1
|
Wang WL, Chen Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Explore the Potential Mechanism of Gualou Xiebai Banxia Decoction against Myocardial Infarction. Genes (Basel) 2024; 15:392. [PMID: 38674327 PMCID: PMC11048873 DOI: 10.3390/genes15040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate targets through which Gualou Xiebai Banxia decoction aids in treating myocardial infarction (MI) using network pharmacology in combination with molecular docking. The principal active ingredients of Gualou Xiebai Banxia decoction were identified from the TCMSP database using the criteria of drug-likeness ≥30% and oral bioavailability ≥0.18. Interactions and pathway enrichment were investigated using protein-protein interaction (PPI) networks and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, respectively. Active component structures were docked with those of potential protein targets using AutoDock molecular docking relative softwares. HIF1A was of particular interest as it was identified by the PPI network, GO and KEGG pathway enrichment analyses. In conclusion, the use of network pharmacology prediction and molecular docking assessments provides further information on the active components and mechanisms of action Gualou Xiebai Banxia decoction.
Collapse
Affiliation(s)
| | - Yan Chen
- Faculty of Medicine, Macau University of Science and Technology, Praia Park Block R Coloane Macau, Macau 999078, China;
| |
Collapse
|
2
|
Wang YY, Liu YY, Li J, Zhang YY, Ding YF, Peng YR. Gualou xiebai decoction ameliorates cardiorenal syndrome type II by regulation of PI3K/AKT/NF-κB signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155172. [PMID: 37976694 DOI: 10.1016/j.phymed.2023.155172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/08/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Cardiorenal syndromes type II (CRS2) is a multi-organ ailment that manifests as a combination of cardiac and renal dysfunction, resulting in chronic kidney disease due to chronic cardiac insufficiency. It affects at least 26 million people worldwide, and its prevalence is increasing. Gualou Xiebai Decoction (GXD), a traditional Chinese medicine (TCM) with a rich history of application in the management of coronary artery disease, has been explored for its potential therapeutic benefits in CRS2. Nevertheless, the mechanism by which GXD alleviates CRS2 remains obscure, necessitating further investigation. PURPOSE The aim of this study was to assess the effects of the ethanolic extract of GXD on CRS2 and to elucidate the underlying mechanism in a rat model of myocardial infarction, offering a potential target for clinical treatment for CRS2. STUDY DESIGN AND METHODS A rat model of CRS2 was induced by surgical myocardial infarction and treated with GXD for 10 weeks. Cardiac function was assessed using echocardiography, while serum and urine biochemistry were analyzed to evaluate potential cardiac and renal damage. Furthermore, tissue samples were obtained for histological, protein, and genetic investigations. In addition, network pharmacology analysis and molecular docking were utilized to predict the primary active compounds, potential therapeutic targets, and interventional pathways through which GXD could potentially exert its effects on CRS2. Subsequently, these predictions were confirmed in vivo and vitro through various analyses. RESULTS The current investigation employed echocardiography to exhibit the apparent cardiac remodeling following the induction of myocardial infarction. Damage to the heart and kidneys of CRS2 rats was effectively ameliorated by administration of GXD. The outcomes derived from the analyses of HE and Masson staining indicated that the pathological damage to the heart and kidney tissues of rats in the GXD groups was considerably alleviated. Using network pharmacology analysis, AKT1, IL-6, and TNF-α were identified as plausible therapeutic targets for the treatment of CRS with GXD. Subsequent functional and pathway enrichment analysis of the underlying targets disclosed that the PI3K/AKT/NF-κB signaling pathway may be involved in the mechanism of GXD in the treatment of CRS2. Immunohistochemical, western blot, RT-PCR and immunofluorescence staining were employed to demonstrate that GXD can regulate the PI3K/AKT/NF-κB signaling pathway in the CRS2 rat model. Ultimately, administration of the PI3K/AKT agonist 740Y-P counteracted the effect of diosmetin, which was one of the potential active components of GXD analysed by compound-target-disease network, on p-PI3K and p-AKT in vitro. CONCLUSIONS The findings of this study suggest that GXD improves cardiac and renal function in CRS2 rats and that the underlying mechanism involves inhibition of the PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Ying-Yu Wang
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yang-Yang Liu
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jie Li
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yun-Yun Zhang
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yong-Fang Ding
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Yun-Ru Peng
- Affliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| |
Collapse
|
3
|
Wang Y, Sun X, Qiu J, Zhou A, Xu P, Liu Y, Wu H. A UHPLC-Q-TOF-MS-based serum and urine metabolomics approach reveals the mechanism of Gualou-Xiebai herb pair intervention against atherosclerosis process in ApoE -/- mice. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123567. [PMID: 36529071 DOI: 10.1016/j.jchromb.2022.123567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/05/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis (AS) is a metabolic disorder commonly correlated with a high-fat diet (HFD). There are many endogenous metabolic changes associated with AS development. Gualou-Xiebai (GLXB) is a traditional Chinese medicine herb pair that has been used to treat AS. However, the mechanism of GLXB herb pair on the process of AS is still essentially unknown. In this study, aortic histopathological examination and biochemical analyses were used to validate the anti-atherosclerotic effects of GLXB herb pair on ApoE-/- mice during the disease course of AS. The mechanism of GLXB herb pair were performed by metabolomics approach based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). As a result, GLXB herb pair has protective effects on AS lesion development and improves blood lipid levels in ApoE-/- mice. A total of 34, 39, and 49 metabolites were found to be profoundly altered in the 9-week, 14-week, and 19-week model groups compared with the corresponding control groups. Among them, 16, 18, and 18 metabolites showed a trend toward normal levels after pharmacological intervention. Metabolic pathway analysis found that GLXB herb pair mainly affects glycerophospholipid metabolism, pentose and glucuronate interconversions in 9 weeks; linoleic acid metabolism, cysteine and methionine metabolism, and arachidonic acid metabolism in 14 weeks; arachidonic acid metabolism and pentose and glucuronate interconversions in 19 weeks. The results demonstrated that GLXB herb pair mainly played a therapeutic role by regulating glycerophospholipid metabolism and pentose and glucuronate interconversions in the whole process of AS.
