1
|
Paffrath A, Kim L, Kedor C, Stein E, Rust R, Freitag H, Hoppmann U, Hanitsch LG, Bellmann-Strobl J, Wittke K, Scheibenbogen C, Sotzny F. Impaired Hand Grip Strength Correlates with Greater Disability and Symptom Severity in Post-COVID Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2024; 13:2153. [PMID: 38610918 PMCID: PMC11012649 DOI: 10.3390/jcm13072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Post-COVID syndrome (PCS) encompasses a diverse array of symptoms persisting beyond 3 months after acute SARS-CoV-2 infection, with mental as well as physical fatigue being the most frequent manifestations. Methods: In 144 female patients with PCS, hand grip strength (HGS) parameters were assessed as an objective measure of muscle fatigue, with 78 meeting the Canadian Consensus Criteria for postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The severity of disability and key symptoms was evaluated using self-reported questionnaires. Results: Patients with ME/CFS exhibited heightened overall symptom severity, including lower physical function (p < 0.001), a greater degree of disability (p < 0.001), more severe fatigue (p < 0.001), postexertional malaise (p < 0.001), and autonomic dysfunction (p = 0.004) compared to other patients with PCS. While HGS was impaired similarly in all patients with PCS and exhibited a significant correlation with physical function across the entire patient group, HGS of patients with ME/CFS uniquely demonstrated associations with key symptoms. Conclusions: Thus, impaired HGS serves as an objective marker of physical function in patients with PCS. Only in patients meeting ME/CFS criteria is impaired HGS also associated with the severity of hallmark symptoms. This suggests a common mechanism for muscle fatigue and other symptoms in the ME/CFS subtype, distinct from that in other types of PCS.
Collapse
Affiliation(s)
- Anna Paffrath
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Laura Kim
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Elisa Stein
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Rebekka Rust
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
- Experimental and Research Center (ECRC), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Helma Freitag
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Uta Hoppmann
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Judith Bellmann-Strobl
- Experimental and Research Center (ECRC), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| |
Collapse
|
2
|
Stein E, Heindrich C, Wittke K, Kedor C, Kim L, Freitag H, Krüger A, Tölle M, Scheibenbogen C. Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies-An Interim Report. J Clin Med 2023; 12:6428. [PMID: 37835071 PMCID: PMC10573450 DOI: 10.3390/jcm12196428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
There is increasing evidence for an autoimmune aetiology in post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). SARS-CoV-2 has now become the main trigger for ME/CFS. We have already conducted two small proof-of-concept studies on IgG depletion by immunoadsorption (IA) in post-infectious ME/CFS, which showed efficacy in most patients. This observational study aims to evaluate the efficacy of IA in patients with post-COVID-19 ME/CFS. The primary objective was to assess the improvement in functional ability. Due to the urgency of finding therapies for post-COVID-Syndrome (PCS), we report here the interim results of the first ten patients, with seven responders defined by an increase of between 10 and 35 points in the Short-Form 36 Physical Function (SF36-PF) at week four after IA. The results of this observational study will provide the basis for patient selection for a randomised controlled trial (RCT), including sham apheresis, and for an RCT combining IA with B-cell depletion therapy. Trial registration number: NCT05629988.
Collapse
Affiliation(s)
- Elisa Stein
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| | - Cornelia Heindrich
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| | - Kirsten Wittke
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| | - Claudia Kedor
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| | - Laura Kim
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| | - Helma Freitag
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| | - Anne Krüger
- Department of Nephrology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.K.); (M.T.)
| | - Markus Tölle
- Department of Nephrology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.K.); (M.T.)
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany (K.W.); (C.K.); (L.K.); (H.F.); (C.S.)
| |
Collapse
|
3
|
Kawai A, Nagatomo Y, Yukino-Iwashita M, Nakazawa R, Taruoka A, Yumita Y, Takefuji A, Yasuda R, Toya T, Ikegami Y, Masaki N, Ido Y, Adachi T. β 1 Adrenergic Receptor Autoantibodies and IgG Subclasses: Current Status and Unsolved Issues. J Cardiovasc Dev Dis 2023; 10:390. [PMID: 37754819 PMCID: PMC10531529 DOI: 10.3390/jcdd10090390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
A wide range of anti-myocardial autoantibodies have been reported since the 1970s. Among them, autoantibodies against the β1-adrenergic receptor (β1AR-AAb) have been the most thoroughly investigated, especially in dilated cardiomyopathy (DCM). Β1AR-Aabs have agonist effects inducing desensitization of β1AR, cardiomyocyte apoptosis, and sustained calcium influx which lead to cardiac dysfunction and arrhythmias. Β1AR-Aab has been reported to be detected in approximately 40% of patients with DCM, and the presence of the antibody has been associated with worse clinical outcomes. The removal of anti-myocardial autoantibodies including β1AR-AAb by immunoadsorption is beneficial for the improvement of cardiac function for DCM patients. However, several studies have suggested that its efficacy depended on the removal of AAbs belonging to the IgG3 subclass, not total IgG. IgG subclasses differ in the structure of the Fc region, suggesting that the mechanism of action of β1AR-AAb differs depending on the IgG subclasses. Our previous clinical research demonstrated that the patients with β1AR-AAb better responded to β-blocker therapy, but the following studies found that its response also differed among IgG subclasses. Further studies are needed to elucidate the possible pathogenic role of IgG subclasses of β1AR-AAbs in DCM, and the broad spectrum of cardiovascular diseases including HF with preserved ejection fraction.
