1
|
Liu S, Chen X, Qi X, Bai J, Tong B, Zhang D, Yin X, Yu P. The role of metal ion metabolism in the pathogenesis of diabetes and associated complications. Front Endocrinol (Lausanne) 2025; 16:1541809. [PMID: 40248148 PMCID: PMC12003104 DOI: 10.3389/fendo.2025.1541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Diabetes is a growing health concern, accompanied by significant complications like cardiovascular disease, kidney disease, and retinopathy. Metal ions, including iron, zinc, and copper, play a crucial role in maintaining human health through their balance within the body. Disruptions in metal ion balance can intensify diabetic conditions. For instance, iron overload induces oxidative stress, which harms islet β cells and impacts vascular complications of diabetes. Abnormal copper levels heighten insulin resistance, and zinc deficiency has a strong connection with type 1 diabetes. Future in - depth exploration of the association between metal metabolism and diabetes holds the potential to uncover novel treatment avenues, enhancing both the quality of life and health prognosis for patients.
Collapse
Affiliation(s)
- Siyuan Liu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College. Nanchang University, Nanchang, Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xuzhuo Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College. Nanchang University, Nanchang, Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xinrui Qi
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahao Bai
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Bin Tong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong
Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Kang SU, Park J, Ha S, Kim D, Pletnikova O, Redding-Ochoa J, Troncoso JC, Peng Q, Van Emburgh BO, Trivedi J, Brahmachari S, Nezami B, Dawson VL, Dawson TM. Dissecting the molecular landscape of Parkinson's disease and Parkinson's disease dementia using highly efficient snRNA-seq (HIF-snRNA-seq). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640894. [PMID: 40093124 PMCID: PMC11908213 DOI: 10.1101/2025.03.01.640894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study presents a transcriptomic analysis of the cingulate cortex (CING) in Parkinson's disease (PD) and Parkinson's disease dementia (PDD) using a High-efficiency single-nucleus RNA sequencing (HiF-snRNA-seq) protocol optimized for post-mortem brain samples. RNA quality prediction, poly-A tailing, and dCas9-targeted depletion enabled analysis of 77 high-quality samples from 240 cases, yielding over 2 million nuclei classified into seven major cell types. Disease conditions revealed altered astrocyte and microglia proportions, implicating their roles in neuroinflammation. Differential expression analysis identified unique and shared genes across PD and PDD, linked to synaptic remodeling, stress responses, and inflammation. Stage-specific analysis uncovered tau-dependent early-stage genes and inflammation-associated late-stage genes. This study highlights the CING's central role in PD and PDD pathophysiology, offering insights into disease mechanisms and identifying candidate genes and pathways for therapeutic and biomarker development.
Collapse
Affiliation(s)
- Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Jinhee Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Present Address: Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, USA
| | - Javier Redding-Ochoa
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Quan Peng
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Beth O Van Emburgh
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Jaldhir Trivedi
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Saurav Brahmachari
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Bardia Nezami
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Valted Seq, 704 Quince Orchard Rd, Suite 320, Gaithersburg, MD 20878 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Present Address: Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, USA
| |
Collapse
|
3
|
Toprak K, Kaplangoray M, Memioğlu T, İnanır M, Omar B, Ermiş MF, Toprak İH, Acar O, Taşcanov MB, Altıparmak İH, Biçer A, Demirbağ R. The HbA1c/C-Peptide Ratio is Associated With the No-Reflow Phenomenon in Patients With ST-Elevation Myocardial Infarction. Angiology 2025; 76:289-299. [PMID: 37920902 DOI: 10.1177/00033197231213166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Currently, the gold standard treatment for ST-elevation myocardial infarction (STEMI) is primary percutaneous coronary intervention (pPCI), but even after successful pPCI, a perfusion disorder in the epicardial coronary arteries, termed no-reflow phenomenon (NR), can develop, resulting in short- and long-term adverse events. The present study assessed the relationship between NR and HbA1c/C-peptide ratio (HCR) in 1834 consecutive patients who underwent pPCI due to STEMI. Participants were divided into two groups according to NR status and the demographic, clinical and periprocedural characteristics of the groups were compared. NR developed in 352 (19.1%) of the patients in the study. While C-peptide levels were significantly lower in the NR group, HbA1c and HCR were significantly higher (P < .001, for all). In multivariable analysis, C-peptide, HbA1c, and HCR, were determined as independent predictors for NR (P < .05, for all). In Receiver Operating Characteristic (ROC) analysis, HCR predicted the NR with 80% specificity and 77% sensitivity. In STEMI patients, combining HbA1c and C-peptide in a single fraction has a predictive value for NR independent of diabetes. This ratio may contribute to risk stratification of STEMI patients.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Kaplangoray
