1
|
Wu X, Chen S, Yang Y, Xu X, Xiong X, Meng W. Circulating mucosal-associated invariant T cell alterations in adults with recent-onset and long-term oral lichen planus. BMC Oral Health 2024; 24:1183. [PMID: 39369184 PMCID: PMC11453089 DOI: 10.1186/s12903-024-04959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells play key roles in many inflammatory diseases. However, their effects on the long-term course of oral lichen planus (OLP) and recent-onset OLP remain unclear. In this study, we aimed to investigate the function of MAIT cells in the different processes of OLP and to explore the immunological background of this disease. METHODS The frequency, phenotype, cytokine secretion, and clinical relevance of MAIT cells were investigated. MAIT cells were collected from the peripheral blood of 14 adults with recent-onset OLP (7-120 days after disease onset) and 16 adults with long-term course OLP (>2 years after diagnosis) using flow cytometry and compared with 15 healthy blood donors. Statistical analyses were performed using the GraphPad Prism software. RESULTS MAIT cells from adults with recent-onset OLP exhibited an activated phenotype, as indicated by an increased frequency of CD69+ (p < 0.05) and CD38+MAIT cells (p < 0.01) and elevated production of the proinflammatory cytokine IL-17 A (p < 0.01), compared with healthy adult donors. In adults with long-term OLP, MAIT cells exhibited an activated and exhausted phenotype, characterized by high expression of CD69 (p < 0.01) and PD-1 (p < 0.001) and increased production of granzyme B released (p < 0.01). Compared with recent-onset OLP patients, long-term OLP patients showed a decreased production of CD8+, and CD4-CD8- cells, but an increase in PD-1+ production (p < 0.05). CONCLUSIONS Circulating MAIT cells exhibited activation in OLP patients across varying disease durations. Given that PD-1 expression is elevated in adults with long-term OLP, it is reasonable to infer that circulating MAIT cells in long-term OLP may exhibit a more exhausted state than those in recent-onset OLP.
Collapse
Affiliation(s)
- Xiaoli Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou City, Guangdong Province, 510280, P.R. China
| | - Siting Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou City, Guangdong Province, 510280, P.R. China
| | - Yinshen Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou City, Guangdong Province, 510280, P.R. China
| | - Xiaoheng Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou City, Guangdong Province, 510280, P.R. China
| | - Xiaoqin Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou City, Guangdong Province, 510280, P.R. China.
| | - Wenxia Meng
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou City, Guangdong Province, 510280, P.R. China.
| |
Collapse
|
2
|
Zhao C, Zhao R, Wu X, Tang K, Xu P, Chen X, Zhu P, He Y. Function of unconventional T cells in oral lichen planus revealed by single-cell RNA sequencing. Inflamm Res 2024; 73:1477-1492. [PMID: 39073597 DOI: 10.1007/s00011-024-01912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE We intended to map the single-cell profile of OLP, explore the molecular characteristics of unconventional T cells in OLP tissues. METHODS Buccal mucosa samples from OLP patients and healthy individuals were used to prepare single-cell suspension. Single-cell RNA sequencing was used to analyze the proportion of all the cells, and the molecular characteristics of unconventional T cells. Immunohistochemical staining was used to detect the expression of unconventional T cells marker genes. RESULTS The cell clusters from buccal mucosa were categorized into immune cells, fibroblasts, endothelial cells, and epithelial cells. Unconventional T cells with phenotype of CD247+TRDC+NCAM1+ were identified. Immunohistochemical staining revealed higher expression of unconventional T cell marker genes in OLP tissue, predominantly in the lamina propria. In OLP, unconventional T cells are in a unique stress response state, exhibited enhanced NF-κB signaling and apoptosis inhibition, enhanced heat shock protein genes expression, weakened cytotoxic function. A large number of ligand-receptor pairs were found between unconventional T cells and other cells, particularly with fibroblasts and endothelial cells. CONCLUSIONS This study mapped the single-cell profile of OLP, delineated the molecular characteristics of unconventional T cells in OLP, and uncovered that these unconventional T cells are in a stress response state.
