1
|
Yoshiji S, Lu T, Butler-Laporte G, Carrasco-Zanini-Sanchez J, Su CY, Chen Y, Liang K, Willett JDS, Wang S, Adra D, Ilboudo Y, Sasako T, Koyama S, Nakao T, Forgetta V, Farjoun Y, Zeberg H, Zhou S, Marks-Hultström M, Machiela MJ, Kaalia R, Dashti H, Claussnitzer M, Flannick J, Wareham NJ, Mooser V, Timpson NJ, Langenberg C, Richards JB. Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease. Nat Genet 2025:10.1038/s41588-024-02052-7. [PMID: 39856218 DOI: 10.1038/s41588-024-02052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Obesity strongly increases the risk of cardiometabolic diseases, yet the underlying mediators of this relationship are not fully understood. Given that obesity strongly influences circulating protein levels, we investigated proteins mediating the effects of obesity on coronary artery disease, stroke and type 2 diabetes. By integrating two-step proteome-wide Mendelian randomization, colocalization, epigenomics and single-cell RNA sequencing, we identified five mediators and prioritized collagen type VI α3 (COL6A3). COL6A3 levels were strongly increased by body mass index and increased coronary artery disease risk. Notably, the carboxyl terminus product of COL6A3, endotrophin, drove this effect. COL6A3 was highly expressed in disease-relevant cell types and tissues. Finally, we found that body fat reduction could reduce plasma levels of COL6A3-derived endotrophin, indicating a tractable way to modify endotrophin levels. In summary, we provide actionable insights into how circulating proteins mediate the effects of obesity on cardiometabolic diseases and prioritize endotrophin as a potential therapeutic target.
Collapse
Affiliation(s)
- Satoshi Yoshiji
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada.
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, Québec, Canada.
- Kyoto-McGill International Collaborative Program in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Tianyuan Lu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Guillaume Butler-Laporte
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julia Carrasco-Zanini-Sanchez
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Chen-Yang Su
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, Québec, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Québec, Canada
| | - Yiheng Chen
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- 5 Prime Sciences, Montréal, Québec, Canada
| | - Kevin Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Québec, Canada
| | - Julian Daniel Sunday Willett
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, Québec, Canada
- Department of Anatomic Pathology and Laboratory Medicine, New York Presbyterian - Weill Cornell Medical Center, New York, NY, USA
| | | | - Darin Adra
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Yann Ilboudo
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Takayoshi Sasako
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Satoshi Koyama
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tetsushi Nakao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Yossi Farjoun
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Fulcrum Genomics, Somerville, MA, USA
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, Québec, Canada
| | - Michael Marks-Hultström
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rama Kaalia
- Type 2 Diabetes Systems Genomics Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hesam Dashti
- Type 2 Diabetes Systems Genomics Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Melina Claussnitzer
- Type 2 Diabetes Systems Genomics Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vincent Mooser
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, Québec, Canada
| | - Nicholas J Timpson
- Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Brent Richards
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada.
- Quantitative Life Sciences Program, McGill University, Montréal, Québec, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada.
- Department of Twin Research, King's College London, London, UK.
| |
Collapse
|
2
|
Genovese F, Bager C, Frederiksen P, Vazquez D, Sand JMB, Jenkins RG, Maher TM, Stewart ID, Molyneaux PL, Fahy WA, Wain LV, Vestbo J, Nanthakumar C, Shaker SB, Hoyer N, Leeming DJ, George J, Trebicka J, Rasmussen DGK, Hansen MK, Cockwell P, Kremer D, Bakker SJ, Selby NM, Reese-Petersen AL, González A, Núñez J, Rossing P, Nissen NI, Boisen MK, Chen IM, Zhao L, Karsdal MA, Schuppan D. The fibroblast hormone Endotrophin is a biomarker of mortality in chronic diseases. Matrix Biol 2024; 132:1-9. [PMID: 38871093 DOI: 10.1016/j.matbio.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Fibrosis, driven by fibroblast activities, is an important contributor to morbidity and mortality in most chronic diseases. Endotrophin, a signaling molecule derived from processing of type VI collagen by highly activated fibroblasts, is involved in fibrotic tissue remodeling. Circulating levels of endotrophin have been associated with an increased risk of mortality in multiple chronic diseases. We conducted a systematic literature review collecting evidence from original papers published between 2012 and January 2023 that reported associations between circulating endotrophin (PROC6) and mortality. Cohorts with data available to the study authors were included in an Individual Patient Data (IPD) meta-analysis that evaluated the association of PROC6 with mortality (PROSPERO registration number: CRD42023340215) after adjustment for age, sex and BMI, where available. In the IPD meta-analysis including sixteen cohorts of patients with different non-communicable chronic diseases (NCCDs) (N = 15,205) the estimated summary hazard ratio for 3-years all-cause mortality was 2.10 (95 % CI 1.75-2.52) for a 2-fold increase in PROC6, with some heterogeneity observed between the studies (I2=70 %). This meta-analysis is the first study documenting that fibroblast activities, as quantified by circulating endotrophin, are independently associated with mortality across a broad range of NCCDs. This indicates that, irrespective of disease, interstitial tissue remodeling, and consequently fibroblast activities, has a central role in adverse clinical outcomes, and should be considered with urgency from drug developers as a target to treat.