Collapse
Affiliation(s)
- Akane Kawai
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Midori Yukino-Iwashita
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Ryota Nakazawa
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Akira Taruoka
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Yusuke Yumita
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Asako Takefuji
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Risako Yasuda
- Department of Intensive Care, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Takumi Toya
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Yukinori Ikegami
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Nobuyuki Masaki
- Department of Intensive Care, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Yasuo Ido
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Takeshi Adachi
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| |
Collapse
|
4
|
Kimura Y, Sato W, Maikusa N, Ota M, Shigemoto Y, Chiba E, Arizono E, Maki H, Shin I, Amano K, Matsuda H, Yamamura T, Sato N. Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome. J Neuroimaging 2023; 33:845-851. [PMID: 37243973 DOI: 10.1111/jon.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS. METHODS We prospectively examined 58 consecutive right-handed ME/CFS patients who underwent both brain MRI including FW-DTI and a blood analysis of autoantibody titers against β1 adrenergic receptor (β1 AdR-Ab), β2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. We investigated the correlations between these four autoantibody titers and three FW-DTI indices-free water (FW), FW-corrected fractional anisotropy (FAt), and FW-corrected mean diffusivity-as well as two conventional DTI indices-fractional anisotropy (FA) and mean diffusivity. The patients' age and gender were considered as nuisance covariates. We also evaluated the correlations between the FW-DTI indices and the performance status and disease duration. RESULTS Significant negative correlations between the serum levels of several autoantibody titers and DTI indices were identified, mainly in the right frontal operculum. The disease duration showed significant negative correlations with both FAt and FA in the right frontal operculum. The changes in the FW-corrected DTI indices were observed over a wider extent compared to the conventional DTI indices. CONCLUSIONS These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.
Collapse
Affiliation(s)
- Yukio Kimura
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Norihide Maikusa
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
- Institute for Diversity Adaptation of Human Mind, University of Tokyo, Komaba, Japan
| | - Miho Ota
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Emiko Chiba
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Elly Arizono
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroyuki Maki
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Isu Shin
- Sekimachi Medical Clinic, Nerima, Japan
| | | | - Hiroshi Matsuda
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
- Drug Discovery and Cyclotron Research Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
5
|
Froehlich L, Niedrich J, Hattesohl DBR, Behrends U, Kedor C, Haas JP, Stingl M, Scheibenbogen C. Evaluation of a Webinar to Increase Health Professionals' Knowledge about Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Healthcare (Basel) 2023; 11:2186. [PMID: 37570426 PMCID: PMC10418697 DOI: 10.3390/healthcare11152186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe chronic illness and patients with ME/CFS are often medically underserved in Germany and other countries. One contributing factor is health professionals' lack of knowledge about epidemiology, diagnostic criteria, and treatment of ME/CFS. Opportunities are scarce for health professionals to receive continuing medical education on ME/CFS. The current research addressed this need for further education and investigated the gain of knowledge from a webinar for German-speaking health professionals. In two studies (total sample: N = 378), participants in the intervention condition completed a knowledge test twice (before and after webinar participation). Study 2 also included a waiting-list control condition with repeated response to the knowledge test without webinar participation between measurements. Results showed that at baseline, most participants had seen patients with ME/CFS, but confidence in diagnosing and treating ME/CFS was only moderate-to-low. In the intervention condition, but not in the control condition, knowledge about ME/CFS increased between the first and the second knowledge test. These results indicate that the webinar was successful in increasing health professionals' knowledge about ME/CFS. We concluded that webinars can be a cost-efficient and effective tool in providing health professionals with large-scale continuing medical education about ME/CFS.
Collapse
Affiliation(s)
- Laura Froehlich
- CATALPA Center of Advanced Technology for Assisted Learning and Predictive Analytics, FernUniversität in Hagen, 58097 Hagen, Germany
| | - Jasmin Niedrich
- Faculty of Psychology, FernUniversität in Hagen, 58097 Hagen, Germany;
| | | | - Uta Behrends
- MRI Chronic Fatigue Center for Young People (MCFC), Children’s Hospital, Technical University of Munich, 80333 München, Germany;
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.K.); (C.S.)
| | - Johannes-Peter Haas
- Center for Treatment of Pain in Young People, German Center for Pediatric and Adolescent Rheumatology, 82467 Garmisch-Patenkirchen, Germany;
| | | | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.K.); (C.S.)
| |
Collapse
|
6
|
Kim L, Kedor C, Buttgereit F, Heidecke H, Schaumburg D, Scheibenbogen C. Characterizing Sjögren-Associated Fatigue: A Distinct Phenotype from ME/CFS. J Clin Med 2023; 12:4994. [PMID: 37568396 PMCID: PMC10419548 DOI: 10.3390/jcm12154994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Fatigue is the most commonly reported and debilitating extraglandular symptom of primary Sjögren's syndrome (pSS). Fatigue and exertional intolerance are hallmark symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We aimed to characterize fatigue and further symptoms among pSS patients and to determine whether there is a symptom overlap in pSS and ME/CFS. In 19 patients with pSS, we assessed pSS symptom severity and disease activity via questionnaires as well as the Canadian Consensus Criteria (CCC) for ME/CFS. Hand grip strength (HGS) and levels of α1-, α2-, β1-, β2-, M3- and M4-receptor-autoantibodies were measured. A subgroup of pSS patients exhibited severe fatigue and had higher severity of pain (p = 0.045), depression (p = 0.021) and sleep disturbances (p = 0.020) compared to those with less fatigue. Four of eighteen pSS patients fulfilled the CCC. HGS parameters strongly correlated with fatigue severity (p < 0.05), but strength fully recovered one hour after exertion in contrast to ME/CFS. Levels of β1-, β2- and M4-receptor-autoantibodies were elevated and correlated significantly with disease activity assessed by the ESSDAI (p < 0.05), but not fatigue severity. Only a minor subgroup of pSS patients fulfills the CCC, and post exertional malaise (PEM) is atypical, as it is primarily triggered by mental/emotional but not physical exertion. HGS assessment is an objective measure to assess overall fatigue severity.
