomeningeal carcinomatosis, and radiation-induced neurotoxicity, shedding light on the challenges they present and the importance of cognitive and emotional well-being. Prognostic factors and survival rates are discussed, emphasizing the complexity of variables impacting patient outcomes. Lastly, we underscore the vital role of collaborative care in addressing these multifaceted challenges, highlighting future research directions and the ongoing quest to enhance the quality of life for breast cancer patients.
Collapse
Affiliation(s)
- Akshat Dubey
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Varun Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanishq Dubey
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
44
|
Özdemir Akdur P, Çiledağ N. Review of the relationship between tumor receptor subtypes and preference for visceral and/or serosal metastasis in breast cancer patients. Medicine (Baltimore) 2023; 102:e35798. [PMID: 37904368 PMCID: PMC10615421 DOI: 10.1097/md.0000000000035798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
In this study, we investigated the molecular phenotype-cancer relationship that may favor the main metastatic tendencies of cancer by comparing the association of receptor subtypes with the presence of metastasis, serosal metastasis, and/or visceral metastases in patients diagnosed with breast cancer. In this study, we retrospectively evaluated 853 patients who were diagnosed with breast cancer and followed up at our hospital between 2017 and 2022. The probability of metastasis in the most common tumor group, the non-special type of invasive carcinoma was significantly higher than that in other tumor groups. We formed our groups according to estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki67 status. In addition, when we compared the receptor groups, no significant difference was found between the receptor groups (Table 1). When the entire breast cancer cohort was considered, the association of serosal metastasis was statistically significantly higher in the ER and/or PR (+) and, HER2 (-) receptor subgroup than in all other receptor groups (P < .006), and the association of visceral metastasis/visceral + serosal metastasis with the ER and/or PR (+) and, HER2 (-) receptor subgroup was significantly higher than that in all other receptor groups (P < .001) (Table 2). In this study, we aimed to investigate the possible relationship between molecular markers of the primary tumor and the preference for serosal and visceral metastases over distant metastases in a large cohort of patients to contribute to the improvement of the diagnosis and treatment of breast cancer, a heterogeneous disease group. To the best of our knowledge, our study is the first to statistically investigate the association between receptor subgroups and visceral, serosal, and serosal + visceral metastases as a group and to reach some conclusions.
Collapse
Affiliation(s)
- Pinar Özdemir Akdur
- SBU Dr. Abdurahman Yurtaslan Ankara Oncology Training and Research Hospital, Department of Radiology, Ankara, Turkey
| | - Nazan Çiledağ
- SBU Dr. Abdurahman Yurtaslan Ankara Oncology Training and Research Hospital, Department of Radiology, Ankara, Turkey
| |
Collapse
|
45
|
Kumar S, Vindal V. Architecture and topologies of gene regulatory networks associated with breast cancer, adjacent normal, and normal tissues. Funct Integr Genomics 2023; 23:324. [PMID: 37878223 DOI: 10.1007/s10142-023-01251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Most cancer studies employ adjacent normal tissues to tumors (ANTs) as controls, which are not completely normal and represent a pre-cancerous state. However, the regulatory landscape of ANTs compared to tumor and non-tumor-bearing normal tissues is largely unexplored. Among cancers, breast cancer is the most commonly diagnosed cancer and a leading cause of death in women worldwide, with a lack of sufficient treatment regimens for various reasons. Hence, we aimed to gain deeper insights into normal, pre-cancerous, and cancerous regulatory systems of breast tissues towards identifying ANT and subtype-specific candidate genes. For this, we constructed and analyzed eight gene regulatory networks (GRNs), including five subtypes (viz., Basal, Her2, Luminal A, Luminal B, and Normal-Like), one ANT, and two normal tissue networks. Whereas several topological properties of these GRNs enabled us to identify tumor-related features of ANT, escape velocity centrality (EVC+) identified 24 functionally significant common genes, including well-known genes such as E2F1, FOXA1, JUN, BRCA1, GATA3, ERBB2, and ERBB3 across all six tissues including subtypes and ANT. Similarly, the EVC+ also helped us to identify tissue-specific key genes (Basal: 18, Her2: 6, Luminal A: 5, Luminal B: 5, Normal-Like: 2, and ANT: 7). Additionally, differentially correlated switching gene pairs along with functional, pathway, and disease annotations highlighted the cancer-associated role of these genes. In a nutshell, the present study revealed ANT and subtype-specific regulatory features and key candidate genes, which can be explored further using in vitro and in vivo experiments for better and effective disease management at an early stage.