Collapse
Affiliation(s)
- Yuting Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xin Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
4
|
Liu Y, Zhong H, Xu P, Zhou A, Ding L, Qiu J, Wu H, Dai M. Deciphering the combination mechanisms of Gualou–Xiebai herb pair against atherosclerosis by network pharmacology and HPLC-Q-TOF-MS technology. Front Pharmacol 2022; 13:941400. [PMID: 36120369 PMCID: PMC9476847 DOI: 10.3389/fphar.2022.941400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Gualou (Trichosanthes kirilowii Maxim)–Xiebai (Allium macrostemon Bunge) (GLXB) is a well-known herb pair against atherosclerosis (AS). However, the combination mechanisms of GLXB herb pair against AS remain unclear. Objective: To compare the difference in efficacy between GLXB herb pair and the single herbs and to explore the combination mechanisms of GLXB against AS in terms of compounds, targets, and signaling pathways. Methods: The combined effects of GLXB were evaluated in AS mice. The main compounds of GLXB were identified via quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) and UNIFI informatics platforms. The united mechanisms of GLXB in terms of nodes, key interactions, and functional clusters were realized by network pharmacology. At last, the anti-atherosclerotic mechanisms of GLXB were validated using enzyme-linked immunosorbent assay (ELISA) and Western blot in AS mice. Results: The anti-atherosclerotic effects of the GLXB herb pair (6 g/kg) were more significant than those of Gualou (4 g/kg) and Xiebai (2 g/kg) alone. From the GLXB herb pair, 48 main components were identified. In addition, the GLXB herb pair handled more anti-atherosclerotic targets and more signaling pathways than Gualou or Xiebai alone, whereas 10 key targets of GLXB were found using topological analysis. Furthermore, the GLXB herb pair (6 g/kg) could suppress the inflammatory target levels of IL-6, IL-1β, TNF-α, ALOX5, PTGS2, and p-p38 in AS mice. GLXB herb pair (6 g/kg) could also ameliorate endothelial growth and function by regulating the levels of VEGFA, eNOS, p-AKT, VCAM-1, and ICAM-1 and reducing macrophage adhesion to vascular wall in AS mice. GLXB herb pair (6 g/kg) could improve the blood lipid levels in AS mice. In addition, the regulating effects of GLXB herb pair (6 g/kg) on levels of IL-1β, TNF-α, ALOX5, VEGFA, eNOS, VCAM-1, ICAM-1, and blood lipids were more significant than those of Gualou (4 g/kg) or Xiebai alone (2 g/kg). Conclusion: The combination mechanisms of the GLXB herb pair were elucidated in terms of components, targets, and signaling pathways, which may be related to suppressing inflammation, regulating vascular endothelial growth/function, and improving blood lipid levels.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hua Zhong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Lidan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. Natural Products in Cardiovascular Diseases: The Potential of Plants from the Allioideae Subfamily (Ex-Alliaceae Family) and Their Sulphur-Containing Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:1920. [PMID: 35893624 PMCID: PMC9332240 DOI: 10.3390/plants11151920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and, together with associated risk factors such as diabetes, hypertension, and dyslipidaemia, greatly impact patients' quality of life and health care systems. This burden can be alleviated by fomenting lifestyle modifications and/or resorting to pharmacological approaches. However, due to several side effects, current therapies show low patient compliance, thus compromising their efficacy and enforcing the need to develop more amenable preventive/therapeutic strategies. In this scenario, medicinal and aromatic plants are a potential source of new effective agents. Specifically, plants from the Allioideae subfamily (formerly Alliaceae family), particularly those from the genus Allium and Tulbaghia, have been extensively used in traditional medicine for the management of several CVDs and associated risk factors, mainly due to the presence of sulphur-containing compounds. Bearing in mind this potential, the present review aims to gather information on traditional uses ascribed to these genera and provide an updated compilation of in vitro and in vivo studies validating these claims as well as clinical trials carried out in the context of CVDs. Furthermore, the effect of isolated sulphur-containing compounds is presented, and whenever possible, the relation between composition and activity and the mechanisms underlying the beneficial effects are pointed out.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-290 Coimbra, Portugal
| |
Collapse
|
6
|
Xiang Z, Wang Y, Liu S. The chemical and metabolite profiles of Gualou-Xiebai-Banxia decoction, a classical traditional Chinese medicine formula, by using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and in-house software. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114994. [PMID: 35033623 DOI: 10.1016/j.jep.2022.114994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gualou-Xiebai-Banxia decoction (GXBD) was a classical traditional Chinese medicine formula for the treatment of coronary heart disease. However, the current study on the chemical and metabolite profiles of GXBD did not follow the ancient prescription and extraction method, which hindered the discovery of effective compounds and quality control. MATERIALS AND METHODS In this study, we prepared GXBD by ancient prescription and extraction methods, and then analysed the chemical components and xenobiotics of GXBD in vivo using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and in-house software. RESULTS 49 chemical constituents were preliminarily identified, including 7 terpenoids, 6 flavonoids, 5 alkaloids, 17 organic acids, 8 steroids and steroidal saponins, 2 nucleosides and 4 other types of compounds, of which 10 constituents were confirmed unambiguously with authentic standards. Moreover, 129 metabolites were tentatively identified, including 83 metabolites in plasma, 39 metabolites in urine, 25 metabolites in bile and 9 metabolites in feces. Our study speculated that luteolin, adenosine, vanillic acid and curbitacin B might be possible effective components of GXBD for the treatment of coronary heart disease. Dehydration, deglycosylation, dehydrogenation, acetylation and taurine regulation were the main biotransformation reactions of GXBD. CONCLUSION Our results provided an important basis for the discovery of effective compounds and quality control of GXBD. In addition, in-house software was an useful tool for identifcation of metabolites.
Collapse
Affiliation(s)
- Zheng Xiang
- Medical School, Zhejiang University City College, Hangzhou, 310015, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yuzhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shundi Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
7
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Chen L, Liu L, Wang Q, Jiang Y, Tian H. Comparative pharmacokinetics study of six effective components between two dosage forms of Qixue-Shuangbu Prescription in rats by UPLC-MS/MS. Biomed Chromatogr 2021; 35:e5179. [PMID: 34038571 DOI: 10.1002/bmc.5179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023]
Abstract
Qixue-Shuangbu Prescription (QSP) is an efficacious prescription for treating heart failure, myocardial ischemia and other diseases. It is composed of nine Chinese herbs. This study investigated and compared the pharmacokinetics of QSP in rats by UPLC-MS/MS between two dosage forms of traditional decoction (TD) and compound tincture (CT). Owing to the complexity of the chemicals in QSP, ginsenoside Rg1, ginsenoside Re, ferulic acid, astragaloside IV, rhein and calycosin were chosen for the pharmacokinetics study. The method established for detecting serum specimens was shown to have acceptable selectivity, linearity, lower limit of quantitation, precision, accuracy, recovery, matrix effect and stability. The peak concentration, AUC0-t and AUC0-∞ of ginsenoside Re, ginsenoside Rg1, ferulic acid and rhein were significantly increased after oral administration of CT (P < 0.05), the half-life of ferulic acid in the CT group was lower than that in the TD group (P < 0.05) and the half-life and AUC0-∞ of astragaloside IV in the CT group were significantly increased (P < 0.05), which revealed that wine-processing could influence the bioavailability and the elimination of these compounds. For better clinical efficacy, we suggest that the CT dosage form of QSP should be selected.