Collapse
Affiliation(s)
- Laura Kim
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.K.); (C.S.)
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.K.); (C.S.)
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.B.); (D.S.)
| | - Harald Heidecke
- CellTrend GmbH, Im Biotechnologiepark 3, 14943 Luckenwalde, Germany;
| | - Desiree Schaumburg
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.B.); (D.S.)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (C.K.); (C.S.)
| |
Collapse
|
7
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Cabral-Marques O, Moll G, Catar R, Preuß B, Bankamp L, Pecher AC, Henes J, Klein R, Kamalanathan AS, Akbarzadeh R, van Oostveen W, Hohberger B, Endres M, Koolmoes B, Levarht N, Postma R, van Duinen V, van Zonneveld AJ, de Vries-Bouwstra J, Fehres C, Tran F, do Vale FYN, da Silva Souza KB, Filgueiras IS, Schimke LF, Baiocchi GC, de Miranda GC, da Fonseca DLM, Freire PP, Hackel AM, Grasshoff H, Stähle A, Müller A, Dechend R, Yu X, Petersen F, Sotzny F, Sakmar TP, Ochs HD, Schulze-Forster K, Heidecke H, Scheibenbogen C, Shoenfeld Y, Riemekasten G. Autoantibodies targeting G protein-coupled receptors: An evolving history in autoimmunity. Report of the 4th international symposium. Autoimmun Rev 2023; 22:103310. [PMID: 36906052 DOI: 10.1016/j.autrev.2023.103310] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Otávio Cabral-Marques
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil; Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), all Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Beate Preuß
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Lukas Bankamp
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Ann-Christin Pecher
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Joerg Henes
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - A S Kamalanathan
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Wieke van Oostveen
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology with Experimental Neurology, Berlin, Germany.; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Bryan Koolmoes
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Nivine Levarht
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Rudmer Postma
- LUMC, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Vincent van Duinen
- LUMC, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- LUMC, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Jeska de Vries-Bouwstra
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Cynthia Fehres
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Fernando Yuri Nery do Vale
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo Cabral de Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro Mathias da Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Anja Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, A collaboration of Max Delbruck Center for Molecular Medicine and Charité Universitätsmedizin, and HELIOS Clinic, Department of Cardiology and Nephrology, Berlin 13125, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel (RCB), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel (RCB), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Franziska Sotzny
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
9
|
Azcue N, Gómez-Esteban JC, Acera M, Tijero B, Fernandez T, Ayo-Mentxakatorre N, Pérez-Concha T, Murueta-Goyena A, Lafuente JV, Prada Á, López de Munain A, Ruiz-Irastorza G, Ribacoba L, Gabilondo I, Del Pino R. Brain fog of post-COVID-19 condition and Chronic Fatigue Syndrome, same medical disorder? J Transl Med 2022; 20:569. [PMID: 36474290 PMCID: PMC9724286 DOI: 10.1186/s12967-022-03764-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is characterized by persistent physical and mental fatigue. The post-COVID-19 condition patients refer physical fatigue and cognitive impairment sequelae. Given the similarity between both conditions, could it be the same pathology with a different precipitating factor? OBJECTIVE To describe the cognitive impairment, neuropsychiatric symptoms, and general symptomatology in both groups, to find out if it is the same pathology. As well as verify if the affectation of smell is related to cognitive deterioration in patients with post-COVID-19 condition. METHODS The sample included 42 ME/CFS and 73 post-COVID-19 condition patients. Fatigue, sleep quality, anxiety and depressive symptoms, the frequency and severity of different symptoms, olfactory function and a wide range of cognitive domains were evaluated. RESULTS Both syndromes are characterized by excessive physical fatigue, sleep problems and myalgia. Sustained attention and processing speed were impaired in 83.3% and 52.4% of ME/CFS patients while in post-COVID-19 condition were impaired in 56.2% and 41.4% of patients, respectively. Statistically significant differences were found in sustained attention and visuospatial ability, being the ME/CFS group who presented the worst performance. Physical problems and mood issues were the main variables correlating with cognitive performance in post-COVID-19 patients, while in ME/CFS it was anxiety symptoms and physical fatigue. CONCLUSIONS The symptomatology and cognitive patterns were similar in both groups, with greater impairment in ME/CFS. This disease is characterized by greater physical and neuropsychiatric problems compared to post-COVID-19 condition. Likewise, we also propose the relevance of prolonged hyposmia as a possible marker of cognitive deterioration in patients with post-COVID-19.