- Department of Cardiology, Faculty of Medical, Şeyh Edebali University, Bilecik, Turkey
| | - Tolga Memioğlu
- Department of Cardiology, Faculty of Medical, Abant Izzet Baysal University, Bolu, Turkey
| | - Mehmet İnanır
- Department of Cardiology, Faculty of Medical, Abant Izzet Baysal University, Bolu, Turkey
| | - Bahadır Omar
- Department of Cardiology, Umraniye Training and Research Hospital, İstanbul, Turkey
| | - Mehmet Fatih Ermiş
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - İbrahim Halil Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Osman Acar
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | | | | | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
4
|
Li W, Liu X, Liu Y, Zheng Z. High-Accuracy Identification and Structure-Activity Analysis of Antioxidant Peptides via Deep Learning and Quantum Chemistry. J Chem Inf Model 2025; 65:603-612. [PMID: 39772654 DOI: 10.1021/acs.jcim.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Antioxidant peptides (AOPs) hold great promise for mitigating oxidative-stress-related diseases, but their discovery is hindered by inefficient and time-consuming traditional methods. To address this, we developed an innovative framework combining machine learning and quantum chemistry to accelerate AOP identification and analyze structure-activity relationships. A Bi-LSTM-based model, AOPP, achieved superior performance with accuracies of 0.9043 and 0.9267, precisions of 0.9767 and 0.9848, and Matthews correlation coefficients (MCCs) of 0.818 and 0.859 on two data sets, outperforming existing methods. Compared with XGBoost and LightGBM, AOPP demonstrated a 4.67% improvement in accuracy. Feature fusion significantly enhanced classification, as validated by UMAP visualization. Experimental validation of ten peptides confirmed the antioxidant activity, with LLA exhibiting the highest DPPH and ABTS scavenging rates (0.108 and 0.437 mmol/g, respectively). Quantum chemical calculations identified LLA's lowest HOMO-LUMO gap (ΔE = 0.26 eV) and C3-H26 as the key active site contributing to its superior antioxidant potential. This study highlights the synergy of machine learning and quantum chemistry, offering an efficient framework for AOP discovery with broad applications in therapeutics and functional foods.
Collapse
Affiliation(s)
- Wanxing Li
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
| | - Xuejing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
| | - Zhaojun Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
| |
Collapse
|
5
|
Singh AK, Salunkhe SA, Chitkara D, Mittal A. Potent anti-inflammatory and anti-apoptotic activities of electrostatically complexed C-peptide nanospheres ameliorate diabetic nephropathy. BIOMATERIALS ADVANCES 2024; 163:213935. [PMID: 38970881 DOI: 10.1016/j.bioadv.2024.213935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
In the present era of "Diabetic Pandemic", peptide-based therapies have generated immense interest however, are facing odds due to inevitable limitations like stability, delivery complications and off-target effects. One such promising molecule is C-peptide (CPep, 31 amino acid polypeptide with t1/2 30 min); it is a cleaved subunit of pro-insulin, well known to suppress microvascular complications in kidney but has not been able to undergo translation to the clinic till date. Herein, a polymeric CPep nano-complexes (NPX) was prepared by leveraging electrostatic interaction between in-house synthesized cationic, polyethylene carbonate (PEC) based copolymer (Mol. wt. 44,767 Da) and negatively charged CPep (Mol. wt. 3299 Da) at pH 7.4 and further evaluated in vitro and in vivo. NPX exhibited a spherical morphology with a particle size of 167 nm and zeta potential equivalent to +10.3, with 85.70 % of CPep complexation efficiency. The cellular uptake of FITC-tagged CPep NPX was 95.61 % in normal rat kidney cells, NRK-52E. Additionally, the hemocompatible NPX showed prominent cell-proliferative, anti-oxidative (1.8 folds increased GSH; 2.8 folds reduced nitrite concentration) and anti-inflammatory activity in metabolic stress induced NRK-52E cells as well. The observation was further confirmed by upregulation of anti-apoptotic protein BCl2 by 3.5 folds, and proliferative markers (β1-integrin and EGFR) by 3.5 and 2.3 folds, respectively, compared to the high glucose treated control group. Pharmacokinetic study of NPX in Wistar rats revealed a 6.34 folds greater half-life than free CPep. In in-vivo efficacy study in STZ-induced diabetic nephropathy animal model, NPX reduced blood glucose levels and IL-6 levels significantly by 1.3 and 2.5 folds, respectively, as compared to the disease control group. The above findings suggested that NPX has tremendous potential to impart sustained release of CPep, resulting in enhanced efficacy to treat diabetes-induced nephropathy and significantly improved renal pathology.