Collapse
Affiliation(s)
- Linwei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Lunyuan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Wang
- Department of Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Yong Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hu Tian
- Department of Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| |
Collapse
|
9
|
Tian Z, Zhang Y, Lyu X. Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-β/Smad2/3 axis activation. Cell Cycle 2021; 20:874-893. [PMID: 33910455 PMCID: PMC8168596 DOI: 10.1080/15384101.2021.1907512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial infarction (MI) is a major atherosclerotic cardiovascular disease which represents a leading cause of death worldwide. Kruppel-like factor 5 (KLF5) is a member of the kruppel-like transcription factor family which has been reported with pro-apoptotic functions in myocardial cells. This work focuses on the function of KLF5 in the pathogenesis of MI and the molecules involved. A mouse model with MI was established. Hypoxia/reoxygenation (H/R)-treated H9C2 cells were applied for in vitro experiments. A KLF5-specific inhibitor ML264 was administrated in cell and animal models. ML264 significantly reduced apoptosis, expression of fibrosis-related markers, reactive oxygen species in the H/R-treated H9C2 cells, and it reduced myocardial injury, infarct size, apoptosis and fibrosis in the myocardial tissues in model mice through specific downregulation of KLF5. A microRNA (miRNA) microarray analysis was performed, which suggested miR-27a as the most upregulated miRNA in the H/R-treated cells after ML264 treatment. miR-27a mimic reduced apoptosis and fibrosis in H/R-treated cells, while miR-27a inhibition blocked the protective roles of ML264. The integrated bioinformatic analyses and luciferase assays confirmed glutamine fructose-6-phosphate transaminase 2 (GFPT2) mRNA as a target of miR-27a. Overexpression of GFPT2 counteracted the protective functions of miR-27a against MI through the activation of the TGF-β/Smad2/3 signaling pathway. To conclude, this study evidenced that KLF5 possibly induces cell and tissue damage in MI through downregulation of miR-27a and the subsequent activation of GFPT2/TGF-β/Smad2/3 axis. This study may offer novel thoughts into MI treatment.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun130031, Jilin, P. R. China
| | - Yan Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun130031, Jilin, P. R.China
| | - Xueman Lyu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun130031, Jilin, P. R.China
| |
Collapse
|
10
|
Adipose-Derived Mesenchymal Stem Cells-Derived Exosomes Carry MicroRNA-671 to Alleviate Myocardial Infarction Through Inactivating the TGFBR2/Smad2 Axis. Inflammation 2021; 44:1815-1830. [PMID: 33881681 PMCID: PMC8460592 DOI: 10.1007/s10753-021-01460-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) and their derived extracellular vesicles have been reported as promising tools for the management of heart disease. The aim of this study was to explore the function of adipose-derived MSCs (adMSCs)-derived exosomes (Exo) in the progression of myocardial infarction (MI) and the molecules involved. Mouse cardiomyocytes were treated with oxygen-glucose deprivation (OGD) to mimic an MI condition in vitro. The adMSCs-derived Exo were identified and administrated into the OGD-treated cardiomyocytes, and then the viability and apoptosis of cells, and the secretion of fibrosis- and inflammation-related cytokines in cells were determined. Differentially expressed microRNAs (miRNAs) in cells after Exo treatment were screened using a microarray analysis. The downstream molecules regulated by miR-671 were explored through bioinformatic analysis. Involvements of miR-671 and transforming growth factor beta receptor 2 (TGFBR2) in the exosome-mediated events were confirmed by rescue experiments. A murine model with MI was induced and treated with Exo for functional experiments in vivo. Compared to phosphate-buffered saline treatment, the Exo treatment significantly enhanced viability while reduced apoptosis of cardiomyocytes, and in reduced myocardial fibrosis and inflammation both in vitro and in vivo. miR-671 was significantly upregulated in cells after Exo treatment. Downregulation of miR-671 blocked the protective functions of Exo. miR-671 targeted TGFBR2 and suppressed phosphorylation of Smad2. Artificial downregulation of TGFBR2 enhanced viability of the OGD-treated cardiomyocytes. This study suggested that adMSC-derived exosomal miR-671 directly targets TGFBR2 and reduces Smad2 phosphorylation to alleviate MI-like symptoms both in vivo and in vitro.
Collapse
|
11
|
Concurrent vitamin D supplementation and exercise training improve cardiac fibrosis via TGF-β/Smad signaling in myocardial infarction model of rats. J Physiol Biochem 2021; 77:75-84. [PMID: 33428175 DOI: 10.1007/s13105-020-00778-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Although the role of vitamin D in various types of disorders such as cancer and diabetes has been well recognized, its relation to cardiovascular diseases still remains equivocal. The present study aims to investigate the interactive effects of aerobic-resistance training (ART) and vitamin D3 (VD3) on both cardiac fibrosis and heart functions considering TGF-β1/Smad2, 3 (transforming growth factor-β1/mothers against decapentaplegic homolog 2/3) signaling in the myocardial infarction (MI) model of rats. Fifty-six male Wistar rats were divided into 2 groups of sham (n = 8), and MI (n = 48). Then, MI rats were divided into six groups of VD3, ART, VD3+ART, Veh, Veh+ART, and sedentary MI. The animals received the related treatments for 8 weeks, and then their functional exercise capacity (FEC) and strength gain (SG) were estimated through exercise tests. Ejection fraction (EF%) and fractional shortening (FS%) and serum level of VD3 were measured by echocardiography and ELISA, respectively. Cardiac expressions of TGF-β1, Smad2/3, and collagen I/III were assessed by western blotting and fibrosis by Masson's trichrome staining. The highest EF, parallel with the lowest expression of cardiac TGF-β1, Smad2/3, collagen I, and collagen III were observed in MI + VD3 (P = 0.021), MI + ART (P = 0.001), and MI + VD3 + ART (P < 0.001). Furthermore, similar to FS, the highest FEC and SG were related to the groups of MI + VD3 + ART and MI + ART compared to the MI group. In conclusion, our data indicate that concurrent vitamin D supplementation and ART, compared with monotherapy, successfully improve cardiac function and alleviate myocardial fibrosis via downregulating TGF-β1, Smad2/3 signaling, and also regulating collagen I and III expressions.
Collapse
|
12
|
Sang Q, Jia Q, Zhang H, Lin C, Zhao X, Zhang M, Wang Y, Hu P. Chemical profiling and quality evaluation of Zhishi-Xiebai-Guizhi Decoction by UPLC-Q-TOF-MS and UPLC fingerprint. J Pharm Biomed Anal 2020; 194:113771. [PMID: 33280997 DOI: 10.1016/j.jpba.2020.113771] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD), a traditional Chinese medicine (TCM) formula, has been used for treatment of coronary heart disease and myocardial infarction for nearly two thousand years. However, the chemical composition of ZSXBGZD is still unclear. In order to obtain the chemical profile of ZSXBGZD, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was utilized for the identification of its multi-constituents. As a result, a total of 148 compounds were identified based on their retention times, accurate masses and MS/MS data. In addition, an optimized UPLC fingerprint analysis, combined with chemometrics such as similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was developed for quality assessment of ZSXBGZD. Multivariate data analysis revealed that samples could be classified correctly according to their geographic origins, and four compounds neohesperidin, naringin, guanosine and adenosine contributed the most to classification. The established UPLC method with multi-wavelength detection was further validated and implemented for simultaneous quantification of 12 representative ingredients in the prescription, including guanosine, adenosine, 2'-deoxyadenoside, syringin, magnoloside A, forsythoside A, naringin, hesperidin, cinnamaldehyde, neohesperidin, honokiol and magnolol. This is the first report on the comprehensive profiling of major chemical components in ZSXBGZD. The results of the study could help to uncover the chemical basis of ZSXBGZD and possess potential value for quality evaluation purpose.