Collapse
Affiliation(s)
- N. Azcue
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - J. C. Gómez-Esteban
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain ,grid.411232.70000 0004 1767 5135Department of Neurology, Cruces University Hospital, Barakaldo, Spain ,grid.11480.3c0000000121671098Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - M. Acera
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - B. Tijero
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain ,grid.411232.70000 0004 1767 5135Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - T. Fernandez
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain ,grid.411232.70000 0004 1767 5135Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - N. Ayo-Mentxakatorre
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - T. Pérez-Concha
- grid.411232.70000 0004 1767 5135Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - A. Murueta-Goyena
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain ,grid.11480.3c0000000121671098Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - J. V. Lafuente
- grid.11480.3c0000000121671098Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Á. Prada
- grid.414651.30000 0000 9920 5292Department of Immunology, Donostia University Hospital, San Sebastián, Spain ,Spanish Network for the Research in Multiple Sclerosis, Donostia/San Sebastian, Spain
| | - A. López de Munain
- grid.414651.30000 0000 9920 5292Department of Neurology, Donostia University Hospital, San Sebastián, Spain ,grid.432380.eDepartment of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
| | - G. Ruiz-Irastorza
- grid.452310.1Autoimmune Diseases Research Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - L. Ribacoba
- grid.411232.70000 0004 1767 5135Department of Internal Medicine, Cruces University Hospital, Barakaldo, Spain
| | - I. Gabilondo
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain ,grid.411232.70000 0004 1767 5135Department of Neurology, Cruces University Hospital, Barakaldo, Spain ,grid.424810.b0000 0004 0467 2314The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - R. Del Pino
- grid.452310.1Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
10
|
Autoimmunity in patients reporting long-term complications after exposure to human papilloma virus vaccination. J Autoimmun 2022; 133:102921. [PMID: 36356549 DOI: 10.1016/j.jaut.2022.102921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
|
11
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
12
|
Gravelsina S, Vilmane A, Svirskis S, Rasa-Dzelzkaleja S, Nora-Krukle Z, Vecvagare K, Krumina A, Leineman I, Shoenfeld Y, Murovska M. Biomarkers in the diagnostic algorithm of myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol 2022; 13:928945. [PMID: 36300129 PMCID: PMC9589447 DOI: 10.3389/fimmu.2022.928945] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease that is mainly diagnosed based on its clinical symptoms. Biomarkers that could facilitate the diagnosis of ME/CFS are not yet available; therefore, reliable and clinically useful disease indicators are of high importance. The aim of this work was to analyze the association between ME/CFS clinical course severity, presence of HHV-6A/B infection markers, and plasma levels of autoantibodies against adrenergic and muscarinic acetylcholine receptors. A total of 134 patients with ME/CFS and 33 healthy controls were analyzed for the presence of HHV-6A/B using PCRs, and antibodies against beta2-adrenergic receptors (β2AdR) and muscarinic acetylcholine receptors (M3 AChR and M4 AChR) using ELISAs. HHV-6A/B U3 genomic sequence in whole-blood DNA was detected in 19/31 patients with severe ME/CFS, in 18/73 moderate ME/CFS cases, and in 7/30 mild ME/CFS cases. Severity-related differences were found among those with a virus load of more than 1,000 copies/106 PBMCs. Although no disease severity-related differences in anti-β2AdR levels were observed in ME/CFS patients, the median concentration of these antibodies in plasma samples of ME/CFS patients was 1.4 ng/ml, while in healthy controls, it was 0.81 ng/ml, with a statistically significant increased level in those with ME/CFS (p = 0.0103). A significant difference of antibodies against M4 AChR median concentration was found between ME/CFS patients (8.15 ng/ml) and healthy controls (6.45 ng/ml) (p = 0.0250). The levels of anti-M4 plotted against disease severity did not show any difference; however, increased viral load correlates with the increase in anti-M4 level. ME/CFS patients with high HHV-6 load have a more severe course of the disease, thus confirming that the severity of the disease depends on the viral load—the course of the disease is more severe with a higher viral load. An increase in anti-M4 AchR and anti-β2AdR levels is detected in all ME/CFS patient groups in comparison to the control group not depending on ME/CFS clinical course severity. However, the increase in HHV-6 load correlates with the increase in anti-M4 level, and the increase in anti-M4 level, in turn, is associated with the increase in anti-β2AdR level. Elevated levels of antibodies against β2AdR and M4 receptors in ME/CFS patients support their usage as clinical biomarkers in the diagnostic algorithm of ME/CFS.
Collapse
Affiliation(s)
- Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
- *Correspondence: Sabine Gravelsina,
| | - Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | | | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Katrine Vecvagare
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Angelika Krumina
- Department of Infectology, Rīga Stradiņš University, Riga, Latvia
| | - Iana Leineman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
13
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Grach SL, Ganesh R, Messina SA, Hurt RT. Post-COVID-19 syndrome: persistent neuroimaging changes and symptoms 9 months after initial infection. BMJ Case Rep 2022; 15:15/4/e248448. [PMID: 35396239 PMCID: PMC8996041 DOI: 10.1136/bcr-2021-248448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A previously healthy and active middle-aged woman acquired COVID-19 as an occupational exposure with subsequent persistent post-COVID-19 symptoms including headache, dyspnoea on exertion, chest pressure, tachycardia, anosmia, parosmia, persistent myalgia, vertigo, cognitive decline and fatigue. She presented to a tertiary medical centre for further evaluation after 9 months of persistent symptoms and had a largely unremarkable workup with the exception of a persistently elevated monocyte chemoattractant protein 1, blunted cardiovagal response and non-specific scattered areas of low-level hypometabolism at the bilateral frontal, left precuneus, occipital and parietal regions on PET scan.