Collapse
Affiliation(s)
- Swapnil Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
46
|
Visovsky C, Marshall VK, Moreno M, Advani P, Mussallem D, Tofthagen C. The sharks are circling: a qualitative study of living with metastatic breast cancer. J Cancer Surviv 2023:10.1007/s11764-023-01476-0. [PMID: 37843659 DOI: 10.1007/s11764-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE The purpose of this phenomenological study was to gain an understanding of the intersection of continued treatment and quality of life in women living with metastatic breast cancer (MBC). METHODS This was a qualitative study in which women with MBC were interviewed about their perceptions how MBC affected their physical, emotional, and role functioning. RESULTS Participants (n = 16) were mostly Caucasian (86.7%) and non-Hispanic (93.3%). The mean age was 55.62 years. Most women were on their third or greater line of treatment (68.5%). Themes identified from analysis of the transcripts revealed the following: (1) shock and devastation of the initial diagnosis; (2) feeling as if the sharks are circling; (3) cancer is a rollercoaster with never-ending treatments; (4) individual definitions of quality of life; and (5) you are not the person you once were. CONCLUSIONS Symptoms, ongoing treatments, treatment changes, and disease progression negatively influence physical, emotional, and role function. Women with MBC define quality of life in different ways, and while symptoms and functional limitations are present, the cancer experience causes some to reevaluate their lives and focus on their individual priorities and values. IMPLICATIONS FOR CANCER SURVIVORS Although newly developed treatments increase survival among women with MBC, the symptoms, concerns, and issues surrounding QOL remain unresolved. The relatively high price of continuous treatment and disease exacerbation is indicative of the need for multi-pronged intervention strategies that address physical, mental, and emotional aspects of living with MBC.
Collapse
Affiliation(s)
| | | | - Maria Moreno
- College of Nursing, University of South Florida, Tampa, FL, USA
| | | | | | | |
Collapse
|
47
|
Honda M, Iima M, Kataoka M, Fukushima Y, Ota R, Ohashi A, Toi M, Nakamoto Y. Biomarkers Predictive of Distant Disease-free Survival Derived from Diffusion-weighted Imaging of Breast Cancer. Magn Reson Med Sci 2023; 22:469-476. [PMID: 35922924 PMCID: PMC10552669 DOI: 10.2463/mrms.mp.2022-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate whether intravoxel incoherent motion (IVIM) and/or non-Gaussian diffusion parameters are associated with distant disease-free survival (DDFS) in patients with invasive breast cancer. METHODS From May 2013 to March 2015, 101 patients (mean age 60.0, range 28-88) with invasive breast cancer were evaluated prospectively. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at a b value of 0 s/mm2 [ADC0] and kurtosis [K]) were estimated using a diffusion-weighted imaging series of 16 b values up to 2500 s/mm2. Shifted ADC values (sADC200-1500) and standard ADC values (ADC0-800) were also calculated. The Kaplan-Meier method was used to generate survival analyses for DDFS, which were compared using the log-rank test. Univariable Cox proportional hazards models were used to assess any associations between each parameter and distant metastasis-free survival. RESULTS The median observation period was 80 months (range, 35-92 months). Among the 101 patients, 12 (11.9%) developed distant metastasis, with a median time to metastasis of 79 months (range, 10-92 months). Kaplan-Meier analysis showed that DDFS was significantly shorter in patients with K > 0.98 than in those with K ≤ 0.98 (P = 0.04). Cox regression analysis showed a marginal statistical association between K and distant metastasis-free survival (P = 0.05). CONCLUSION Non-Gaussian diffusion may be associated with prognosis in invasive breast cancer. A higher K may be a marker to help identify patients at an elevated risk of distant metastasis, which could guide subsequent treatment.
Collapse
Affiliation(s)
- Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yasuhiro Fukushima
- Department of Applied Medical Imaging, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Rie Ota
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Akane Ohashi
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
48
|
Botto I, Moiteiro Cruz R, Noronha Ferreira C, Valente AI, Carrilho-Ribeiro L, Tato-Marinho R, Ferreira C, Correia L. Simultaneous Gastric and Colonic Metastasis of Breast Cancer. ACG Case Rep J 2023; 10:e01168. [PMID: 37811366 PMCID: PMC10553002 DOI: 10.14309/crj.0000000000001168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Although breast cancer (BC) is the most common malignancy in women, metastasization to the gastrointestinal tract is rare. We present a 59-year-old woman with simultaneous gastric and colonic metastasis of invasive lobular breast carcinoma. She had been diagnosed with BC and underwent surgery and systemic therapy. Two years later, an increase in tumor markers motivated investigation, including upper and lower gastrointestinal endoscopy, which identified gastric ulcers and mucosal irregularity in the cecum. Histopathological analysis was compatible with gastric and colonic metastases from BC. We highlight the importance of biopsying every endoscopically visible lesion in patients with BC history.