Collapse
Affiliation(s)
- Qingni Sang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiangqiang Jia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodan Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
13
|
Chen M, Men L, Wu H, Zhong G, Ou L, Li T, Guo Y, Lin H, Zhang J, Wang D, Zhang Z. A systematic review of the effectiveness and safety of Chinese herbal medicine formula Gualou Xiebai Banxia (GLXBBX) decoction for the treatment of stable angina pectoris. Medicine (Baltimore) 2019; 98:e18375. [PMID: 31860998 PMCID: PMC6940126 DOI: 10.1097/md.0000000000018375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/25/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A growing number of studies suggest that Gualou Xiebai Banxia (GLXBBX) decoction, a well-known Chinese herbal formula, has beneficial effects on eliminating angina pectoris symptoms and improving condition of stable angina pectoris (SAP) patients. However, whether this treatment is effective and safe for SAP or not, evidence supporting the effectiveness and safety of this treatment is still incomplete. Besides, there is lack of systematic review to assess the detailed situation (including risk of bias and methodology) of current related clinical studies. This study aimed to evaluate the effectiveness and safety of GLXBBX in treating SAP. METHODS The major databases (MEDLINE, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP) Database, Chinese Biomedical Database (CBM), Chinese Biomedical Literature Service System (SinoMed), and Wanfang Database) were searched from inception to March 2019. Randomized controlled trials (RCTs) of GLXBBX alone or combined with conventional drugs against conventional drugs for SAP were identified. Two assessors reviewed each trial independently. The methodological quality of the eligible studies was evaluated according to the Cochrane Collaboration's tool for assessing risk of bias. Both the data extraction and the literature quality screening evaluation were conducted independently by 2 researchers. RESULT Totally 17 clinical RCTs were included in this study, involving 1676 patients. Due to the high probability of bias of the included studies, it was inappropriate to undertake a meta-analysis. Thus, we only conducted a systematic review and mainly discussed the methodology and limitation of the included studies. CONCLUSION Although the current evidence prompted that GLXBBX might benefit SAP patients in improvement of angina pectoris, ECG, and blood lipid on a certain extent, this systematic review revealed no definite conclusion about the application of GLXBBX for SAP due to the poor methodological quality, high risk of bias, and inadequate reporting on clinical data. More rigorous, multicenter, sufficient-sample, and double-blind randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Mingtai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine
| | - Ling Men
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital
| | - Haibin Wu
- Health management department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province
| | - Guofu Zhong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital
| | - Lijun Ou
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine
| | - Tao Li
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine
| | - Yingyi Guo
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine
| | - Haidan Lin
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine
| | - Jian Zhang
- Fuwai Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Dongcai Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital
| | - Zhong Zhang
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical of Guangzhou University of Chinese Medicine
| |
Collapse
|
14
|
Qin H, Wen HT, Gu KJ, Hu XD, Yang T, Yan XF, Ye TJ, Huo JL, Hu J. Total extract of Xin Jia Xuan Bai Cheng Qi decoction inhibits pulmonary fibrosis via the TGF-β/Smad signaling pathways in vivo and in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2873-2886. [PMID: 31695321 PMCID: PMC6707443 DOI: 10.2147/dddt.s185418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Purpose Pulmonary fibrosis (PF) is a common clinical disease, which results in serious respiratory impairment. Xin Jia Xuan Bai Cheng Qi Decoction (XJXBCQ) is a traditional prescription commonly used in treating lung diseases. We investigate the effect of XJXBCQ against PF and its mechanism via the regulation of TGF-β1/Smad in vitro and in vivo. Materials and methods XJXBCQ was first extracted and probed for chemical characterization. An PF model in vitro and in vivo was established in rats and in MRC-5 cells. In bleomycin (BLM)-induced rats model, lung function such as peak expiratory flow (PEF), minute ventilation (MV) and hydroxyproline (HYP) were measured; histopathological changes of lung tissue and TGF-β1 in peripheral blood of rats were detected. TGF-β receptor, Smad2 and its phosphorylation expression were tested by Western blot assay in rats model. Then the effects of XJXBCQ on TGF-β1/Smad signal pathway were assessed by Western blot analysis in vitro, and IL-17A and IL-25 levels were evaluated by ELISA in vivo. Results Our results showed that XJXBCQ significantly enhanced the lung functions, such as PEF, MV and HYP, by reducing the expression level of lung inflammatory cytokine and the content and fibrosis of lung collagen. Moreover, XJXBCQ effectively inhibited TGF-β1, Smad2 and its phosphorylation expression, and the activation of Smad7 in vitro and in vivo. Furthermore, XJXBCQ had an inhibitory effect on the α-smooth muscle actin (α-SMA) and fibronectin (Fn) in vitro and downregulated IL-17A and IL-25 by inhibiting the activation of TGF-β1/Smad signaling pathway in vitro and in vivo. Further, XJXBCQ effectively inhibitied ventilation volume and peak expiratory content remodeling and hydroxyproline content through inhibition of TGF-βRⅡ, Smad2 and its phosphorylation expression, and activation of Smad7 in vivo. Conclusion XJXBCQ extract had an anti-PF effect in vitro and in vivo, which could be attributed to the inhibition of the expression of p-Smad2 and increase in the expression of Smad7 by regulating the TGF-β1/Smad activity.
Collapse
Affiliation(s)
- Hui Qin
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.,Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Hao-Tian Wen
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Kai-Juan Gu
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xu-Dong Hu
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Tao Yang
- Department of Cardiology, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xiao-Feng Yan
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Ting-Jie Ye
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Jin-Lin Huo
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Jing Hu
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L. Coriolus versicolor
alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother Res 2019; 33:2737-2748. [PMID: 31338905 DOI: 10.1002/ptr.6448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yueqiu Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yang Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yihan Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Fangfei Xiong
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yining Liu
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hongru Xue
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Zhenyu Yang
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Sha Ni
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Abbas Sahil
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Che
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| | - Lihong Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| |
Collapse
|
16
|
Liu C, Li S, Zhang Q, Guo F, Tong M, Martinez MFYM, Wang HH, Zhao Y, Shang D. Emerging Role of Chinese Herbal Medicines in the Treatment of Pancreatic Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:709-726. [PMID: 31091974 DOI: 10.1142/s0192415x1950037x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic fibrosis is the main pathologic characteristic in chronic pancreatitis (CP), a common disease that arises from surgery. Pancreatitis is caused by various etiologies, but the mechanism of fibrosis is not completely understood. Existing clinical approaches mainly focus on mitigating the symptoms and therefore do not cure the phenomena. In recent years, there has been a heightened interest in the use of Chinese herbal medicine (CHMs) in the prevention and cure of CP as expressed by increasing numbers of clinical and experimental research. Despite early cell culture and animal models, CHMs are able to interact with plenty of molecular targets involved in the pathogenesis of pancreatic fibrosis mostly via the TGF- β /Smads pathway; however, integrated and up-to-date communication in this domain is unavailable. This review focuses on the research progress of CHMs against pancreatic fibrosis due to CP in vitro and in vivo and summarizes the potential mechanisms. We also outlined the toxicology of some CHMs for fibrosis treatment in order to provide a fuller understanding of drug safety. This review may provide reference for further innovative drug research and the future development of treatments for CP with pancreatic fibrosis.