Collapse
Affiliation(s)
| | | | | | | | | | - R Gisli Jenkins
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - Toby M Maher
- Keck Medicine of University of Southern California, 1510 San Pablo Street, Los Angeles, CA 90033, USA
| | - Iain D Stewart
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - Philip L Molyneaux
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - William A Fahy
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Louise V Wain
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK; Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, England
| | - Carmel Nanthakumar
- Clinical Sciences (Respiratory), GSK Research & Development, GSKH, Brentford, UK
| | - Saher Burhan Shaker
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | - Nils Hoyer
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | | | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Jonel Trebicka
- Medizinische Klinik B, Universitätsklinikum Münster, Münster University, Münster, Germany
| | | | | | - Paul Cockwell
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen 9713 GZ, Groningen, The Netherlands
| | - Stephan Jl Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen 9713 GZ, Groningen, The Netherlands
| | - Nicholas M Selby
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | | | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA 31008, Pamplona, Spain; Centro de investigacion biomedica en red enfermedades cardiovasculares, Madrid, Spain
| | - Julio Núñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Mogens Karsbøl Boisen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey, USA
| | | | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| |
Collapse
|
3
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Lee PC, Jung IH, Thussu S, Patel V, Wagoner R, Burks KH, Amrute J, Elenbaas JS, Kang CJ, Young EP, Scherer PE, Stitziel NO. Instrumental variable and colocalization analyses identify endotrophin and HTRA1 as potential therapeutic targets for coronary artery disease. iScience 2024; 27:110104. [PMID: 38989470 PMCID: PMC11233907 DOI: 10.1016/j.isci.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Coronary artery disease (CAD) remains a leading cause of disease burden globally, and there is a persistent need for new therapeutic targets. Instrumental variable (IV) and genetic colocalization analyses can help identify novel therapeutic targets for human disease by nominating causal genes in genome-wide association study (GWAS) loci. We conducted cis-IV analyses for 20,125 genes and 1,746 plasma proteins with CAD using molecular trait quantitative trait loci variant (QTLs) data from three different studies. 19 proteins and 119 genes were significantly associated with CAD risk by IV analyses and demonstrated evidence of genetic colocalization. Notably, our analyses validated well-established targets such as PCSK9 and ANGPTL4 while also identifying HTRA1 and endotrophin (a cleavage product of COL6A3) as proteins whose levels are causally associated with CAD risk. Further experimental studies are needed to confirm the causal role of the genes and proteins identified through our multiomic cis-IV analyses on human disease.
Collapse
Affiliation(s)
- Paul C. Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shreeya Thussu
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ved Patel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ryan Wagoner
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kendall H. Burks
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Junedh Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jared S. Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Erica P. Young
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
5
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
7
|
Kapustin A, Tsakali SS, Whitehead M, Chennell G, Wu MY, Molenaar C, Kutikhin A, Bogdanov L, Sinitsky M, Rubina K, Clayton A, Verweij FJ, Pegtel DM, Zingaro S, Lobov A, Zainullina B, Owen D, Parsons M, Cheney RE, Warren D, Humphries MJ, Iskratsch T, Holt M, Shanahan CM. Extracellular vesicles stimulate smooth muscle cell migration by presenting collagen VI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.551257. [PMID: 37645762 PMCID: PMC10462164 DOI: 10.1101/2023.08.17.551257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix (ECM) supports blood vessel architecture and functionality and undergoes active remodelling during vascular repair and atherogenesis. Vascular smooth muscle cells (VSMCs) are essential for vessel repair and, via their secretome, are able to invade from the vessel media into the intima to mediate ECM remodelling. Accumulation of fibronectin (FN) is a hallmark of early vascular repair and atherosclerosis and here we show that FN stimulates VSMCs to secrete small extracellular vesicles (sEVs) by activating the β1 integrin/FAK/Src pathway as well as Arp2/3-dependent branching of the actin cytoskeleton. Spatially, sEV were secreted via filopodia-like cellular protrusions at the leading edge of migrating cells. We found that sEVs are trapped by the ECM in vitro and colocalise with FN in symptomatic atherosclerotic plaques in vivo. Functionally, ECM-trapped sEVs induced the formation of focal adhesions (FA) with enhanced pulling forces at the cellular periphery. Proteomic and GO pathway analysis revealed that VSMC-derived sEVs display a cell adhesion signature and are specifically enriched with collagen VI. In vitro assays identified collagen VI as playing the key role in cell adhesion and invasion. Taken together our data suggests that the accumulation of FN is a key early event in vessel repair acting to promote secretion of collage VI enriched sEVs by VSMCs. These sEVs stimulate migration and invasion by triggering peripheral focal adhesion formation and actomyosin contraction to exert sufficient traction forces to enable VSMC movement within the complex vascular ECM network.