Collapse
Affiliation(s)
- Stephanie L Grach
- Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ryan T Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Ganesh R, Grach SL, Ghosh AK, Bierle DM, Salonen BR, Collins NM, Joshi AY, Boeder ND, Anstine CV, Mueller MR, Wight EC, Croghan IT, Badley AD, Carter RE, Hurt RT. The Female-Predominant Persistent Immune Dysregulation of the Post-COVID Syndrome. Mayo Clin Proc 2022; 97:454-464. [PMID: 35135695 PMCID: PMC8817110 DOI: 10.1016/j.mayocp.2021.11.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To describe the clinical data from the first 108 patients seen in the Mayo Clinic post-COVID-19 care clinic (PCOCC). METHODS After Institutional Review Board approval, we reviewed the charts of the first 108 patients seen between January 19, 2021, and April 29, 2021, in the PCOCC and abstracted from the electronic medical record into a standardized database to facilitate analysis. Patients were grouped into phenotypes by expert review. RESULTS Most of the patients seen in our clinic were female (75%; 81/108), and the median age at presentation was 46 years (interquartile range, 37 to 55 years). All had post-acute sequelae of SARS-CoV-2 infection, with 6 clinical phenotypes being identified: fatigue predominant (n=69), dyspnea predominant (n=23), myalgia predominant (n=6), orthostasis predominant (n=6), chest pain predominant (n=3), and headache predominant (n=1). The fatigue-predominant phenotype was more common in women, and the dyspnea-predominant phenotype was more common in men. Interleukin 6 (IL-6) was elevated in 61% of patients (69% of women; P=.0046), which was more common than elevation in C-reactive protein and erythrocyte sedimentation rate, identified in 17% and 20% of cases, respectively. CONCLUSION In our PCOCC, we observed several distinct clinical phenotypes. Fatigue predominance was the most common presentation and was associated with elevated IL-6 levels and female sex. Dyspnea predominance was more common in men and was not associated with elevated IL-6 levels. IL-6 levels were more likely than erythrocyte sedimentation rate and C-reactive protein to be elevated in patients with post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Aditya K Ghosh
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA
| | | | | | | | | | | | | | | | | | | | | | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | | |
Collapse
|
16
|
Single-subject gray matter networks in temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res 2021; 177:106766. [PMID: 34534926 DOI: 10.1016/j.eplepsyres.2021.106766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Previous studies have demonstrated structural brain network abnormalities in patients with temporal lobe epilepsy (TLE) using cortical thickness or gray matter (GM) volume. However, no studies have applied single-subject GM network analysis. Here, we first applied an analysis of similarity-based single-subject GM networks to individual patients with TLE. MATERIALS AND METHODS We recruited 51 patients with TLE and unilateral hippocampal sclerosis (22 left, 29 right TLE) and 51 age- and gender- matched healthy controls. Single-subject structural networks were extracted from three-dimensional T1-weighted magnetic resonance images for each subject. In this method, nodes were defined as small cortical regions and edges representing connecting regions that have high statistical similarity. The constructed graphs were analyzed using the graph theoretical approach. The following global and local network properties were calculated: betweenness centrality, clustering coefficient, and characteristic path length. In addition, small world properties (normalized path length λ, normalized clustering coefficient γ, and small-world network value σ) were obtained and compared with those for the controls. RESULTS Although the small-world configurations were retained, impaired global clustering coefficient was observed in left and right TLE. At a regional level, patients with left TLE showed a widespread decrease of the clustering coefficient beyond the ipsilateral temporal lobe and a decreased characteristic path length in the ipsilateral temporal pole. On the other hand, patients with right TLE showed a localized decrease of the clustering coefficient in the ipsilateral temporal lobe. CONCLUSIONS Our findings suggest that global and local network properties disrupted and moved toward randomized networks in TLE patients in comparison to controls. This network alteration was more extensive in left TLE than in right TLE patients. Single-subject GM networks may contribute to a better understanding of the pathophysiology of TLE.
Collapse
|
17
|
Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med 2021; 27:895-906. [PMID: 34175230 PMCID: PMC8180841 DOI: 10.1016/j.molmed.2021.06.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause chronic and acute disease. Postacute sequelae of SARS-CoV-2 infection (PASC) include injury to the lungs, heart, kidneys, and brain that may produce a variety of symptoms. PASC also includes a post-coronavirus disease 2019 (COVID-19) syndrome ('long COVID') with features that can follow other acute infectious diseases and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Here we summarize what is known about the pathogenesis of ME/CFS and of 'acute' COVID-19, and we speculate that the pathogenesis of post-COVID-19 syndrome in some people may be similar to that of ME/CFS. We propose molecular mechanisms that might explain the fatigue and related symptoms in both illnesses, and we suggest a research agenda for both ME/CFS and post-COVID-19 syndrome.