Collapse
Affiliation(s)
- Chen Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Ruowen Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Xinwen Wu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kailin Tang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Xin Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Pingyi Zhu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Chen S, Wu X, Yang Y, Xu X, Xiong X, Meng W. Increased pathogenicity and pro-inflammatory capabilities of mucosal-associated invariant T cells involved in Oral Lichen Planus. BMC Oral Health 2024; 24:829. [PMID: 39039547 PMCID: PMC11264365 DOI: 10.1186/s12903-024-04621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.
Collapse
Affiliation(s)
- Siting Chen
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Xiaoli Wu
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Yinshen Yang
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Xiaoheng Xu
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Xiaoqin Xiong
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Wenxia Meng
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China.
| |
Collapse
|
4
|
Jiang Q, Wang F, Zhou G. Keratinocytes stimulate MAIT cells to produce granzyme B via MR1 and cytokines in oral lichen planus. Oral Dis 2024. [PMID: 38937944 DOI: 10.1111/odi.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Oral lichen planus (OLP) is a chronic inflammatory disease characterized by a dense T-cell infiltration and the degeneration of basal keratinocytes. The potential functions of mucosal associated invariant T (MAIT) cells in OLP have been analyzed in our previous study. Keratinocytes under proinflammatory conditions have been demonstrated to activate T cells. This study was aimed to investigate how keratinocytes stimulate MAIT cells in OLP, and to explore the role of activated MAIT cells on keratinocytes. METHODS AND RESULTS Increased MAIT cells and higher activation marker CD69 were detected in OLP lesions by flow cytometry. The enhanced expression of MHC class I-like molecule (MR1) required for MAIT cell activation in the epithelial layer of OLP lesions was determined by immunohistochemistry. Keratinocytes treated by 5-A-RU prodrug and lipopolysaccharide, respectively, exhibited higher expression of MR1 and secretion of IL-18. In direct coculture systems consisting of keratinocytes and peripheral blood mononuclear cells, both 5-A-RU prodrug-pretreated keratinocytes and lipopolysaccharide-pretreated keratinocytes activated MAIT cells to secrete granzyme B, contributing to elevated keratinocyte apoptosis. CONCLUSIONS Keratinocytes were capable to activate MAIT cells via MR1 and cytokines in OLP, and granzyme B produced by activated MAIT cells intensified keratinocyte apoptosis, engaging in the pathogenesis of OLP.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Wang XF, Wang F, Zhou G. MALT1 Protease Regulates T-Cell Immunity via the mTOR Pathway in Oral Lichen Planus. Inflammation 2024; 47:939-957. [PMID: 38159177 DOI: 10.1007/s10753-023-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Oral lichen planus (OLP) is a T cell-mediated immune mucosal disease of unknown pathogenesis. Whether mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), an intracellular signaling protein, is involved in the T-cell immune dysfunction of OLP remains elusive. MALT1 expression in local and peripheral T cells of OLP and controls was analyzed using immunohistochemistry, multiplex immunohistochemistry, and flow cytometry. The expression of MALT1 in activated Jurkat T cells incubated with either OLP plasma or interleukin (IL)-7/IL-15 was determined by flow cytometry. The effects of MALT1 and mechanistic target of rapamycin (mTOR) on T-cell immunity were investigated through western blot, CCK8 assay, and flow cytometry. The expression of MALT1 protein was elevated in local OLP T cells and mucosal-associated invariant T (MAIT) cells, while reduced in peripheral OLP T cells, MAIT cells, and follicular helper-like MAIT (MAITfh) cells. Stimulation with OLP plasma and IL-7/ IL-15 had no effect on MALT1 expression in activated Jurkat T cells. MALT1 protease-specific inhibitor (MI-2) induced mTOR phosphorylation, increased B-cell lymphoma 10 (BCL10) expression, inhibited T-cell proliferation, and promoted T-cell apoptosis. The combination of MI-2 and rapamycin increased MALT1 expression, further suppressed T-cell proliferation, and facilitated T-cell apoptosis. MALT1 expression is aberrant in both local lesions and peripheral blood of OLP. Inhibition of the mTOR pathway further enhances the suppression of T-cell proliferation and the promotion of apoptosis induced by the MALT1 inhibitor MI-2.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, 430079, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, 430079, China.
| |
Collapse
|
6
|
Wei XY, Tan YQ, Zhou G. γδ T cells in oral diseases. Inflamm Res 2024; 73:867-876. [PMID: 38563967 DOI: 10.1007/s00011-024-01870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed. METHODS We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases. RESULTS The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation. CONCLUSION This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.