Collapse
Affiliation(s)
- Arihant Kumar Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Shubham A Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
6
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Yamasaki M, Maki T, Mochida T, Hamada T, Watanabe-Matsumoto S, Konagaya S, Kaneko M, Ito R, Ueno H, Toyoda T. Xenogenic Engraftment of Human-Induced Pluripotent Stem Cell-Derived Pancreatic Islet Cells in an Immunosuppressive Diabetic Göttingen Mini-Pig Model. Cell Transplant 2024; 33:9636897241288932. [PMID: 39401129 PMCID: PMC11489945 DOI: 10.1177/09636897241288932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
In the development of cell therapy products, immunocompromised animal models closer in size to humans are valuable for enhancing the translatability of in vivo findings to clinical trials. In the present study, we generated immunocompromised type 1 diabetic Göttingen mini-pig models and demonstrated the engraftment of human-induced pluripotent stem cell-derived pancreatic islet cells (iPICs). We induced hyperglycemia with a concomitant reduction in endogenous C-peptide levels in pigs that underwent thymectomy and splenectomy. After estimating the effective in vivo dose of immunosuppressants (ISs) via in vitro testing, we conducted exploratory implantation of iPICs using various implantation methods under IS treatments in one pig. Five weeks after implantation, histological analysis of the implanted iPICs embedded in fibrin gel revealed numerous islet-like structures with insulin-positive cells. Moreover, the area of the insulin-positive cells in the pre-peritoneally implanted grafts was greater than in the subcutaneously implanted grafts. Immunohistochemical analyses further revealed that these iPIC grafts contained cells positive for glucagon, somatostatin, and pancreatic polypeptides, similar to naturally occurring islets. The engraftment of iPICs was successfully reproduced. These data support the observation that the iPICs engrafted well, particularly in the pre-peritoneal space of the newly generated immunocompromised diabetic mini-pigs, forming islet-like endocrine clusters. Future evaluation of human cells in this immunocompromised pig model could accelerate and development of cell therapy products.
Collapse
Affiliation(s)
- Midori Yamasaki
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
| | | | - Taisuke Mochida
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
| | - Teruki Hamada
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Saori Watanabe-Matsumoto
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shuhei Konagaya
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Manami Kaneko
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Ryo Ito
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Hikaru Ueno
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Taro Toyoda
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Chen J, Huang Y, Liu C, Chi J, Wang Y, Xu L. The role of C-peptide in diabetes and its complications: an updated review. Front Endocrinol (Lausanne) 2023; 14:1256093. [PMID: 37745697 PMCID: PMC10512826 DOI: 10.3389/fendo.2023.1256093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Worldwide, diabetes and its complications have seriously affected people's quality of life and become a serious public health problem. C-peptide is not only an indicator of pancreatic β-cell function, but also a biologically active peptide that can bind to cell membrane surface signaling molecules and activate downstream signaling pathways to play antioxidant, anti-apoptotic and inflammatory roles, or regulate cellular transcription through internalization. It is complex how C-peptide is related to diabetic complications. Both deficiencies and overproduction can lead to complications, but their mechanisms of action may be different. C-peptide replacement therapy has shown beneficial effects on diabetic complications in animal models when C-peptide is deficient, but results from clinical trials have been unsatisfactory. The complex pattern of the relationship between C-peptide and diabetic chronic complications has not yet been fully understood. Future basic and clinical studies of C-peptide replacement therapies will need to focus on baseline levels of C-peptide in addition to more attention also needs to be paid to post-treatment C-peptide levels to explore the optimal range of fasting C-peptide and postprandial C-peptide maintenance.
Collapse
Affiliation(s)
| | | | | | | | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Vollenbrock CE, Mul D, Dekker P, Birnie E, de Vries-Velraeds MMC, Boesten L, Groen J, Geelhoed-Duijvestijn PHLM, Aanstoot HJ, Wolffenbuttel BHR. Fasting and meal-stimulated serum C-peptide in long-standing type 1 diabetes mellitus. Diabet Med 2023; 40:e15012. [PMID: 36398450 PMCID: PMC10107202 DOI: 10.1111/dme.15012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
AIMS This study aims to evaluate the stability of C-peptide over time and to compare fasting C-peptide and C-peptide response after mixed-meal tolerance test (MMTT) at T90 or T120 with C-peptide area under the curve (AUC) in long-standing type 1 diabetes. METHODS We included 607 type 1 diabetes individuals with diabetes duration >5 years. C-peptide concentrations (ultrasensitive assay) were collected in the fasting state, and in a subpopulation after MMTT (T0, just prior to, T30-T60-T90-T120, 30-120 min after ingestion of mixed-meal) (n = 168). Fasting C-peptide concentrations (in n = 535) at Year 0 and Year 1 were compared. The clinical determinants associated with residual C-peptide secretion and the correspondence of C-peptide at MMTT T90 / T120 and total AUC were assessed. RESULTS A total of 153 participants (25%) had detectable fasting serum C-peptide (i.e ≥ 3.8 pmol/L). Fasting C-peptide was significantly lower at Year 1 (p < 0.001, effect size = -0.16). Participants with higher fasting C-peptide had a higher age at diagnosis and shorter disease duration and were less frequently insulin pump users. Overall, 109 of 168 (65%) participants had both non-detectable fasting and post-meal serum C-peptide concentrations. The T90 and T120 C-peptide values at MMTT were concordant with total AUC. In 17 (10%) individuals, C-peptide was only detectable at MMTT and not in the fasting state. CONCLUSIONS Stimulated C-peptide was detectable in an additional 10% of individuals compared with fasting in individuals with >5 years of diabetes duration. T90 and T120 MMTT measurements showed good concordance with the MMTT total AUC. Overall, there was a decrease of C-peptide at 1-year follow-up.