Collapse
|
18
|
Freitag H, Szklarski M, Lorenz S, Sotzny F, Bauer S, Philippe A, Kedor C, Grabowski P, Lange T, Riemekasten G, Heidecke H, Scheibenbogen C. Autoantibodies to Vasoregulative G-Protein-Coupled Receptors Correlate with Symptom Severity, Autonomic Dysfunction and Disability in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2021; 10:3675. [PMID: 34441971 PMCID: PMC8397061 DOI: 10.3390/jcm10163675] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an acquired complex disease with patients suffering from the cardinal symptoms of fatigue, post-exertional malaise (PEM), cognitive impairment, pain and autonomous dysfunction. ME/CFS is triggered by an infection in the majority of patients. Initial evidence for a potential role of natural regulatory autoantibodies (AAB) to beta-adrenergic (AdR) and muscarinic acetylcholine receptors (M-AChR) in ME/CFS patients comes from a few studies. METHODS Here, we analyzed the correlations of symptom severity with levels of AAB to vasoregulative AdR, AChR and Endothelin-1 type A and B (ETA/B) and Angiotensin II type 1 (AT1) receptor in a Berlin cohort of ME/CFS patients (n = 116) by ELISA. The severity of disease, symptoms and autonomic dysfunction were assessed by questionnaires. RESULTS We found levels of most AABs significantly correlated with key symptoms of fatigue and muscle pain in patients with infection-triggered onset. The severity of cognitive impairment correlated with AT1-R- and ETA-R-AAB and severity of gastrointestinal symptoms with alpha1/2-AdR-AAB. In contrast, the patients with non-infection-triggered ME/CFS showed fewer and other correlations. CONCLUSION Correlations of specific AAB against G-protein-coupled receptors (GPCR) with symptoms provide evidence for a role of these AAB or respective receptor pathways in disease pathomechanism.
Collapse
Affiliation(s)
- Helma Freitag
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Marvin Szklarski
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Sebastian Lorenz
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Sandra Bauer
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Aurélie Philippe
- Department of Nephrology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany; (T.L.); (G.R.)
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany; (T.L.); (G.R.)
| | | | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (S.L.); (F.S.); (S.B.); (C.K.); (P.G.); (C.S.)
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
19
|
Bierle DM, Aakre CA, Grach SL, Salonen BR, Croghan IT, Hurt RT, Ganesh R. Central Sensitization Phenotypes in Post Acute Sequelae of SARS-CoV-2 Infection (PASC): Defining the Post COVID Syndrome. J Prim Care Community Health 2021; 12:21501327211030826. [PMID: 34231404 PMCID: PMC8267019 DOI: 10.1177/21501327211030826] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To develop and implement criteria for description of post COVID syndrome based on analysis of patients presenting for evaluation at Mayo Clinic Rochester between November 2019 and August 2020. METHODS A total of 465 patients with a history of testing positive for COVID-19 were identified and their medical records reviewed. After a thorough review, utilizing the DELPHI methods by an expert panel, 42 (9%) cases were identified with persistent central sensitization (CS) symptoms persisting after the resolution of acute COVID-19, herein referred to as Post COVID syndrome (PoCoS). In this report we describe the baseline characteristics of these PoCoS patients. RESULTS Among these 42 PoCoS patients, the mean age was 46.2 years (median age was 46.5 years). Pain (90%), fatigue (74%), dyspnea (43%), and orthostatic intolerance (38%) were the most common symptoms. The characteristics of an initial 14 patients were utilized for the development of clinical criteria via a modified Delphi Method by a panel of experts in central sensitization disorders. These criteria were subsequently applied in the identification of 28 additional cases of suspected PoCoS. A 2-reviewer system was used to analyze agreement with using the criteria, with all 28 cases determined to be either probable or possible cases by the reviewers. Inter-reviewer agreement using these proposed defining criteria was high with a Cohen's alpha of .88. CONCLUSIONS Here we present what we believe to be the first definitional criteria for Post COVID syndrome. These may be useful in clinical phenotyping of these patients for targeted treatment and future research.
Collapse
|
20
|
Froehlich L, Hattesohl DBR, Jason LA, Scheibenbogen C, Behrends U, Thoma M. Medical Care Situation of People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Germany. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:646. [PMID: 34201825 PMCID: PMC8306083 DOI: 10.3390/medicina57070646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Background and Objective: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a severe illness with the hallmark symptom of Post-Exertional Malaise (PEM). Currently, no biomarkers or established diagnostic tests for ME/CFS exist. In Germany, it is estimated that over 300,000 people are affected by ME/CFS. Research from the United States and the UK shows that patients with ME/CFS are medically underserved, as they face barriers to medical care access and are dissatisfied with medical care. The first aim of the current research was to investigate whether patients with ME/CFS are medically underserved in Germany in terms of access to and satisfaction with medical care. Second, we aimed at providing a German-language version of the DePaul Symptom Questionnaire Short Form (DSQ-SF) as a tool for ME/CFS diagnostics and research in German-speaking countries. Materials and Methods: The current research conducted an online questionnaire study in Germany investigating the medical care situation of patients with ME/CFS. The questionnaire was completed by 499 participants who fulfilled the Canadian Consensus Criteria and reported PEM of 14 h or longer. Results: Participants frequently reported geographic and financial reasons for not using the available medical services. Furthermore, they reported low satisfaction with medical care by the physician they most frequently visited due to ME/CFS. The German version of the DSQ-SF showed good reliability, a one-factorial structure and construct validity, demonstrated by correlations with the SF-36 as a measure of functional status. Conclusions: Findings provide evidence that patients with ME/CFS in Germany are medically underserved. The German-language translation of the DSQ-SF provides a brief, reliable and valid instrument to assess ME/CFS symptoms to be used for research and clinical practice in German-speaking countries. Pathways to improve the medical care of patients with ME/CFS are discussed.