Collapse
Affiliation(s)
- Xin-Yi Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Pham JP, Wark KJL, Woods J, Frew JW. Resident cutaneous memory T cells: a clinical review of their role in chronic inflammatory dermatoses and potential as therapeutic targets. Br J Dermatol 2023; 189:656-663. [PMID: 37603832 DOI: 10.1093/bjd/ljad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Resident memory T cells (T-RMs) remain in epithelial barrier tissues after antigen exposure and the initial effector phase. These T-RMs provide effective antimicrobial and anticancer immunity; however, pathogenic T-RMs have been shown to mediate various chronic inflammatory disorders in a variety of tissue types. In the skin, T-RMs are referred to as resident cutaneous memory T cells (cT-RMs). Understanding the mechanisms leading to the development and establishment of these cT-RMs populations may allow for targeted treatments that provide durable responses in chronic immune-mediated skin diseases, even after cessation. In this review, we summarize the evidence on cT-RMs as drivers of chronic inflammatory dermatoses, including psoriasis, vitiligo, atopic dermatitis, cutaneous lupus erythematosus and alopecia areata, among others. Data from in vitro, animal model and ex vivo human studies are presented, with a focus on the potential for cT-RMs to trigger acute disease flares, as well as recurrent disease, by establishing an immune 'memory' in the skin. Furthermore, the available data on the potential for existing and novel treatments to affect the development or survival of cT-RMs in the skin are synthesized. The data suggest a dynamic and rapidly growing area in the field of dermatology; however, we also discuss areas in need of greater research to allow for optimal treatment selection for long-term disease control.
Collapse
Affiliation(s)
- James P Pham
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Kirsty J L Wark
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jane Woods
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - John W Frew
- School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, NSW, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
8
|
Unnikrishnan SP, Rampersaud E, Mcgee A, Cruickshank ME, Abu-Eid R, Hijazi K. Disease severity scoring systems in mucosal lichen planus: A systematic review. Oral Dis 2023; 29:3136-3151. [PMID: 36404123 DOI: 10.1111/odi.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022]
Abstract
Several scoring systems have been developed to evaluate disease severity in mucosal lichen planus, but only a few have been validated to ensure reproducible and accurate assessment of disease severity. The current systematic review was undertaken to identify clinical severity scoring systems in mucosal lichen planus that have undergone validity or reliability testing and to describe their operating characteristics. We performed a bibliographic search in five databases from their inception to October 2022 for severity scoring systems in mucosal lichen planus that have undergone validity or reliability tests. Quality assessment was conducted using the Joanna Briggs Institute Critical Appraisal tools. We have included 118 studies and identified 11 clinical severity scoring systems for oral lichen planus that have undergone validity or reliability testing. Of these, the most reported were the Thongprasom score, the Oral Disease Severity Score (ODSS) and the REU (Reticular/hyperkeratotic, Erosive/erythematous, Ulcerative) scoring systems. We did not identify clinical scoring systems for extraoral mucosal lichen planus that have undergone validity or reliability testing. The ODSS and REU scoring systems have undergone the highest number of validation attempts and reliability assessments for oral lichen planus respectively. However, we have identified numerous factors that have hampered the universal adoption of a standardised scoring system. There is a need for the development and validation of scoring systems for extraoral mucosal lichen planus.