Collapse
Affiliation(s)
- Inês Botto
- Serviço de Gastrenterologia e Hepatologia, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Rafael Moiteiro Cruz
- Serviço de Anatomia Patológica, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Noronha Ferreira
- Serviço de Gastrenterologia e Hepatologia, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Ana Isabel Valente
- Serviço de Gastrenterologia e Hepatologia, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Luis Carrilho-Ribeiro
- Serviço de Gastrenterologia e Hepatologia, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Rui Tato-Marinho
- Serviço de Gastrenterologia e Hepatologia, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Cristina Ferreira
- Serviço de Anatomia Patológica, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Luis Correia
- Serviço de Gastrenterologia e Hepatologia, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| |
Collapse
|
49
|
Khan D, Khan AK, Khan SD, Aman M, Amin A, Waseem M, Kumari U, Khan F, Pervez A, Khan A. The tendency of segmental distribution of hepatic metastasis according to couinaud classification: a comparison of portal versus systemic route of metastatis due to primary colorectal and breast tumors. Ann Med Surg (Lond) 2023; 85:4806-4810. [PMID: 37811027 PMCID: PMC10552961 DOI: 10.1097/ms9.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Objective The liver is the commonest site of metastatic disease for patients with colorectal cancer (CRC), with at least 25% of patients developing liver metastasis (LM) during their illness. About 50% of patients diagnosed with metastatic breast cancer develop LM, and 5-12% of these patients develop LM as the main site of breast cancer recurrence. This study aims to determine the frequency of segmental distribution of LM seeding from portal versus systemic routes of dissemination due to primary CRC and breast carcinoma, respectively. Material and methods This retrospective study was conducted in a tertiary care teaching hospital in Pakistan. Ethical approval was taken from the institutional review board. A total of 587 patients were included in the study with 297 CRC patients with LM and 300 breast carcinoma patients with LM. Segment I involvement was excluded from the calculation because of the dual blood supply. Patients' detailed demographics and other information were collected on a predesigned proforma. The authors evaluated axial and multiplanar reformatted computed tomography images for LM and CRC metastasis. Data analysis was done using SPSS version 25. P value less than or equal to 0.05 was considered statistically significant. Results A study population of 587 patients was employed that comprised 287 CRC and 300 breast carcinoma patients. There were 179 (30.5%) male and 408 (69.5%) female patients. The mean age of patients was 54.9±13.3. The study revealed that 204 (34.8%) CRC patients showed right lobe (V, VI, VII, VIII) and 83 (14.1%) CRC patients showed left lobe involvement of metastasis while 192 (32.7%) breast carcinoma patients showed right lobe involvement and 108 (18.4%) breast carcinoma patients showed left lobe involvement in metastasis (P=0.02). We also found 40 (6.8%) colorectal and 55 (9.4%) breast carcinoma patients showed left lateral segment (II, III) involvement. Medial segment involvement (IV) was seen in 43 (7.3%) CRC patients and 53 (9%) breast carcinoma patients (P=0.03). Conclusion The right hepatic lobe is the predominant site of metastasis independent of the portal or systemic route of dissemination in primary carcinoma. Moreover, in left lobe metastasis medial segment (IV) is more affected in CRC while the lateral segment (II, III) is more affected in breast carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Waseem
- Dow University of Health Sciences, Karachi, Pakistan
| | - Usha Kumari
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | |
Collapse
|
50
|
Chakraborty S, Banerjee S. Multidimensional computational study to understand non-coding RNA interactions in breast cancer metastasis. Sci Rep 2023; 13:15771. [PMID: 37737288 PMCID: PMC10516999 DOI: 10.1038/s41598-023-42904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Metastasis is a major breast cancer hallmark due to which tumor cells tend to relocate to regional or distant organs from their organ of origin. This study is aimed to decipher the interaction among 113 differentially expressed genes, interacting non-coding RNAs and drugs (614 miRNAs, 220 lncRNAs and 3241 interacting drugs) associated with metastasis in breast cancer. For an extensive understanding of genetic interactions in the diseased state, a backbone gene co-expression network was constructed. Further, the mRNA-miRNA-lncRNA-drug interaction network was constructed to identify the top hub RNAs, significant cliques and topological parameters associated with differentially expressed genes. Then, the mRNAs from the top two subnetworks constructed are considered for transcription factor (TF) analysis. 39 interacting miRNAs and 1641 corresponding TFs for the eight mRNAs from the subnetworks are also utilized to construct an mRNA-miRNA-TF interaction network. TF analysis revealed two TFs (EST1 and SP1) from the cliques to be significant. TCGA expression analysis of miRNAs and lncRNAs as well as subclass-based and promoter methylation-based expression, oncoprint and survival analysis of the mRNAs are also done. Finally, functional enrichment of mRNAs is also performed. Significant cliques identified in the study can be utilized for identification of newer therapeutic interventions for breast cancer. This work will also help to gain a deeper insight into the complicated molecular intricacies to reveal the potential biomarkers involved with breast cancer progression in future.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|