Collapse
Affiliation(s)
- Alexander Kapustin
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Sofia Serena Tsakali
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Meredith Whitehead
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - George Chennell
- Wohl Cellular Imaging Centre, King’s College London, 5 Cutcombe Road, London, SE5 9NU
| | - Meng-Ying Wu
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Chris Molenaar
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| | - Anton Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Leo Bogdanov
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Maxim Sinitsky
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo, 650002, Russian Federation
| | - Kseniya Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia, tel/fax +74959329904
| | - Aled Clayton
- Tissue Microenvironment Research Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff, UK, CF14 2XN
| | - Frederik J Verweij
- Division of Cell Biology, Neurobiology & Biophysics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Dirk Michiel Pegtel
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Simona Zingaro
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, 194064, St. Petersburg, Russia
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, St. Petersburg State University, 7/9 Universitetskaya Embankment, 199034, St. Petersburg, Russia
| | - Dylan Owen
- Institute of Immunology and Immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL UK
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Engineering Building, Mile End Road, E1 4NS
| | - Mark Holt
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine & Sciences, James Black Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK, Tel. 020 7848 5221, FAX 020 7848 5193
| |
Collapse
|
8
|
Kremer D, Alkaff FF, Post A, Knobbe TJ, Tepel M, Thaunat O, Berger SP, van den Born J, Genovese F, Karsdal MA, Rasmussen DGK, Bakker SJL. Plasma endotrophin, reflecting tissue fibrosis, is associated with graft failure and mortality in KTRs: results from two prospective cohort studies. Nephrol Dial Transplant 2023; 38:1041-1052. [PMID: 36535643 PMCID: PMC10064980 DOI: 10.1093/ndt/gfac332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis is a suggested cause of graft failure and mortality among kidney transplant recipients (KTRs). Accumulating evidence suggests that collagen type VI is tightly linked to fibrosis and may be a marker of systemic fibrosis and ageing. We studied whether plasma endotrophin, a pro-collagen type VI fragment, is associated with graft failure and mortality among KTRs. METHODS In cohort A (57% male, age 53 ± 13 years), we measured plasma endotrophin in 690 prevalent KTRs ≥1 year after transplantation. The non-overlapping cohort B included 500 incident KTRs with serial endotrophin measurements before and after kidney transplantation to assess trajectories and intra-individual variation of endotrophin. RESULTS In cohort A, endotrophin was higher in KTRs compared with healthy controls. Concentrations were positively associated with female sex, diabetes, cardiovascular disease, markers of inflammation and kidney injury. Importantly, endotrophin was associated with graft failure {hazard ratio [HR] per doubling 1.87 [95% confidence interval (CI) 1.07-3.28]} and mortality [HR per doubling 2.59 (95% CI 1.73-3.87)] independent of potential confounders. Data from cohort B showed that endotrophin concentrations strongly decrease after transplantation and remain stable during post-transplantation follow-up [intra-individual coefficient of variation 5.0% (95% CI 3.7-7.6)]. CONCLUSIONS Plasma endotrophin is strongly associated with graft failure and mortality among KTRs. These findings suggest a key role of abnormal extracellular matrix turnover and fibrosis in graft and patient prognosis among KTRs and highlight the need for (interventional) studies targeting the profibrotic state of KTRs. The intra-individual stability after transplantation indicates potential use of endotrophin as a biomarker and outcome measure of fibrosis. TRIAL REGISTRATION ClinicalTrials.gov NCT02811835.