Collapse
Affiliation(s)
- Charlotte E Vollenbrock
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick Mul
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | - Pim Dekker
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | - Erwin Birnie
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | | | - Lianne Boesten
- Department of Clinical Chemistry, IJsselland Ziekenhuis, Capelle aan den IJssel, The Netherlands
| | - Joost Groen
- Department of Clinical Chemistry, IJsselland Ziekenhuis, Capelle aan den IJssel, The Netherlands
| | | | - Henk-Jan Aanstoot
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Vanillic acid potentiates insulin secretion and prevents pancreatic β-cells cytotoxicity under H 2O 2-induced oxidative stress. Mol Biol Rep 2023; 50:1311-1320. [PMID: 36454432 DOI: 10.1007/s11033-022-08046-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Oxidative stress is known to impair cellular functions and, therefore, plays a significant role in the pathophysiology of various diseases, including diabetes. The persistently elevated glucose levels may cause enhanced mitochondrial reactive oxygen species generation, which in turn can damage the pancreatic β-cells. In this study, we have investigated the effect of vanillic acid on preventing H2O2-induced β-cells death and retaining its insulin secretion potentiating effect in the presence of H2O2. METHODS The insulin secretion from the BRIN-BD11 cells was quantified using ELISA-based assays. The viability of the cells was assessed by estimated by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assay and DAPI staining. The expression levels of apoptotic and antioxidant proteins were estimated by western blot experiments. RESULTS Vanillic acid protected pancreatic β-cells viability and function under the H2O2 oxidative stress condition. The Erk1/2 activation appears to play an important role in vanillic acid potentiated insulin secretion and protection of the β-cells in the presence of H2O2. Vanillic acid pretreated cells exhibited enhanced expression of antioxidant enzymes such as catalase and SOD-2 and reduced the expression of proapoptotic markers such as BAX and BAD. In addition, it also enhanced the expression of oxidative stress-sensitive transcription factor Nrf-2 and cell survival protein Akt. CONCLUSION The present study shows that vanillic acid potentiates insulin secretion and protects pancreatic β-cells from H2O2-induced oxidative stress.
Collapse
|
12
|
Sun W, Xia H, Zhang N, Nan J, Yu G, Zhao H, Sai N. A homogeneous enzyme-free ratiometric immunoassay for the determination of C-peptide. Anal Biochem 2022; 658:114899. [PMID: 36126761 DOI: 10.1016/j.ab.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
In this study, a homogeneous enzyme-free ratiometric (HOMO- EF-RA) immunoassay was developed for the sensitive detection of C-peptide. In the immunoassay, there have been a miscible detection system by mixing with the fluorescent quantum dots conjugated antigen (QD-Ag conjugates) and the dylight dye conjugated antibody (DL-Ab conjugates). When connecting between Ag-QD conjugate and Ab-DL conjugate by specific recognition, the system emitted fluorescence resonant energy transfer (FRET). The target C-peptide can inhibit the connection and FRET formation between QD-Ag conjugates and DL-Ab conjugates, thus changing the dual fluorescence. By measuring the ratio dual fluorescence changes of the system, the content of C-peptide was evaluated without any enzyme used and multiple incubation and washing steps. This immunoassay realized the highly sensitive (as low as 0.12 ng mL-1), selective and rapid (as less as 6 min) detection of C-peptide. Furthermore, the the simple and convenient immunoassay was applied successfully to the determination of C-peptide in real serum samples.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070, Tianjin, China; Department of Nutrition, Tianjin Huanhu Hospital, 300350, Tianjin, China
| | - Huan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070, Tianjin, China
| | - Nan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Nan
- Inspection Department, Tianjin Xiqing Hospital, 300380, Tianjin, China
| | - Guanggui Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070, Tianjin, China
| | - Hongwei Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070, Tianjin, China
| | - Na Sai
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
13
|
An Untargeted Lipidomics Study of Acute Ischemic Stroke with Hyperglycemia Based on Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8332278. [PMID: 36060656 PMCID: PMC9439902 DOI: 10.1155/2022/8332278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Patients with type 2 diabetes have twice as much of the risk of acute ischemic stroke (AIS) occurrence as healthy individuals, and the AIS patients with type 2 diabetes have a higher risk of death and a poorer prognosis. This study was to investigate the interrelationship between hyperglycemia and AIS and provided a reference for blood glucose management of AIS patients. The blood glucose level of AIS patients of the present study was controlled by insulin below 180 mg/dL (standard group) and between 80 and 130 mg/dL (management group). And the fasting venous blood samples were collected for determination of blood glucose level, homeostasis model assessment of insulin resistance (HOMA-IR), peptide C, and basal insulin level. Furthermore, lipids of the blood samples were detected using metabolomics, so as to clarify the similarities and differences in metabolic patterns in AIS patients with diabetes after the intervention of different glycemic strategies. The results revealed that compared to the standard group, the blood glucose level and HOMA-IR in the management group were significantly decreased, and levels of peptide C and basal insulin level were greatly increased. Through lipidomics detection, 83, 50, and 44 types of significantly upregulated differential lipids were detected in the standard vs. normal groups, the standard vs. management groups, and the management vs. normal groups, respectively, with triacylglycerol dominated. This study preliminarily revealed metabolic differences among AIS patients with hyperglycemia after different blood glucose intervention methods, hoping to provide a theoretical basis for clinical prevention and treatment of this disease.