Collapse
Affiliation(s)
- Chang Liu
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Shuang Li
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Qingkai Zhang
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Fangyue Guo
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Mengying Tong
- ‡ Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | | | - Heather H Wang
- ¶ Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yutong Zhao
- ¶ Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dong Shang
- * Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,† Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| |
Collapse
|
17
|
Shao R, Wang FJ, Lyu M, Yang J, Zhang P, Zhu Y. Ability to Suppress TGF-β-Activated Myofibroblast Differentiation Distinguishes the Anti-pulmonary Fibrosis Efficacy of Two Danshen-Containing Chinese Herbal Medicine Prescriptions. Front Pharmacol 2019; 10:412. [PMID: 31105564 PMCID: PMC6491955 DOI: 10.3389/fphar.2019.00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options. It also leads to progressive respiratory failure, which subsequently affects the heart functionality, a pathological heart-lung interaction increasingly noticed and defined as pulmonary-heart disease (PHD). Traditional Chinese medicine (TCM) theory for treating “phlegm-stasis cementation syndrome” may suggest a possibility of treating PHD complication with Chinese medicine prescriptions previously used for cardiovascular diseases. Methods: Here, we evaluate the efficacies of two compound Chinese medicine prescriptions, Danlou prescription (DLP) and Danhong prescription (DHP), which share a common herbal component, Salvia miltiorrhiza (Danshen), on pulmonary fibrosis. Severity grades of Bleomycin (BLM)-induced pulmonary fibrosis were assessed by micro-Computerized Tomography (μCT) in accordance with the clinical evaluation standard. Lung pathological changes and collagen deposition were investigated by histopathology. Myofibroblast differentiation was assessed by immunohistochemistry of α-SMA and TGF-β receptor type II expression in situ. Network pharmacology analysis of the drug-target interaction in IPF progression for DLP or DHP was performed using Ingenuity® Pathways Analysis (IPA) system. Results: We show that a non-invasive μCT effectively monitor and quantify BLM-induced pulmonary fibrosis and its treatment efficacy by Chinese medicine prescription in rodents. In addition, although both containing Salvia miltiorrhiza, DLP but not DHP mitigates BLM-induced lung fibrosis by inhibiting the TGF-β signaling-activated myofibroblast differentiation and α-SMA expression in a mouse model. Core analysis by IPA revealed that DLP ingredients regulated not only pulmonary fibrosis related inflammatory genes but also genes associated with myofibroblast activation and collagen deposition. Conclusion: This study suggests that a clinically efficacious cardiovascular Chinese herbal medicine (DLP) can be successfully repurposed to treat a lung disease in pulmonary fibrosis guided by TCM theory. Our comparative study between DLP and DHP demonstrated a critical requirement of suppressing both pro-inflammatory and pro-fibrotic pathways for the treatment of pulmonary fibrosis, supporting that a multi-component prescription capable of “removing both phlegm and blood stasis” will better achieve co-protection of heart and lung in PHD.
Collapse
Affiliation(s)
- Rui Shao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Fu-Jiang Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Jian Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
18
|
Ding YF, Peng ZX, Ding L, Peng YR. Baishouwu Extract Suppresses the Development of Hepatocellular Carcinoma via TLR4/MyD88/NF-κB Pathway. Front Pharmacol 2019; 10:389. [PMID: 31068809 PMCID: PMC6491767 DOI: 10.3389/fphar.2019.00389] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: The root of Cynanchum auriculatum Royle ex Wight, known as Baishouwu, has been widely used for a tonic supplement since ancient times. The current study was performed to explore the effect of Baishouwu extract on the development of experimental hepatocellular carcinoma (HCC) and the potential mechanism involved. Methods: Rats were injected diethylnitrosamine (DEN) to initiate the multistep hepatocarcinogenesis. Animals were treated concurrently with Baishouwu extract given daily by oral gavage for 20 weeks to evaluate its protective effects. Time series sera and organ samples from each group were collected to evaluate the effect of Baishouwu extract on hepatic carcinogenesis. Results: It was found that Baishouwu extract pretreatment successfully attenuated liver injury induced by DEN, as shown by decreased levels of serum biochemical indicators (AST, ALT, ALP, TP, and T-BIL). Administration of Baishouwu extract inhibited the fibrosis-related index in serum and live tissue, respectively from inflammation stage to HCC stage after DEN treatment. It significantly reduced the incidence and multiplicity of DEN-induced HCC development in a dose-dependent manner. Macroscopic and microscopic features suggested that pretreatment with Baishouwu extract for 20 weeks was effective in inhibiting DEN-induced inflammation, liver fibrosis, and HCC. Furthermore, TLR4 overexpression induced by DEN was decreased by Baishouwu extract, leading to the markedly down-regulated levels of MyD88, TRAF6, NF-κB p65, TGF-β1 and α-SMA in hepatitis, cirrhosis, and hepatocarcinoma. Conclusion: In conclusion, Baishouwu extract exhibited potent effect on the development of HCC by altering TLR4/MyD88/ NF-κB signaling pathway in the sequence of hepatic inflammation-fibrosis-cancer, which provided novel insights into the mechanism of Baishouwu extract as a candidate for the pretreatment of HCC in the future.
Collapse
Affiliation(s)
- Yong-Fang Ding
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zi-Xuan Peng
- Third College of Clinical Medicine, Xinjiang Medical University, Ürümqi, China
| | - Lan Ding
- Department of Nephrology, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Yun-Ru Peng
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Li C, Zhang WY, Yu Y, Cheng CS, Han JY, Yao XS, Zhou H. Discovery of the mechanisms and major bioactive compounds responsible for the protective effects of Gualou Xiebai Decoction on coronary heart disease by network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:261-268. [PMID: 30668346 DOI: 10.1016/j.phymed.2018.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Gualou Xiebai decoction (GLXB), a multi-component herbal formula, has been widely used to treat coronary heart disease (CHD) in China for centuries. Several studies have revealed part of its pharmacological activities, whereas its active compounds and mechanisms of action are still unknown because of its complex composition. PURPOSE Discover the major active compounds and the pharmacological mechanisms of GLXB by network pharmacology methods. METHODS The main candidate target network was constructed by predicting targets of absorbable chemical compounds of GLXB, collecting therapeutic targets of cardiovascular drugs, constructing target network and layers of screening. Community detection and edge-betweenness calculation were applied to analyze the main candidate target network. Cell viability test, Western blot and flow cytometry were performed to validate the predicted results in cardiomyocytes hypoxia/reoxygenation model. RESULTS Five clusters and eight cross-talk targets were found in the main candidate target network. Their functions combined together might explain the multifunctional role of GLXB against CHD. Among the cross-talk targets, ESR1 (Estrogen receptor alpha, ERα) and MAPK14 (Mitogen-activated protein kinase 14, p38) were both drug targets and therapeutic targets whose interaction exhibited the greatest edge-betweenness value, suggesting their crucial role in the protective effect of GLXB. The compounds targeting on ESR1 and MAPK14 were identified as apigenin and 25S-macrostemonoside P respectively which were regard as the major bioactive compounds. The predicted results including the major bioactive compounds, their targets and the synergic effects between them were validated. CONCLUSION This study screened out major bioactive compounds from GLXB and offered a new understanding of the protection mechanism of GLXB against CHD by network pharmacology method and provides a combination strategy to explore mechanisms of action of multi-component drugs from a holistic perspective.
