1
|
Gul A, Halim SA, Khan A, Khan R, Xian-Dao P, Zafar S, Akbar N, Jan A, Muhsinah AB, Gojayev A, Al-Harrasi A. One pot synthesis of 5-hydroxyalkylated thiadiazine thiones: Implication in pain management and bactericidal properties. Heliyon 2024; 10:e30435. [PMID: 38765157 PMCID: PMC11098799 DOI: 10.1016/j.heliyon.2024.e30435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
The synthesis of a new series of thiadiazine thiones including 5-(2-hydroxyethyl)-3-alkyl/aryl-1, 3, 5-thiadiazine-2-thiones (1-5), 5-(2-hydroxypropyl)-3-alkyl/aryl-1, 3, 5-thiadiazine-2-thiones (6-8), 3,5-dipropyl-1, 3, 5-thiadiazine-2-thione (9) and (2-(5-alkyl/aryl-6-thioxo-1, 3, 5-thiadiazine-3-yl) alkyl acetate/benzoate) (10-17) was accomplished via one pot reaction. The structures of the synthesized compounds were characterized through NMR and Mass spectrometry. The anti-nociceptive activity of compounds was performed on BALB/C mice by hot plate method, where compounds 3, 5 (50 μg/kg), and 8 (50, 100 μg/kg) exhibited significant effect (P < 0.01, P < 0.05) in latency time of 15, 30, and 60 min, while compounds 6 and 16 (100 μg/kg) exhibited significant effect (P < 0.01, P < 0.05) in latency time interval of 15 and 30 min. Compounds 1, 12-13, and 15 showed moderate activity. Among the tested hits, compounds 5 (17.3 ± 2.2), 11 (16.2 ± 2.1), and 8 (16.1 ± 2.1) showed significant anti-nociceptive potential. Molecular docking studies on the most active anti-nociceptive hits indicated that the activity might be attributed to the ability of the compounds to target μ-opioid receptor (μOR) effectively. Furthermore, compounds 14 and 11 showed anti-bacterial activity against Pseudomonas aeruginosa and MSRA with MIC of 40.97 and 54.77 μg/mL, respectively. In addition, the predicted ADMET profile of 5, 9, and 11 indicates that these molecules follow the drug-likeness criteria, and their activity can be enhanced through structural optimization.
Collapse
Affiliation(s)
- Asma Gul
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box-33, Postal Code-616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box-33, Postal Code-616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - P.A.N. Xian-Dao
- Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Noor Akbar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, Unites Arab Emirates
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Anar Gojayev
- School of Education, General Education Program, ADA University, Ahmadbey Aghaoghlu Str. 11, Baku, AZ1008, Azerbaijan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box-33, Postal Code-616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
2
|
Anjum NF, Shanmugarajan D, Prashantha Kumar BR, Faizan S, Durai P, Raju RM, Javid S, Purohit MN. Novel Derivatives of Eugenol as a New Class of PPARγ Agonists in Treating Inflammation: Design, Synthesis, SAR Analysis and In Vitro Anti-Inflammatory Activity. Molecules 2023; 28:molecules28093899. [PMID: 37175309 PMCID: PMC10180488 DOI: 10.3390/molecules28093899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/15/2023] Open
Abstract
The main objective of this research was to develop novel compounds from readily accessed natural products especially eugenol with potential biological activity. Eugenol, the principal chemical constituent of clove (Eugenia caryophyllata) from the family Myrtaceae is renowned for its pharmacological properties, which include analgesic, antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. According to reports, PPARγ regulates inflammatory reactions. The synthesized compounds were structurally analyzed using FT-IR, 1HNMR, 13CNMR, and mass spectroscopy techniques. Molecular docking was performed to analyze binding free energy and important amino acids involved in the interaction between synthesized derivatives and the target protein. The development of the structure-activity relationship is based on computational studies. Additionally, the stability of the best-docked protein-ligand complexes was assessed using molecular dynamic modeling. The in-vitro PPARγ competitive binding Lanthascreen TR-FRET assay was used to confirm the affinity of compounds to the target protein. All the synthesized derivatives were evaluated for an in vitro anti-inflammatory activity using an albumin denaturation assay and HRBC membrane stabilization at varying concentrations from 6.25 to 400 µM. In this background, with the aid of computational research, we were able to design six novel derivatives of eugenol synthesized, analyzed, and utilized TR-FRET competitive binding assay to screen them for their ability to bind PPARγ. Anti-inflammatory activity evaluation through in vitro albumin denaturation and HRBC method revealed that 1f exhibits maximum inhibition of heat-induced albumin denaturation at 50% and 85% protection against HRBC lysis at 200 and 400 µM, respectively. Overall, we found novel derivatives of eugenol that could potentially reduce inflammation by PPARγ agonism.