Collapse
Affiliation(s)
- Sreedevi P Unnikrishnan
- Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Edward Rampersaud
- Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Alice Mcgee
- Aberdeen Centre for Women's Health Research, Aberdeen Maternity Hospital, Aberdeen, UK
| | - Maggie E Cruickshank
- Aberdeen Centre for Women's Health Research, Aberdeen Maternity Hospital, Aberdeen, UK
| | - Rasha Abu-Eid
- Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Karolin Hijazi
- Institute of Dentistry, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
9
|
Huang S, Tan YQ, Zhou G. Aberrant Activation of the STING-TBK1 Pathway in γδ T Cells Regulates Immune Responses in Oral Lichen Planus. Biomedicines 2023; 11:biomedicines11030955. [PMID: 36979934 PMCID: PMC10046253 DOI: 10.3390/biomedicines11030955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory disease. Interferon (IFN)-γ has been suggested to be vital for the OLP immune responses. A prominent innate-like lymphocyte subset, γδ T cells, span the innate-adaptive continuum and exert immune effector functions by producing a wide spectrum of cytokines, including IFN-γ. The involvement and mechanisms of γδ T cells in the pathogenesis of OLP remain obscure. The expression of γδ T cells in lesion tissues and in the peripheral blood of OLP patients was determined via flow cytometry and immunohistochemistry, respectively. Human leukocyte antigen-DR (HLA-DR), cluster of differentiation (CD) 69, Toll-like receptors (TLRs), natural killer group 2, member D (NKG2D) and IFN-γ were detected in γδ T cells of OLP patients using flow cytometry. Additionally, the involvement of stimulator of the interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway in γδ T cells was evaluated by multi-color immunofluorescence. Western blotting was employed to investigate the regulatory mechanisms of γδ T cells in OLP. γδ T cells were significantly upregulated in the lesion tissues, whereas their peripheral counterparts were downregulated in OLP patients. Meanwhile, increased frequencies of local CD69+ and NKG2D+ γδ T cells and peripheral HLA-DR+ and TLR4+ γδ T cells were detected in OLP. Furthermore, significant co-localization of STING and TBK1 was observed in the γδ T cells of OLP lesions. In addition, enhanced IFN-γ and interleukin (IL)-17A were positively associated with the activated STING-TBK1 pathway and γδ T cells in OLP. Taken together, the upregulated STING-TBK1 pathway in activated γδ T cells might participate in the regulation of immune responses in OLP.
Collapse
Affiliation(s)
- Shan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
10
|
Vičić M, Hlača N, Kaštelan M, Brajac I, Sotošek V, Prpić Massari L. Comprehensive Insight into Lichen Planus Immunopathogenesis. Int J Mol Sci 2023; 24:ijms24033038. [PMID: 36769361 PMCID: PMC9918135 DOI: 10.3390/ijms24033038] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Lichen planus is a chronic disease affecting the skin, appendages, and mucous membranes. A cutaneous lichen planus is a rare disease occurring in less than 1% of the general population, while oral illness is up to five times more prevalent; still, both forms equally impair the patient's quality of life. The etiology of lichen planus is not entirely understood. Yet, immune-mediated mechanisms have been recognized since environmental factors such as hepatitis virus infection, mechanical trauma, psychological stress, or microbiome changes can trigger the disease in genetically susceptible individuals. According to current understanding, lichen planus immunopathogenesis is caused by cell-mediated cytotoxicity, particularly cytotoxic T lymphocytes, whose activity is further influenced by Th1 and IL-23/Th-17 axis. However, other immunocytes and inflammatory pathways complement these mechanisms. This paper presents a comprehensive insight into the actual knowledge about lichen planus, with the causal genetic and environmental factors being discussed, the immunopathogenesis described, and the principal effectors of its inflammatory circuits identified.
Collapse
Affiliation(s)
- Marijana Vičić
- Department of Dermatovenereology, Medical Faculty, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Nika Hlača
- Department of Dermatovenereology, Medical Faculty, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marija Kaštelan
- Department of Dermatovenereology, Medical Faculty, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Ines Brajac
- Department of Dermatovenereology, Medical Faculty, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimation and Intensive Care, Medical Faculty, University of Rijeka, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Larisa Prpić Massari
- Department of Dermatovenereology, Medical Faculty, University of Rijeka, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
- Correspondence:
| |
Collapse
|
11
|
Hu J, Ling Z, Li W, Su Z, Lu J, Zeng Q, Cheng B, Tao X. Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus. J Oral Pathol Med 2023; 52:150-160. [PMID: 36459062 DOI: 10.1111/jop.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Although abnormal cell proliferation and apoptosis are associated with the pathogenesis of oral lichen planus (OLP), the exactly mechanism of which is not yet known. It has been reported that glutamine (Gln) can promote cell proliferation and inhibit apoptosis of various tumor cells. This study aims to evaluate the effect of Gln metabolism on the balance of proliferation and apoptosis in epithelial cells of OLP. METHODS Thirty human OLP specimens and 11 normal controls were stained by immunohistochemistry to detect the levels of proliferation and Gln metabolism related proteins. Then, the critical role of Gln in cell proliferation and apoptosis was determined by Gln deprivation or treatment with glutaminase inhibitor (CB-839) to intervene Gln metabolism in human gingival epithelial cells. Cell proliferation was detected using CCK8, p-mTOR and p-S6 proteins were detected using Western Blot, cell apoptosis and cell cycle were detected using flow cytometry, and cell stress was detected using immunofluorescence. RESULTS Compared with normal controls, OLP specimens showed higher levels of Ki-67 and Gln metabolism-related proteins, including Gln transporter (ASCT2), glutaminase (GLS), and pathway proteins (p-mTOR and p-S6). In vitro, Gln promoted cell proliferation and simultaneously upregulated the activity of mTOR/S6 pathway. Moreover, rapamycin, an mTOR pathway inhibitor, could effectively block the Gln-induced cell proliferation. MHY1485, an mTOR pathway agonist, could effectively reverse the decline of cell proliferation under Gln deprivation. In addition, inhibiting Gln metabolism caused the accumulation of intracellular radical oxygen species (ROS) and induced cell apoptosis. However, N-acetylcysteine reversed this state and then decreased cell apoptosis by eliminating intracellular ROS. CONCLUSION Gln metabolism is essential to maintain the balance of proliferation and apoptosis in oral epithelial cells, and inhibition of Gln metabolism may have a beneficial effect on OLP treatment.