Collapse
Affiliation(s)
- Chong Li
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Wei-Yang Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province 510632, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, PR China
| | - Xin-Sheng Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province 510632, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
20
|
Zhang WY, Yu Y, Yan LL, Li C, Han JY, Qin ZF, Dai Y, Yao ZH, Zhou H, Yao XS. Discovery of cardio-protective constituents of Gualou Xiebai Decoction, a classical traditional Chinese medicinal formula. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:318-327. [PMID: 30060904 DOI: 10.1016/j.phymed.2018.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/19/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUD Finding effective compounds of TCMs has always been the basis for achieving marker-based quality control which is currently most widely used quality control strategy. Gualou Xiebai Decoction (GLXB), a classical TCM formula, is recorded and proven as a therapy for curing coronary heart disease but the effective constituents are unidentified and the substantial basis of the therapeutic effects is not clear. PURPOSE The present research is an investigation on the chemistry of this formula aiming at finding and precisely identifying effective compounds. STUDY DESIGN AND METHODS This research started with screening for effective fractions of GLXB by rat myocardial infarction model and H9c2 cell hypoxia/reoxygenation model, then compounds in effective fractions were isolated and identified by phytochemical and spectroscopic methods. The cardio-protective activities of the compounds were tested in vitro and one of the effective compounds was taken as example to investigate the mechanisms. RESULTS The water-insoluble parts of GLXB were identified as effective parts in both in vitro and in vivo experiments. Systematic isolation of compounds in the effective fractions resulted in the isolation of 34 compounds including 7 new compounds, whereas 8 compounds were effective in protecting H9c2 cells against hypoxia/reoxygenation injury. One of the effective compounds, macrostemonoside P (MP) possibly exerted its effect by activating RISK pathway and attenuating apoptosis. CONCLUSION An array of effective constituents of GLXB were discovered, and discovery of these compounds contributed to elucidating the substantial basis for the therapeutic effects of this formula, and provides fundaments for establishing Q-markers for further reliable quality control of GLXB.
Collapse
Affiliation(s)
- Wei-Yang Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Yang Yu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lu-Lu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, PR China
| | - Chong Li
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, PR China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, PR China
| | - Zi-Fei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China.
| | - Xin-Sheng Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China; College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
21
|
Ghrelin Ameliorates Angiotensin II-Induced Myocardial Fibrosis by Upregulating Peroxisome Proliferator-Activated Receptor Gamma in Young Male Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9897581. [PMID: 30175152 PMCID: PMC6098901 DOI: 10.1155/2018/9897581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
Angiotensin (Ang) II contributes to the formation and development of myocardial fibrosis. Ghrelin, a gut peptide, has demonstrated beneficial effects against cardiovascular disease. In the present study, we explored the effect and related mechanism of Ghrelin on myocardial fibrosis in Ang II-infused rats. Adult Sprague-Dawley (SD) rats were divided into 6 groups: Control, Ang II (200ng/kg/min, microinfusion), Ang II+Ghrelin (100 μg/kg, subcutaneously twice daily), Ang II+Ghrelin+GW9662 (a specific PPAR-γ inhibitor, 1 mg/kg/d, orally), Ang II+GW9662, and Ghrelin for 4 wks. In vitro, adult rat cardiac fibroblasts (CFs) were pretreated with or without Ghrelin, Ghrelin+GW9662, or anti-Transforming growth factor (TGF)-β1 antibody and then stimulated with or without Ang II (100 nmol/L) for 24 h. Ang II infusion significantly increased myocardial fibrosis, expression of collagen I, collagen III, and TGF-β1, as well as TGF-β1 downstream proteins p-Smad2, p-Smad3, TRAF6, and p-TAK1 (all p<0.05). Ghrelin attenuated these effects. Similar results were seen in Ang II-stimulated rat cardiac fibroblasts in vitro. In addition, Ghrelin upregulated PPAR-γ expression in vivo and in vitro, and treatment with GW9662 counteracted the effects of Ghrelin. In conclusion, Ghrelin ameliorated Ang II-induced myocardial fibrosis by upregulating PPAR-γ and in turn inhibiting TGF-β1signaling.
Collapse
|
22
|
Deciphering the multicomponent synergy mechanism from a systems pharmacology perspective: Application to Gualou Xiebai Decoction for coronary heart disease. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Flavonoid Extract from Propolis Inhibits Cardiac Fibrosis Triggered by Myocardial Infarction through Upregulation of SIRT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4957573. [PMID: 30050588 PMCID: PMC6040284 DOI: 10.1155/2018/4957573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
The flavonoid extract from propolis (FP) has been shown to protect against heart injury induced by isoproterenol. However, the effect of FP on cardiac fibrosis after myocardial infarction (MI) as well as the underlying mechanisms is not known. In the present study, we used biochemical and histological approaches to examine the effects of FP on MI-induced cardiac fibrosis and the related mechanisms in a rat MI model and in angiotensin II- (Ang II-) treated rat cardiac fibroblasts (CFs). In vivo, MI was generated by ligation of the left anterior descending coronary artery of rats, which remained for 4 weeks. Rats were randomly divided into the sham, MI, FP (12.5 mg/kg/d), and MI+FP groups. We found that FP treatment improved heart function, reduced cardiac fibrosis, and downregulated the expression of fibrosis-related factors including collagen I, collagen III, matrix metalloproteinase-2 (MMP-2), MMP-9, transforming growth factor-β1 (TGF-β1), and p-Smad2/3, which coincided with the upregulated expression of silent information regulator 1 (SIRT1) in the hearts of MI rats. Our in vitro experiments showed that FP inhibited the proliferation and migration of primary cultured rat CFs and downregulated the expression of the above-mentioned fibrosis-related factors in Ang II-stimulated CFs. In addition, FP can decrease ROS production induced by MI and Ang II in vivo and vitro. Notably, silencing SIRT1 counteracted the FP-induced effects on CFs treated with Ang II. We conclude that FP inhibits MI-induced cardiac fibrosis through SIRT1 activation and that FP represents a potential promising drug for the treatment of MI patients in the clinic.
Collapse
|
24
|
Pan H, Li Y, Qian H, Qi X, Wu G, Zhang H, Xu M, Rao Z, Li JL, Wang L, Ying H. Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5802-5811. [PMID: 29771121 DOI: 10.1021/acs.jafc.8b00739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geniposide is the main bioactive constituent of gardenia fruit. Skeletal-muscle fibrosis is a common and irreversibly damaging process. Numerous studies have shown that geniposide could improve many chronic diseases, including metabolic syndrome and tumors. However, the effects of geniposide on skeletal-muscle fibrosis are still poorly understood. Here, we found that crude extracts of gardenia fruit pomace could significantly decrease the expression of profibrotic genes in vitro. Moreover, geniposide could also reverse profibrotic-gene expression induced by TGF-β and Smad4, a regulator of skeletal-muscle fibrosis. In addition, geniposide treatment could significantly downregulate profibrotic-gene expression and improve skeletal-muscle injuries in a mouse model of contusion. These results together suggest that geniposide has an antifibrotic effect on skeletal muscle through the suppression of the TGF-β-Smad4 signaling pathway.
Collapse
Affiliation(s)
- Haiou Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Jin-Long Li
- School of Pharmacy , Nantong University , Nantong 226001 , China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| |
Collapse
|
25
|
Lin P, Qin Z, Yao Z, Wang L, Zhang W, Yu Y, Dai Y, Zhou H, Yao X. Metabolites profile of Gualou Xiebai Baijiu decoction (a classical traditional Chinese medicine prescription) in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:72-88. [PMID: 29635208 DOI: 10.1016/j.jchromb.2018.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 11/15/2022]
Abstract
Gualou Xiebai Baijiu decoction (GLXB), a well-known classic traditional Chinese medicine prescription, has been widely used to treat coronary heart diseases for thousands of years in Eastern Asian countries due to its remarkable clinical effect. However, due to lack of in vivo metabolism research, the chemical components responsible for the therapeutic effects still remain unclear. In this work, a reliable "representative structure based homologous xenobiotics identification" (RSBHXI) strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) were applied to investigate the chemical components in GLXB extracts. As a result, 133 chemical components were characterized based on summarized fragmentation patterns, of which 41 components were confirmed unambiguously with authentic standards. Furthermore, a total of 138 GLXB-related xenobiotics were identified or tentatively characterized after oral administration of GLXB extracts. Moreover, to better understand the metabolic pathways of characteristic components in GLXB, metabolites profiles of five steroidal saponins and two flavonoids were performed, respectively. Since the metabolic pathways of five representative saponins had been finished in our previous study, we focused on the in vivo metabolism of two flavonoids. A total of 36 and 20 metabolites were detected in rat biological samples after oral administration of luteolin-7-O-β-D-glucopyranoside and rutin, respectively. The results indicated that dehydration, hydrolysis, hydroxylation, methylation, glucuronidation and sulfation were the main metabolic reactions, following the metabolic soft spots of GLXB-related flavonoids. Taken altogether, this study would be helpful for the further pharmacokinetics, pharmacological evaluation and quality control of GLXB.