Collapse
Affiliation(s)
- Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Tepel
- Odense University Hospital, Department of Nephrology, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
10
|
Przyklenk M, Heumüller SE, Freiburg C, Lütke S, Sengle G, Koch M, Paulsson M, Schiavinato A, Wagener R. Lack of evidence for a role of anthrax toxin receptors as surface receptors for collagen VI and for its cleaved-off C5 domain/endotrophin. iScience 2022; 25:105116. [PMID: 36185380 PMCID: PMC9515600 DOI: 10.1016/j.isci.2022.105116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
The microfibril-forming collagen VI is proteolytically cleaved and it was proposed that the released C-terminal Kunitz domain (C5) of the α3 chain is an adipokine important for tumor progression and fibrosis. Designated “endotrophin,” C5 is a potent biomarker for fibroinflammatory diseases. However, the biochemical mechanisms behind endotrophin activity were not investigated. Earlier, anthrax toxin receptor 1 was found to bind C5, but this potential interaction was not further studied. Given the proposed physiological role of endotrophin, we aimed to determine how the signal is transmitted. Surprisingly, we could not detect any interaction between endotrophin and anthrax toxin receptor 1 or its close relative, anthrax toxin receptor 2. Moreover, we detect no binding of fully assembled collagen VI to either receptor. We also studied the collagen VI receptor NG2 (CSPG4) and confirmed that NG2 binds assembled collagen VI, but not cleaved C5/endotrophin. A cellular receptor for C5/endotrophin, therefore, still remains elusive. ANTXR1 does not support collagen VI or C5/endotrophin binding to the cell surface ANTXR2 does not support collagen VI or C5/endotrophin binding to the cell surface NG2/CSPG4 supports collagen VI, but not C5/endotrophin binding to the cell surface
Collapse
|
11
|
Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 2022; 185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.
Collapse
|
12
|
Holm Nielsen S, Edsfeldt A, Tengryd C, Gustafsson H, Shore AC, Natali A, Khan F, Genovese F, Bengtsson E, Karsdal M, Leeming DJ, Nilsson J, Goncalves I. The novel collagen matrikine, endotrophin, is associated with mortality and cardiovascular events in patients with atherosclerosis. J Intern Med 2021; 290:179-189. [PMID: 33951242 PMCID: PMC8359970 DOI: 10.1111/joim.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rupture of atherosclerotic plaques is the major cause of acute cardiovascular events. The biomarker PRO-C6 measuring Endotrophin, a matrikine of collagen type VI, may provide valuable information detecting subjects in need of intensified strategies for secondary prevention. OBJECTIVE In this study, we evaluate endotrophin in human atherosclerotic plaques and circulating levels of PRO-C6 in patients with atherosclerosis, to determine the predictive potential of the biomarker. METHODS Sections from the stenotic human carotid plaques were stained with the PRO-C6 antibody. PRO-C6 was measured in serum of patients enrolled in the Carotid Plaque Imagining Project (CPIP) (discovery cohort, n = 577) and the innovative medicines initiative surrogate markers for micro- and macrovascular hard end-points for innovative diabetes tools (IMI-SUMMIT, validation cohort, n = 1,378). Median follow-up was 43 months. Kaplan-Meier curves and log-rank tests were performed in the discovery cohort. Cox proportional hazard regression analysis (HR with 95% CI) was used in the discovery cohort and binary logistic regression (OR with 95% CI) in the validation cohort. RESULTS PRO-C6 was localized in the core and shoulder of the atherosclerotic plaque. In the discovery cohort, PRO-C6 independently predicted future cardiovascular events (HR 1.089 [95% CI 1.019 -1.164], p = 0.01), cardiovascular death (HR 1.118 [95% CI 1.008 -1.241], p = 0.04) and all-cause death (HR 1.087 [95% CI 1.008 -1.172], p = 0.03). In the validation cohort, PRO-C6 predicted future cardiovascular events (OR 1.063 [95% CI 1.011 -1.117], p = 0.017). CONCLUSION PRO-C6 is present in the atherosclerotic plaque and associated with future cardiovascular events, cardiovascular death and all-cause mortality in two large prospective cohorts.
Collapse
Affiliation(s)
- S Holm Nielsen
- Nordic Bioscience, Herlev, Denmark.,Department of Biomedicine and Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | - A Edsfeldt
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden
| | - C Tengryd
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - H Gustafsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - A C Shore
- Diabetes and Vascular Medicine, University of Exeter, Medical School, National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - A Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Khan
- Division of Molecular and Clinical medicine, University of Dundee, Dundee, UK
| | | | - E Bengtsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | - J Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - I Goncalves
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|