Collapse
Affiliation(s)
- Jiaqi Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qi Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
12
|
DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int J Mol Sci 2023; 24:ijms24021490. [PMID: 36675003 PMCID: PMC9860686 DOI: 10.3390/ijms24021490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Oral lichen planus (OLP) is an inflammatory condition of unknown cause that has been associated with concurrent candidal infection. Mucosal-associated invariant T (MAIT) cells express the T cell receptor TCRVα7.2 and are activated by riboflavin intermediates produced by microbes. The interaction between MAIT cells, Candida, and OLP is unknown. This study aimed to determine mucosal-associated T cell presence in OLP and whether the abundance of these cells changed due to the presence of either Candida or symptoms, using multiplex immunohistochemistry (mIHC). Ninety formalin fixed-paraffin-embedded (FFPE) tissue samples were assessed using mIHC for the cellular markers CD3, interleukin 18 receptor one (IL18R1), TCRVα7.2, CD161, CD8, and major histocompatibility complex class I-related (MR-1) protein. The samples were stratified into five groups on the basis of clinical (presence/absence of symptoms) and microbiological (presence/absence of Candida) criteria. Results demonstrated the presence of MAIT cell phenotypes in OLP inflammatory infiltrate within the connective tissue. Significant differences existed between different OLP groups with the percentage of log(CD3+ CD161+) and log(CD3+ TCRVα7.2+) positive cells (p < 0.001 and p = 0.005 respectively). Significant differences also existed with the relative abundance of triple-stained log(CD3+ CD161+ IL18R1+) cells (p = 0.004). A reduction in log(CD3+ CD161+ IL18R1+) cells was observed in lesional tissue of patients with symptomatic OLP with and without Candida when compared to controls. When present in OLP, MAIT cells were identified within the connective tissue. This study demonstrates that mIHC can be used to identify MAIT cell phenotypes in OLP. Reduced percentage of log(CD3+ CD161+ IL18R1+) cells seen in symptomatic OLP with and without Candida suggests a role for these cells in OLP pathogenesis.
Collapse
Affiliation(s)
- Lara Marie DeAngelis
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| | - Alexis Perez-Gonzalez
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
- Correspondence:
| |
Collapse
|
13
|
Jiang X, Zhao Q, Huang Z, Ma F, Chen K, Li Z. Relevant mechanisms of MAIT cells involved in the pathogenesis of periodontitis. Front Cell Infect Microbiol 2023; 13:1104932. [PMID: 36896188 PMCID: PMC9988952 DOI: 10.3389/fcimb.2023.1104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a group of unconventional T cells that are abundant in the human body, recognize microbial-derived vitamin B metabolites presented by MHC class I-related protein 1 (MR1), and rapidly produce proinflammatory cytokines, which are widely involved in the immune response to various infectious diseases. In the oral mucosa, MAIT cells tend to accumulate near the mucosal basal lamina and are more inclined to secrete IL-17 when activated. Periodontitis is a group of diseases that manifests mainly as inflammation of the gums and resorption of the alveolar bone due to periodontal tissue invasion by plaque bacteria on the dental surface. The course of periodontitis is often accompanied by a T-cell-mediated immune response. This paper discussed the pathogenesis of periodontitis and the potential contribution of MAIT cells to periodontitis.