Collapse
|
14
|
de Leur K, Vollenbrock C, Dekker P, de Vries M, Birnie E, Mul D, Wolffenbuttel BHR, Groen J, Aanstoot H, Boesten L. How low is really low? Comparison of two C-peptide assays to establish residual C-peptide production in type 1 diabetes. Diabet Med 2022; 39:e14785. [PMID: 34989030 PMCID: PMC9303196 DOI: 10.1111/dme.14785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/04/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION C-peptide is an important marker to assess residual insulin production in individuals with type 1 diabetes (T1D). The accuracy and detection limits of C-peptide assays are important to detect C-peptide microsecretion and to reliably observe changes over time in these people. We compared and verified two commercially available assays able to measure C-peptide in the picomolar range. METHODS The ultrasensitive Mercodia enzyme-linked immunosorbent C-peptide assay (ELISA) was compared with the Beckman immunoradiometric assay (IRMA) for C-peptide, assessing reproducibility (coefficient of variation [CV]), limit of blank (LoB), limit of detection (LoD) and limit of quantitation (LoQ). RESULTS For both assays within-run and between-run variation were high at the low (around the detection limit) C-peptide concentration range, with CVs of around 40%. LoB values for the ultrasensitive ELISA and the IRMA were 1.3 and 0.16 pmol/L respectively. LoD values were 2.4 and 0.54 pmol/L respectively. LoQ values were 9.7 and 3.8 pmol/L respectively. Only the IRMA met the specifications claimed by the manufacturer. CONCLUSIONS The IRMA provided the lowest threshold for quantification of serum C-peptide. LoQ of commercially available assays should be established in-house before applying them in research studies and clinical trials in which low C-peptide levels have clinical or scientific relevance.
Collapse
Affiliation(s)
- Kitty de Leur
- Department of Clinical ChemistryIJsselland HospitalCapelle aan den IJsselThe Netherlands
| | - Charlotte Vollenbrock
- Department of EndocrinologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Pim Dekker
- Diabeter, Center for Pediatric and Adult Diabetes Care and ResearchRotterdamThe Netherlands
| | - Martine de Vries
- Diabeter, Center for Pediatric and Adult Diabetes Care and ResearchRotterdamThe Netherlands
| | - Erwin Birnie
- Diabeter, Center for Pediatric and Adult Diabetes Care and ResearchRotterdamThe Netherlands
- Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Dick Mul
- Diabeter, Center for Pediatric and Adult Diabetes Care and ResearchRotterdamThe Netherlands
| | - Bruce H. R. Wolffenbuttel
- Department of EndocrinologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Joost Groen
- Department of Clinical ChemistryIJsselland HospitalCapelle aan den IJsselThe Netherlands
| | - Henk‐Jan Aanstoot
- Diabeter, Center for Pediatric and Adult Diabetes Care and ResearchRotterdamThe Netherlands
| | - Lianne Boesten
- Department of Clinical ChemistryIJsselland HospitalCapelle aan den IJsselThe Netherlands
| |
Collapse
|
15
|
Vejrazkova D, Vankova M, Lukasova P, Vcelak J, Bendlova B. Insights into the physiology of C-peptide. Physiol Res 2021; 69:S237-S243. [PMID: 33094622 DOI: 10.33549/physiolres.934519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current knowledge suggests a complex role of C-peptide in human physiology, but its mechanism of action is only partially understood. The effects of C-peptide appear to be variable depending on the target tissue, physiological environment, its combination with other bioactive molecules such as insulin, or depending on its concentration. It is apparent that C-peptide has therapeutic potential for the treatment of vascular and nervous damage caused by type 1 or late type 2 diabetes mellitus. The question remains whether the effect is mediated by the receptor, the existence of which is still uncertain, or whether an alternative non-receptor-mediated mechanism is responsible. The Institute of Endocrinology in Prague has been paying much attention to the issue of C-peptide and its metabolic effect since the 1980s. The RIA methodology of human C-peptide determination was introduced here and transferred to commercial production. By long-term monitoring of C-peptide oGTT-derived indices, the Institute has contributed to elucidating the pathophysiology of glucose tolerance disorders. This review summarizes the current knowledge of C-peptide physiology and highlights the contributions of the Institute of Endocrinology to this issue.