Collapse
Affiliation(s)
- Laura Froehlich
- Research Cluster DL, FernUniversität in Hagen, 58097 Hagen, Germany
| | | | - Leonard A. Jason
- Center for Community Research, DePaul University, Chicago, IL 60614, USA;
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Uta Behrends
- Department of Pediatrics, School of Medicine, Technical University of Munich, 80333 München, Germany;
| | - Manuel Thoma
- German Association for ME/CFS, 20146 Hamburg, Germany; (D.B.R.H.); (M.T.)
| |
Collapse
|
21
|
Voxel-based correlation of 18F-THK5351 accumulation with gray matter structural networks in cognitively normal older adults. eNeurologicalSci 2021; 23:100343. [PMID: 34007916 PMCID: PMC8111582 DOI: 10.1016/j.ensci.2021.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/02/2022] Open
Abstract
Objective The aim of this study was to evaluate tau-related structural network metrics derived from gray matter magnetic resonance imaging (MRI) scans in cognitively normal (CN) older adults. Methods We recruited 47 amyloid-negative CN older adults (mean age ± standard deviation, 65.0 ± 7.9 years; 26 women). All participants underwent 3D T1-weighted MRI and 11C-Pittsburgh compound-B and 18F-THK5351 positron emission tomography scans. Four local network metrics (betweenness centrality, clustering coefficient, characteristic path length, and degree) were computed and rendered on individual brain images. We then evaluated the correlations between 18F-THK5351 positron emission tomography images and local network metric images at the voxel level. Results Significant positive correlations of the four local network metrics with 18F-THK5351 were detected in the bilateral caudate. Conclusion Our findings suggest that tau and neuroinflammation in CN older adults may influence the gray matter structural network in the caudate. Local correlation of 18F-THK5351 and network metrics images in healthy elderly. Positive correlation between 18F-THK5351and network changes in the caudate. Tau and neuroinflammation may influence structural network in the caudate.
Collapse
|
22
|
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 2021; 19:162. [PMID: 33882940 PMCID: PMC8058748 DOI: 10.1186/s12967-021-02833-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic Fatigue Syndrome or Myalgic Encephaloymelitis (ME/CFS) is a frequent debilitating disease with an enigmatic etiology. The finding of autoantibodies against ß2-adrenergic receptors (ß2AdR) prompted us to hypothesize that ß2AdR dysfunction is of critical importance in the pathophysiology of ME/CFS. Our hypothesis published previously considers ME/CFS as a disease caused by a dysfunctional autonomic nervous system (ANS) system: sympathetic overactivity in the presence of vascular dysregulation by ß2AdR dysfunction causes predominance of vasoconstrictor influences in brain and skeletal muscles, which in the latter is opposed by the metabolically stimulated release of endogenous vasodilators (functional sympatholysis). An enigmatic bioenergetic disturbance in skeletal muscle strongly contributes to this release. Excessive generation of these vasodilators with algesic properties and spillover into the systemic circulation could explain hypovolemia, suppression of renin (paradoxon) and the enigmatic symptoms. In this hypothesis paper the mechanisms underlying the energetic disturbance in muscles will be explained and merged with the first hypothesis. The key information is that ß2AdR also stimulates the Na+/K+-ATPase in skeletal muscles. Appropriate muscular perfusion as well as function of the Na+/K+-ATPase determine muscle fatigability. We presume that dysfunction of the ß2AdR also leads to an insufficient stimulation of the Na+/K+-ATPase causing sodium overload which reverses the transport direction of the sodium-calcium exchanger (NCX) to import calcium instead of exporting it as is also known from the ischemia-reperfusion paradigm. The ensuing calcium overload affects the mitochondria, cytoplasmatic metabolism and the endothelium which further worsens the energetic situation (vicious circle) to explain postexertional malaise, exercise intolerance and chronification. Reduced Na+/K+-ATPase activity is not the only cause for cellular sodium loading. In poor energetic situations increased proton production raises intracellular sodium via sodium-proton-exchanger subtype-1 (NHE1), the most important proton-extruder in skeletal muscle. Finally, sodium overload is due to diminished sodium outward transport and enhanced cellular sodium loading. As soon as this disturbance would have occurred in a severe manner the threshold for re-induction would be strongly lowered, mainly due to an upregulated NHE1, so that it could repeat at low levels of exercise, even by activities of everyday life, re-inducing mitochondrial, metabolic and vascular dysfunction to perpetuate the disease.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
23
|
Szklarski M, Freitag H, Lorenz S, Becker SC, Sotzny F, Bauer S, Hartwig J, Heidecke H, Wittke K, Kedor C, Hanitsch LG, Grabowski P, Sepúlveda N, Scheibenbogen C. Delineating the Association Between Soluble CD26 and Autoantibodies Against G-Protein Coupled Receptors, Immunological and Cardiovascular Parameters Identifies Distinct Patterns in Post-Infectious vs. Non-Infection-Triggered Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Immunol 2021; 12:644548. [PMID: 33889154 PMCID: PMC8056217 DOI: 10.3389/fimmu.2021.644548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Soluble cluster of differentiation 26 (sCD26) has a wide range of enzymatic functions affecting immunological, metabolic and vascular regulation. Diminished sCD26 concentrations have been reported in various autoimmune diseases and also in Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). Here we re-evaluate sCD26 as a diagnostic marker and perform a comprehensive correlation analysis of sCD26 concentrations with clinical and paraclinical parameters in ME/CFS patients. Though this study did find significantly lower concentrations of sCD26 only in the female cohort and could not confirm diagnostic suitability, results from correlation analyses provide striking pathomechanistic insights. In patients with infection-triggered onset, the associations of low sCD26 with elevated autoantibodies (AAB) against alpha1 adrenergic (AR) and M3 muscarinic acetylcholine receptors (mAChR) point to a pathomechanism of infection-triggered autoimmune-mediated vascular and immunological dysregulation. sCD26 concentrations in infection-triggered ME/CFS were found to be associated with activated T cells, liver enzymes, creatin kinase (CK) and lactate dehydrogenase (LDH) and inversely with Interleukin-1 beta (IL-1b). Most associations are in line with the known effects of sCD26/DPP-4 inhibition. Remarkably, in non-infection-triggered ME/CFS lower sCD26 in patients with higher heart rate after orthostatic challenge and postural orthostatic tachycardia syndrome (POTS) suggest an association with orthostatic regulation. These findings provide evidence that the key enzyme sCD26 is linked to immunological alterations in infection-triggered ME/CFS and delineate a different pathomechanism in the non-infectious ME/CFS subset.