Collapse
Affiliation(s)
- Xinrong Jiang
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, China
| | - Zhanyu Huang
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Fengyu Ma
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
- *Correspondence: Zejian Li,
| |
Collapse
|
14
|
MAIT cells and their implication in human oral diseases. Inflamm Res 2022; 71:1041-1054. [PMID: 35781343 DOI: 10.1007/s00011-022-01600-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that are abundant in humans, accounting for 1-10% of circulating T cells and about 2% of total T cells in human oral cavity. MAIT cells can mount a strong immune response quickly without exogenous antigens and undergo a phenotypic transformation in the development of diseases. They produce cytokines involved in the Th1 and Th17 immune response and cytotoxic proteins, promote the dysfunction of autoreactive B cell and inhibit the function of NK cells. MAIT cells have been widely explored in autoimmune diseases, inflammatory diseases and tumors, and these mechanisms may also be involved in the pathogenesis of some oral diseases, while MAIT cells have not been systematically discussed in oral diseases. METHODS We searched PubMed/MEDLINE, EMBASE and Microsoft Bing databases to review and analyze relevant literatures on the impact of MAIT cells in the pathogenesis of human oral diseases. CONCLUSION Collected evidence elucidated the characteristics of MAIT cells and emphasized the potential roles of MAIT cells in oral lichen planus (OLP), chronic graft-versus-host disease (cGVHD), oral squamous cell carcinoma (OSCC), apical periodontitis (AP) and primary Sjogren's syndrome (pSS).
Collapse
|
15
|
Xie H, Xie S, Wang M, Wei H, Huang H, Xie A, Li J, Fang C, Shi F, Yang Q, Qi Y, Yin Z, Wang X, Huang J. Properties and Roles of γδT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Front Cell Infect Microbiol 2022; 11:788546. [PMID: 35127555 PMCID: PMC8811364 DOI: 10.3389/fcimb.2021.788546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Many kinds of immune cells are involved in malaria infection. γδT cells represent a special type of immune cell between natural and adaptive immune cells that play critical roles in anti-parasite infection. Methods In this study, malaria infection model was constructed. Distribution of γδT cells in various immune organs and dynamic changes of γδT cells in the spleens of C57BL/6 mice after infection were detected by flow cytometry. And activation status of γδT cells was detected by flow cytometry. Then γδT cells in naive and infected mice were sorted and performed single-cell RNA sequencing (scRNA-seq). Finally, γδTCR KO mice model was constructed and the effect of γδT cell depletion on mouse T and B cell immunity against Plasmodium infection was explored. Results Here, splenic γδT cells were found to increase significantly on day 14 after Plasmodium yoelii nigeriensis NSM infection in C57BL/6 mice. Higher level of CD69, ICOS and PD-1, lower level of CD62L, and decreased IFN-γ producing after stimulation by PMA and ionomycin were found in γδT cells from infected mice, compared with naive mice. Moreover, 11 clusters were identified in γδT cells by scRNA-seq based t-SNE analysis. Cluster 4, 5, and 7 in γδT cells from infected mice were found the expression of numerous genes involved in immune response. In the same time, the GO enrichment analysis revealed that the marker genes in the infection group were involved in innate and adaptive immunity, pathway enrichment analysis identified the marker genes in the infected group shared many key signalling molecules with other cells or against pathogen infection. Furthermore, increased parasitaemia, decreased numbers of RBC and PLT, and increased numbers of WBC were found in the peripheral blood from γδTCR KO mice. Finally, lower IFN-γ and CD69 expressing CD4+ and CD8+ T cells, lower B cell percentage and numbers, and less CD69 expressing B cells were found in the spleen from γδTCR KO infected mice, and lower levels of IgG and IgM antibodies in the serum were also observed than WT mice. Conclusions Overall, this study demonstrates the diversity of γδT cells in the spleen of Plasmodium yoelii nigeriensis NSM infected C57BL/6 mice at both the protein and RNA levels, and suggests that the expansion of γδT cells in cluster 4, 5 and 7 could promote both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Hongyan Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| | - Jun Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| |
Collapse
|