Collapse
Affiliation(s)
- D Vejrazkova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Hu D, Jia X, Cui L, Liu J, Chen J, Wang Y, Niu W, Xu J, Miller MR, Loh M, Deng F, Guo X. Exposure to fine particulate matter promotes platelet activation and thrombosis via obesity-related inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125341. [PMID: 33596527 DOI: 10.1016/j.jhazmat.2021.125341] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Short-term exposure to fine particulate matter (PM2.5) increases thrombotic risk particularly in obese individuals, but the underlying mechanisms remain unclear. This study aims to compare the effects of PM2.5 on inflammation and platelet activation in obese versus normal-weight adults, and investigate potential causal pathways. We conducted a panel study measuring blood markers in 44 obese and 53 normal-weight adults on 3 separate occasions in 2017-2018. Associations between PM2.5/black carbon (BC) and biomarkers were estimated using mixed-effect models. An interaction analysis compared PM2.5/BC-related effects between subgroups. Biomarker combinations and mediation analysis were performed to elucidate the biological pathways. There was a significant "low-high-low" trend of PM2.5 levels across the 3 study periods. Increases in pro-inflammatory cytokines and changes of platelet activation and aggregation markers were associated with PM2.5/BC in obese subgroup only. Among obese subjects, the combination of pro-inflammatory cytokines and that of platelet markers increased 26.8% (95% CI: 16.0%, 37.9%) and 14.7% (95% CI: 1.9%, 27.0%) per IQR increase in PM2.5 over 5-day and 7-day averages. Inflammation mediated 24.5% of the pathways through which PM2.5 promoted platelet activation. This study suggested obese people are susceptible to pro-thrombotic impacts of PM2.5 exposures. PM2.5 may aggravate thrombosis through obesity-related inflammation.
Collapse
Affiliation(s)
- Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jiahui Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yazheng Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Niu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh EH14 4AP, UK
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
17
|
Luppi P, Drain N, To R, Stolz D, Wallace C, Watkins S, Drain P. Autocrine C-peptide protects INS1 β cells against palmitic acid-induced oxidative stress in peroxisomes by inducing catalase. Endocrinol Diabetes Metab 2020; 3:e00147. [PMID: 32704568 PMCID: PMC7375117 DOI: 10.1002/edm2.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS C-peptide, produced by pancreatic β cells and co-secreted in the bloodstream with insulin, has antioxidant properties in glucose- and hydrogen peroxide (H2O2)-exposed INS1 β cells. Palmitic acid, the most physiologically abundant long-chain free fatty acid in humans, is metabolized in peroxisomes of β cells accumulating H2O2 that can lead to oxidative stress. Here, we tested the hypothesis that C-peptide protects β cells from palmitic acid-induced stress by lowering peroxisomal H2O2. MATERIALS AND METHODS We exposed INS1 β cells to palmitic acid and C-peptide in the setting of increasing glucose concentration and tested for changes in parameters of stress and death. To study the ability of C-peptide to lower peroxisomal H2O2, we engineered an INS1 β cell line stably expressing the peroxisomal-targeted H2O2 sensor HyPer, whose fluorescence increases with cellular H2O2. An INS1 β cell line stably expressing a live-cell fluorescent catalase reporter was used to detect changes in catalase gene expression. RESULTS C-peptide protects INS1 β cells from the combined effect of palmitic acid and glucose by reducing peroxisomal H2O2 to baseline levels and increasing expression of catalase. CONCLUSIONS In conditions of glucolipotoxicity, C-peptide increases catalase expression and reduces peroxisomal oxidative stress and death of INS1 β cells. Maintenance of C-peptide secretion is a pro-survival requisite for β cells in adverse conditions. Loss of C-peptide secretion would render β cells more vulnerable to stress and death leading to secretory dysfunction and diabetes.