Collapse
Affiliation(s)
- Pei Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Li Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Weiyang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Yang Yu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China.
| |
Collapse
|
26
|
Yan LL, Zhang WY, Wei XH, Yan L, Pan CS, Yu Y, Fan JY, Liu YY, Zhou H, Han JY, Yao XS. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation. Front Physiol 2018; 9:296. [PMID: 29674972 PMCID: PMC5895855 DOI: 10.3389/fphys.2018.00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Lu-Lu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Wei-Yang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing-Yu Fan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Sheng Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
28
|
Sun R, Wang J, Zheng Y, Li X, Xie T, Li R, Liu M, Cao Y, Lu L, Zhang Q, Zhang P. Traditional Chinese medicine baoxin decoction improves cardiac fibrosis of rats with dilated cardiomyopathy. Exp Ther Med 2017; 13:1900-1906. [PMID: 28565783 PMCID: PMC5443197 DOI: 10.3892/etm.2017.4223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/27/2017] [Indexed: 11/06/2022] Open
Abstract
We investigated the effect of baoxin decoction (BXD) on myocardial fibrosis and clarified the possible mechanism of action. Dilated myocardiopathy was induced by doxorubicin injected intraperitoneally for 6 weeks. Rats that demonstrated dilated myocardiopathy were randomly divided into five groups plus a control group. Three groups were treated with BXD (7.5/kg, 15 g/kg and 30 g/kg) daily for 4 weeks. One group was treated with 8.75 g/kg of captopril (positive control), and with physiologic saline (negative control). Cardiac function was evaluated using echocardiography. Hematoxylin and eosin, and Massons trichrome staining were performed, PICP and PIIINP were assessed by ELISA, the expression of galectin-3 and collagen types I and III was evaluated with reverse transcription-quantitative PCR, and interrelated proteins were detected by western blot analysis. BXD downregulated galectin-3, collagen I and III and was correlated with a high expression of fibrosis markers. It also significantly decreased myocardial collagen volume fraction (CVF), together with markedly preventing the upregulation of collagen I and III. In addition, BXD downregulated the expression of TGF-β1 and Smad3 in the myocardial fibrosis rats. Therefore, BXD treatment significantly improved cardiac function and alleviated myocardial fibrosis in a rat model of doxorubicin-induced dilated cardiomyopathy (DCM), which is the mechanism that may be associated with inhibiting the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Rongrong Sun
- Clinical Medicine, Nanjing University of Traditional Chinese Medicine, The Affiliated Xuzhou Central Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yi Zheng
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xianchi Li
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Tiantian Xie
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Rui Li
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Min Liu
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Yong Cao
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Lei Lu
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Qing Zhang
- Department of Cardiology, Xuzhou Hospital of Traditional Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Peiying Zhang
- Department of Cardiology, The Affiliated Xuzhou Central Hospital of Nanjing University of Traditional Chinese Medicine, The Affiliated Xuzhou Hospital of Medical School of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
29
|
Ding YF, Wu ZH, Wei YJ, Shu L, Peng YR. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine. J Cancer Res Clin Oncol 2017; 143:821-834. [PMID: 28238064 DOI: 10.1007/s00432-017-2364-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) cases are closely associated with chronic inflammation and fibrosis which is known as hepatic inflammation-fibrosis-cancer (IFC) axis. The aim of this study is to elucidate the development characteristics of the rat HCC model based on IFC axis. METHODS The diethylnitrosamine (DEN)-induced rat HCC, which presents a stepwise histopathological progression that is similar to human HCC, was used to analyze the features of the different stages (inflammation, fibrosis, cancer). Rats were injected DEN at a dose of 30 mg/kg body weight twice a week for 11 weeks and the animals were observed until week 20. Time series sera and organ samples from the DEN animal model were collected to evaluate the dynamic changes. RESULTS It was found that serum biochemical indicators (AST, ALT, ALP, TP, T-BIL, IL-6, TNF-α) from DEN-treated group were higher than that from control group. Fibrosis-related index in serum and live tissue were increased, respectively, from week 4 after DEN treatment. The expression of TGF-β1 and α-SMA in DEN-treated group was higher than that in control group. JAK2/STAT3 signaling was significantly up-regulated in DEN-treated group compared to that in control group. The histological examination confirmed that the hepatocarcinogenesis model was successfully established, and 100% of the animals in the DEN-exposed group developed liver tumors at 20 weeks. According to the pathological changes, the model characterized resulted in three stages: the inflammation stage (week 2-6), the fibrosis stage (week 8-12), and the HCC stage (week 14-20). CONCLUSIONS The results suggested that the HCC development was associated with IFC axis. The serial progression of hepatocarcinogenesis was according to the sequence of hepatic inflammation, fibrosis and then hepatic tumor.
Collapse
Affiliation(s)
- Yong-Fang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Zhen-Hui Wu
- Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Ying-Jie Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Yun-Ru Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, People's Republic of China.
| |
Collapse
|
30
|
The Effect of Chinese Herbal Medicine Gualouxiebaibanxia Decoction for the Treatment of Angina Pectoris: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8565907. [PMID: 27777598 PMCID: PMC5061958 DOI: 10.1155/2016/8565907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
We systematically assess the current clinical evidence of Gualouxiebaibanxia (GLXBBX) decoction for the treatment of angina pectoris (AP). We included RCTs testing GLXBBX against conventional drugs and GLXBBX combined with conventional drugs versus conventional drugs. 19 RCTs involving 1730 patients were finally identified, and the methodological quality was evaluated as generally low. The results of the meta-analysis showed that GLXBBX alone had significant effect on improving angina symptoms (RR: 1.24, 95% CI 1.14 to 1.35; P < 0.00001), ECG (RR: 1.28 [1.13,1.44]; P < 0.0001), and HDL-C (MD: 0.56 [0.54,0.58]; P < 0.00001) compared with anti-arrhythmic drugs. A significant improvement in angina symptoms (RR: 1.17 [1.12,1.22]; P < 0.00001) and ECG (RR = 1.22; 95% CI = [1.14,1.30]; P < 0.00001) was observed for GLXBBX plus conventional drugs when compared with conventional drugs. Eight trials reported adverse events without serious adverse effects. GLXBBX appears to have beneficial effects on improvement of ECG and reduction of angina symptoms in participants with AP. However, the evidence remains weak due to the poor methodological quality of the included studies. More rigorous trials are needed to confirm the results.