Collapse
Affiliation(s)
- Marvin Szklarski
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helma Freitag
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Lorenz
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonya C. Becker
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jelka Hartwig
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Kirsten Wittke
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nuno Sepúlveda
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Shigemoto Y, Sone D, Okita K, Maikusa N, Yamao T, Kimura Y, Suzuki F, Fujii H, Kato K, Sato N, Matsuda H. Gray matter structural networks related to 18F-THK5351 retention in cognitively normal older adults and Alzheimer's disease patients. eNeurologicalSci 2021; 22:100309. [PMID: 33511292 PMCID: PMC7815816 DOI: 10.1016/j.ensci.2021.100309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/21/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Objective This study aimed to examine the alterations in gray matter networks related to tau retention in Alzheimer's disease (AD) patients and cognitively normal (CN) older individuals. Methods Eighteen amyloid-positive AD patients and 30 age- and sex-matched amyloid-negative CN controls were enrolled. All underwent 3D T1-weighted MRI, amyloid positron-emission tomography imaging (PET) with 11C-Pittsburgh Compound B (PiB), and tau PET with 18F-THK5351. The structural networks extracted from the T1-weighted MRI data based on cortical similarities within single subjects were analyzed. Based on graph theoretical approach, global and local network properties across the whole brain were computed. Group comparisons of global and local network properties were evaluated between the groups. Then, we correlated the global and local network measures with total cerebral 18F-THK5351 retention. Results AD patients moved toward more randomized global network compared to controls and regional differences were observed in the default mode network (DMN) area. No significant correlations existed between global network properties and tau retention. On a local level, AD and controls showed opposite relationships between network properties and tau retention mainly in the DMN areas; CN controls showed positive correlations, whereas AD showed negative correlations. Conclusion We found opposite relationships between local network properties and tau retention between amyloid-positive AD patients and amyloid-negative controls. Our findings suggest that the presence of amyloid and induced exacerbated tau retention alter the relationship of local network properties and tau retention. Correlation of structural network properties and tau retention. Positive correlations between local network properties and tau retention in healthy elderly. Negative correlations between local network properties and tau retention in AD.
Collapse
Affiliation(s)
- Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.,Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama 963-8052, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Kyoji Okita
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.,Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Tensho Yamao
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Hiroyuki Fujii
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Koichi Kato
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.,Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama 963-8052, Japan
| |
Collapse
|
25
|
Tölle M, Freitag H, Antelmann M, Hartwig J, Schuchardt M, van der Giet M, Eckardt KU, Grabowski P, Scheibenbogen C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Efficacy of Repeat Immunoadsorption. J Clin Med 2020; 9:E2443. [PMID: 32751659 PMCID: PMC7465279 DOI: 10.3390/jcm9082443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
(1) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex neuroimmunological disease. There is evidence for an autoimmune mechanism for ME/CFS with an infection-triggered onset and dysfunction of ß2-adrenoreceptor antibodies (ß2AR-AB). In a first proof-of-concept study, we could show that IA was effective to reduce ß2AR-AB and led to improvement of various symptoms. (2) Five of the ME/CFS patients who had clinical improvement following treatment with a five-day IA were retreated in the current study about two years later with a modified IA protocol. The severity of symptoms was assessed by disease specific scores during a follow-up period of 12 months. The antibodies were determined by ELISA. (3) The modified IA treatment protocol resulted in a remarkable similar clinical response. The treatment was well tolerated and 80-90% decline of total IgG and ß2AR-AB was achieved. Four patients showed a rapid improvement in several clinical symptoms during IA therapy, lasting for six to 12 months. One patient had no improvement. (4) We could provide further evidence that IA has clinical efficacy in patients with ME/CFS. Data from our pilot trial warrant further controlled studies in ME/CFS.
Collapse
Affiliation(s)
- Markus Tölle
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Helma Freitag
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Michaela Antelmann
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Jelka Hartwig
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Markus van der Giet
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (M.T.); (M.S.); (M.v.d.G.); (K.-U.E.)
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.F.); (M.A.); (J.H.); (P.G.)
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| |
Collapse
|