Collapse
Affiliation(s)
- Patrizia Luppi
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nicholas Drain
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ramsey To
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Donna Stolz
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Callen Wallace
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Simon Watkins
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Peter Drain
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
18
|
Abdel-Hamid HA, Abdel-Hakeem EA, Zenhom NM, Toni NDM. C-peptide corrects hepatocellular dysfunction in a rat model of type 1 diabetes. J Physiol Biochem 2020; 76:417-425. [PMID: 32529526 DOI: 10.1007/s13105-020-00748-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
C-peptide is gaining much interest recently due to its well-documented beneficial effects on multiple organ dysfunction induced by diabetes. Our study was designed to investigate the effect of C-peptide on hepatocellular dysfunction in diabetic rats. Wistar male rats were separated into four groups: control, diabetic, diabetic + insulin, and diabetic + C-peptide. Serum levels of glucose, insulin, and liver biomarkers were assessed. Liver sections were collected for histopathological examination and immuno-histochemical assessment of tumor necrosis factor alpha (TNF-α). Oxidative stress markers and gene expression of inducible nitric oxide synthase (iNOS), transforming growth factor beta 1 (TGF-β1), and glucose-6-phosphatase (G6Pase) were also measured in liver tissues. C-peptide administration prevented hepatic dysfunction induced by diabetes to a similar extent as that of insulin which was confirmed microscopically. We concluded that C-peptide could be used as an alternative therapy to insulin to correct hepatocellular dysfunction associated with type 1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Heba A Abdel-Hamid
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Nagwa M Zenhom
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nisreen D M Toni
- Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
19
|
Souto SB, Campos JR, Fangueiro JF, Silva AM, Cicero N, Lucarini M, Durazzo A, Santini A, Souto EB. Multiple Cell Signalling Pathways of Human Proinsulin C-Peptide in Vasculopathy Protection. Int J Mol Sci 2020; 21:E645. [PMID: 31963760 PMCID: PMC7013900 DOI: 10.3390/ijms21020645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
A major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that occurs within the pancreatic β-cells, being secreted in similar amounts as insulin. The biological activity of human C-peptide is instrumental in the prevention of diabetic neuropathy, nephropathy and other vascular complications. The main feature of type 1 diabetes mellitus is the lack of insulin and of C-peptide, but the progressive β-cell loss is also observed in later stage of type 2 diabetes mellitus. C-peptide has multifaceted effects in animals and diabetic patients due to the activation of multiple cell signalling pathways, highlighting p38 mitogen-activated protein kinase and extracellular signal-regulated kinase ½, Akt, as well as endothelial nitric oxide production. Recent works highlight the role of C-peptide in the prevention and amelioration of diabetes and also in organ-specific complications. Benefits of C-peptide in microangiopathy and vasculopathy have been shown through conservation of vascular function, and also in the prevention of endothelial cell death, microvascular permeability, neointima formation, and in vascular inflammation. Improvement of microvascular blood flow by replacing a physiological amount of C-peptide, in several tissues of diabetic animals and humans, mainly in nerve tissue, myocardium, skeletal muscle, and kidney has been described. A review of the multiple cell signalling pathways of human proinsulin C-peptide in vasculopathy protection is proposed, where the approaches to move beyond the state of the art in the development of innovative and effective therapeutic options of diabetic neuropathy and nephropathy are discussed.
Collapse
Affiliation(s)
- Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
| | - Joana F. Fangueiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Nicola Cicero
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Università degli Studi di Messina, Polo Universitario Annunziata, 98168 Messina, Italy;
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.R.C.); (J.F.F.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Ragy MM, Ahmed SM. Protective effects of either C-peptide or l-arginine on pancreatic β-cell function, proliferation, and oxidative stress in streptozotocin-induced diabetic rats. J Cell Physiol 2018; 234:11500-11510. [PMID: 30515793 DOI: 10.1002/jcp.27808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
Diabetes and cardiometabolic risk factors including hypertension and dyslipidemia are the major threats to human health in the 21st century. Apoptosis in pancreatic tissue is one of the major causes of diabetes type 1 progression. The aim of this study was to investigate the effects of C-peptide or l-arginine on some cardiometabolic risk factors, pancreatic morphology, function and apoptosis, and the mechanisms of their actions. Forty adult male albino rats were divided into four equal groups: 1-control nondiabetic, 2-diabetic (no treatment), 3-diabetic + C-peptide, and 4-diabetic + l-arginine. Diabetes was induced by a single intraperitoneal injection of high dose streptozotocin. At the end of the experiment, sera glucose, insulin levels, total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), and pancreatic MDA, TAC, and B-cell lymphoma 2 were measured. The morphology and proliferating activity of the pancreas were examined by hematoxylin and eosin histological stain, proliferative cell nuclear antigen (PCNA), and insulin antibodies. Our results showed that induction of diabetes caused hyperglycemia, dyslipidemia, and oxidative stress. However, administration of C-peptide or l-arginine significantly improved the pancreatic histopathology with a significant increase in the area % of insulin immunoreactivity, the number of PCNA immunopositive cells, the number of islets, and the diameter of islets compared with the diabetic group. C-peptide treatment of the diabetic rats completely corrected these errors, while l-arginine partially antagonized the above diabetic complications. So the administration of C-peptide as an adjuvant therapy in type 1 diabetes can significantly decrease apoptosis of pancreas and subsequent progression of diabetes complication.