Collapse
|
31
|
Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways. Chem Biol Interact 2016; 253:66-77. [DOI: 10.1016/j.cbi.2016.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 01/06/2023]
|
32
|
Proteins involved on TGF-β pathway are up-regulated during the acute phase of experimental Chagas disease. Immunobiology 2016; 221:587-94. [DOI: 10.1016/j.imbio.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
|
33
|
Xiao X, Chang G, Liu J, Sun G, Liu L, Qin S, Zhang D. Simvastatin ameliorates ventricular remodeling via the TGF‑β1 signaling pathway in rats following myocardial infarction. Mol Med Rep 2016; 13:5093-101. [PMID: 27121011 PMCID: PMC4878547 DOI: 10.3892/mmr.2016.5178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)-β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post-myocardial infarction via the TGF-β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg−1·d−1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross-sectional area and the collagen volume fraction, and also showed that the levels of TGF-β1, TGF-activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post-myocardial infarction rats via the TGF-β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system.
Collapse
Affiliation(s)
- Xiangbin Xiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jian Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guangyun Sun
- Department of Cardiology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Li Liu
- Department of Cardiology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
34
|
Ding YF, Peng YR, Shen H, Shu L, Wei YJ. Gualou Xiebai decoction inhibits cardiac dysfunction and inflammation in cardiac fibrosis rats. Altern Ther Health Med 2016; 16:49. [PMID: 26846090 PMCID: PMC4743121 DOI: 10.1186/s12906-016-1012-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023]
Abstract
Background Gualou Xiebai Decoction (GXD) is a well-known traditional Chinese recipe. It has been used to treat cardiovascular disorders for nearly two thousand years. But there is a lack of reports on cardiac fibrosis and underlying mechanism. Methods Myocardial infarction was performed by ligation of left anterior descending coronary artery (LAD) in male Wistar rats. Rats with myocardial infarction were treated with GXD (1.14 g/kg, 4.53 g/kg) daily for 4 weeks. Cardiac function was evaluated by echocardiography. Hemodynamic parameters and infarct size were measured in each group. Myocardial enzymes were examined by biochemical tests. Inflammatory cytokines were assessed by ELISA, and interrelated proteins were detected by western blot. Results Cardiac function was significantly improved in GXD-treatment rats after myocardial infarction (MI), which was accompanied with decreased infarct size. Administration of GXD to myocardial fibrosis rats significantly ameliorated the activities of AST, LDH and CK-MB in serum. The increase in inflammatory factors (TNF-α, IL-1β) were markedly reduced upon GXD treatment. Furthermore, the inflammatory mediators (NF-κB p65, TNF-α, MCP-1) were down-regulated by GXD in the myocardial fibrosis rats. Conclusions Treatment with GXD improved cardiac function induced by myocardial fibrosis by inhibiting expression of inflammatory mediators associated with NF-κB.
Collapse
|
35
|
Hou J, Yan P, Guo T, Xing Y, Zheng S, Zhou C, Huang H, Long H, Zhong T, Wu Q, Wang J, Wang T. Cardiac stem cells transplantation enhances the expression of connexin 43 via the ANG II/AT1R/TGF-beta1 signaling pathway in a rat model of myocardial infarction. Exp Mol Pathol 2015; 99:693-701. [PMID: 26554848 DOI: 10.1016/j.yexmp.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND In this study, we hypothesized that CSCs mediated the expression of Cx43 after transplantation post MI via the ANG II/AT1R/TGF-beta1 signaling pathway. METHODS Myocardial infarction (MI) was induced in twenty male Sprague-Dawley rats. The rats were randomized into two groups and were then received the injection of 5 × 10(6) CSCs labeled with PKH26 in phosphate buffer solution (PBS) or equal PBS alone into the infarct anterior ventricular free wall two weeks after MI. Six weeks later, relevant signaling molecules involved were all examined. RESULTS In the CSCs group, an increased expression of Cx43 could be observed in different zones of the left ventricle (P<0.01). There was a significant reduction of the angiotensin II (ANG II) level in plasma and different regions of the left ventricular cardiac tissues (P<0.05; P<0.01). The angiotensin II type I receptor (AT1R) was decreased accompanied with an enhanced expression of angiotensin II type II receptor (AT2R) (P<0.01). Transforming growth factor beta-1(TGF-beta1) was downregulated (P<0.01). The expression of mothers against decapentaplegic homolog (SMAD) proteins including SMAD2 and SMAD3 was attenuated whereas SMAD7 was elevated (P<0.01, P<0.01, P<0.05). In addition, the expression of mitogen-activated protein kinases (MAPKs) including extracellular kinases 1/2 (ERK1/2) and p38 was also found to be reduced (P<0.01). CONCLUSION CSCs transplantation could enhance the level of Cx43 after MI. They might function through intervening the ANGII/AT1R/TGF-beta1 signaling pathway to regulate the expression of Cx43.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Ping Yan
- The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Shen N, Li X, Zhou T, Bilal MU, Du N, Hu Y, Qin W, Xie Y, Wang H, Wu J, Ju J, Fang Z, Wang L, Zhang Y. Shensong Yangxin Capsule prevents diabetic myocardial fibrosis by inhibiting TGF-β1/Smad signaling. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:161-170. [PMID: 25267579 DOI: 10.1016/j.jep.2014.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/29/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shensong Yangxin Capsule (SSYX), a traditional Chinese herbal medicine, has long been used clinically to treat arrhythmias in China. However, the effect of SSYX on interstitial fibrosis in diabetic cardiomyopathy is unknown. The objective of this study was to investigate the effects of SSYX on myocardial fibrosis in diabetic rats. MATERIALS AND METHODS The antifibrotic effect of SSYX was investigated in streptozocin (STZ)-induced diabetic rats with high fat-diet (HFD). Fasting blood glucose, heart weight/body weight (HW/BW) ratio, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL) and low density lipoprotein (LDL) were measured. Echocardiography and histology examination were carried out to evaluate heart function. Expressions of Smad7, TGF-β1, collagen I (col-1), collagen III (col-3), MMP-2, MMP-9 and α-SMA mRNA in heart tissues were measured by real time polymerase chain reaction (PCR). TGF-β1, Smad2/3, p-Smad2/3 and Smad7 protein levels were measured by western blot analysis. Proliferation of cardiac fibroblast was detected via immunofluorescence. RESULTS SSYX markedly decreased HW/BW ratio and improved the impaired cardiac function of type-2 diabetes mellitus (T2DM) rats. Transmission electron microscopy (TEM), haematoxylin and eosin (HE) and Masson staining results showed that SSYX attenuated cardiac fibrosis and collagen deposition in T2DM rats. Moreover, mRNA levels of TGF-β1, col-1, col-3, MMP-2, MMP-9 and α-SMA were downregulated, whereas Smad7 expression was upregulated after treatment with SSYX in rats with cardiac fibrosis. Furthermore, SSYX decreased protein levels of TGF-β1 and p-Smad2/3, and increased Smad7 expression. CONCLUSION TGF-β1/Smad signaling is involved in the cardiac fibrosis in diabetic cardiomyopathy and SSYX inhibits fibrosis and improves cardiac function via suppressing this pathway. Therefore, SSYX might be considered as an alternative therapeutic remedy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nannan Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Xiaoguang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Tong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Muhammad U Bilal
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Ning Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Wei Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yingming Xie
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hongtao Wang
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Jianwei Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Jiaming Ju
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Zhiwei Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Lihong Wang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China; Institute of Cardiovascular Research, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|