Collapse
Affiliation(s)
- Merhan Mamdouh Ragy
- Department of Physiology, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
21
|
Elbassuoni EA, Aziz NM, El-Tahawy NF. Protective effect of C-peptide on experimentally induced diabetic nephropathy and the possible link between C-peptide and nitric oxide. Appl Physiol Nutr Metab 2018; 43:617-624. [DOI: 10.1139/apnm-2017-0617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy one of the major microvascular diabetic complications. Besides hyperglycemia, other factors contribute to the development of diabetic complications as the proinsulin connecting peptide, C-peptide. We described the role of C-peptide replacement therapy on experimentally induced diabetic nephropathy, and its potential mechanisms of action by studying the role of nitric oxide (NO) as a mediator of C-peptide effects by in vivo modulating its production by NG-nitro-l-arginine methyl ester (L-NAME). Renal injury markers measured were serum urea, creatinine, tumor necrosis factor alpha, and angiotensin II, and malondialdehyde, total antioxidant, Bcl-2, and NO in renal tissue. In conclusion, diabetic induction resulted in islet degenerations and decreased insulin secretion with its metabolic consequences and subsequent renal complications. C-Peptide deficiencies in diabetes might have contributed to the metabolic and renal error, since C-peptide treatment to the diabetic rats completely corrected these errors. The beneficial effects of C-peptide are partially antagonized by L-NAME coadministration, indicating that NO partially mediates C-peptide effects.
Collapse
Affiliation(s)
- Eman A. Elbassuoni
- Physiology Department, Minia University Faculty of Medicine, Minia 61111, Egypt
| | - Neven M. Aziz
- Physiology Department, Minia University Faculty of Medicine, Minia 61111, Egypt
| | - Nashwa F. El-Tahawy
- Histology and Cell Biology Department, Minia University Faculty of Medicine, Minia 61111, Egypt
| |
Collapse
|
22
|
Li Y, Li X, He K, Li B, Liu K, Qi J, Wang H, Wang Y, Luo W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J 2018; 32:2269-2279. [PMID: 29229684 DOI: 10.1096/fj.201700891r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C-peptide (CP) has demonstrated unique beneficial effects in diabetic nephropathy (DN), but whether and how CP regulates NF-κB and its coactivator, p300, to suppress inducible iNOS and antagonize DN are unknown. iNOS expression, NF-κB nuclear translocation, colocalization and binding of NF-κB to p300, binding of NF-κB to the inos promoter, and the bound NF-κB, p300, and histone 3 lysine 9 acetylation (H3K9ac) at binding sites were measured in high glucose-stimulated mesangial cells. We evaluated pathologic changes, iNOS expression, NF-κB, and p300 contents in diabetic rats. We found that CP inhibited iNOS expression and notably prevented colocalization and binding of NF-κB and p300. CP prevented NF-κB from binding to the inos promoter, especially at the distal site, and reduced bound NF-κB, p300, and H3K9ac. N-terminal plus middle fragment could mostly mimic the antagonizing effects of CP against the pathologic changes of DN and equally suppresses renal iNOS expression as CP. In conclusion, CP prevented NF-κB from recruiting p300 and binding to the inos promoter, and decreased H3K9ac at the binding sites to suppress iNOS expression and antagonize DN, with the effect region identified as N-terminal plus middle fragment.-Li, Y., Li, X., He, K., Li, B., Liu, K., Qi, J., Wang, H., Wang, Y., Luo, W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy.
Collapse
Affiliation(s)
- Yanning Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoping Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kunyu He
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Qi
- Department of Molecular Biology, Hebei Key Laboratory of Laboratory Animals, Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Weigang Luo
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
23
|
Affiliation(s)
- J Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Flores G. Curcuma longa L. extract improves the cortical neural connectivity during the aging process. Neural Regen Res 2017; 12:875-880. [PMID: 28761413 PMCID: PMC5514855 DOI: 10.4103/1673-5374.208542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Turmeric or Curcuma is a natural product that has anti-inflammatory, antioxidant and anti-apoptotic pharmacological properties. It can be used in the control of the aging process that involves oxidative stress, inflammation, and apoptosis. Aging is a physiological process that affects higher cortical and cognitive functions with a reduction in learning and memory, limited judgment and deficits in emotional control and social behavior. Moreover, aging is a major risk factor for the appearance of several disorders such as cerebrovascular disease, diabetes mellitus, and hypertension. At the brain level, the aging process alters the synaptic intercommunication by a reduction in the dendritic arbor as well as the number of the dendritic spine in the pyramidal neurons of the prefrontal cortex, hippocampus and basolateral amygdala, consequently reducing the size of these regions. The present review discusses the synaptic changes caused by the aging process and the neuroprotective role the Curcuma has through its anti-inflammatory, antioxidant and anti-apoptotic actions
Collapse
Affiliation(s)
- Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|