Collapse
Affiliation(s)
- Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570 015, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Priya Durai
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Ruby Mariam Raju
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570 015, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, India
| |
Collapse
|
3
|
FABP5 controls macrophage alternative activation and allergic asthma by selectively programming long-chain unsaturated fatty acid metabolism. Cell Rep 2022; 41:111668. [DOI: 10.1016/j.celrep.2022.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
|
4
|
Atwa AM, Abd El-Ghafar OAM, Hassanein EHM, Mahdi SE, Sayed GA, Alruhaimi RS, Alqhtani HA, Alotaibi MF, Mahmoud AM. Candesartan Attenuates Cisplatin-Induced Lung Injury by Modulating Oxidative Stress, Inflammation, and TLR-4/NF-κB, JAK1/STAT3, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022; 15:ph15101222. [PMID: 36297334 PMCID: PMC9612036 DOI: 10.3390/ph15101222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent against different cancers. The use of CIS is associated with acute lung injury (ALI) and other adverse effects, and oxidative stress and inflammation were implicated in its toxic effects. Candesartan (CAN), an angiotensin II (Ang II) receptor blocker, showed beneficial effects against oxidative stress and inflammation. Therefore, this study investigated the potential of CAN to prevent CIS-induced oxidative stress, inflammation, and lung injury in rats, pointing to the involvement of TLR4/NF-κB, JAK1/STAT3, PPARγ, and Nrf2/HO-1 signaling. The rats received CAN (5 mg/kg) for 10 days and were challenged with a single dose of CIS (7 mg/kg) on day 7. CIS caused injury to the alveoli and the bronchial tree, increased lipid peroxidation, nitric oxide, myeloperoxidase, TLR-4, NF-κB p65, iNOS, TNF-α, IL-6, IL-1β, and caspase-3, and decreased cellular antioxidants and IL-6 in the lungs of rats. CAN effectively prevented tissue injury, suppressed TLR-4/ NF-κB signaling, and ameliorated oxidative stress, inflammatory markers, and caspase-3 in CIS-administered rats. CAN enhanced antioxidants and IL-10, decreased Ang II, increased Ang (1–7), suppressed the phosphorylation of JAK1 and STAT3, and upregulated SOCS3 in CIS-administered rats. These effects were associated with the downregulation of Keap1 and enhanced Nrf2, GCLC, HO-1, and PPARγ. In conclusion, CAN prevented CIS-induced lung injury by attenuating oxidative stress, suppressing TLR-4/NF-κB and JAK1/STAT3 signaling, Ang II, and pro-inflammatory mediators, and upregulating PPARγ, and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Omnia A. M. Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Emad H. M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Somya E. Mahdi
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghadir A. Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed F. Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Correspondence: or
| |
Collapse
|
5
|
Almilaibary A, Abdallah EA, El-Refaei MF. Fagonia indica attenuates chromium-induced nephrotoxicity via antioxidant and anti-inflammatory activities in mice. Heliyon 2022; 8:e10373. [PMID: 36072257 PMCID: PMC9441309 DOI: 10.1016/j.heliyon.2022.e10373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Chromium (Cr) is a common environmental pollutant that has wide-ranging toxic manifestations. Fagonia indica (F. indica) is an herbal medicine with anti-inflammatory properties and antioxidant activity. This study aims to evaluate the protective role of F. indica (whole plant) in attenuating Cr-induced nephrotoxicity in Swiss mice. Swiss albino mice were divided into five groups (10 mice in each): group I (control); group II (F. indica-treated); group III (Cr-intoxicated); group IV (Cr- and saline-intoxicated); and group V (Cr-intoxicated and F. indica-treated). Blood samples were drawn after sacrifice for biochemical examinations. Kidney specimens were collected to examine antioxidant activities and conduct histological and immunohistochemical studies for all groups. Mice intoxicated with Cr at 15 mg/kg/b.wt showed a decrease in superoxide dismutase (SOD), glutathione S-transferase (GST), and glutathione peroxidase (GSH-Px) levels compared to the control group, followed by an elevation in the serum IL-6 level. The data revealed severe damage to the renal tubular epithelial cells as well as marked congestion and positive, diffuse, and strong expression of caspase-3 in the dilated tubules. Additionally, the data disclosed an increase in the serum level of blood urea nitrogen (BUN) and creatinine in group III compared with group I. Group V, treated with F. indica at a selected dose of 120 mg/kg/b.wt, showed an improvement in antioxidant activity, attenuation of the IL-6 level, fewer histopathological disturbances, and a statistically significant decrease in the serum level of BUN and creatinine compared with group III. Such changes may be attributed to the antioxidant and anti-inflammatory effects of F. indica. Therefore, our investigation revealed that F. indica effectively protects against Cr-induced nephrotoxicity.
Collapse
Affiliation(s)
| | - Eman A.A. Abdallah
- Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
- Faculty of Medicine, Zagazig University, Egypt
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
- Genetic Institute, Sadat City University, Egypt
- Corresponding author.
| |
Collapse
|
6
|
Еlmahdy MK, Abdelaziz RR, Elmahdi HS, Suddеk GM. Effect of Agmatine on a mouse model of allergic airway inflammation: A comparative study. Autoimmunity 2022; 55:608-619. [PMID: 35775471 DOI: 10.1080/08916934.2022.2093864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Asthma is a chronic lung disease that injures and constricts the airways. This study evaluates the effects of agmatine on ovalbumin (OVA)-induced allergic inflammation of the airways. METHODS OVA sensitization by intraperitoneal injection was used to induce airway inflammation in mice on days 0 and 7; then the mice were challenged using beclomethasone (150 µg/kg, inhalation), a standard anti-asthmatic drug, from day 14 to day 16. Furthermore, agmatine (200 mg/kg) was intraperitoneally injected on day 0 and then daily for 16 days, followed by OVA challenge. The lung weight ratio, total and differential cell counts, TNF-α, interleukin-5 (IL-5) and IL-13 in bronchoalveolar lavage fluid (BALF), lung nitrite/nitrate (NO), and oxidative parameters were determined. Moreover, histopathological and immunohistochemical staining was employed. RESULTS Injection of agmatine (200 mg/kg) for 16 days significantly attenuated inflammation of the airways. The levels of BALF inflammatory cells, TNF-α, IL-5, IL-13, lung NO, and malondialdehyde (MDA), significantly decreased with concomitant elevation of superoxide dismutase (SOD) levels. Histological and immunohistochemical analyses of mast cells paralleled to biochemical improvements. CONCLUSION Finally, this study illustrated that agmatine attenuates the allergic inflammation of airways caused by OVA by mitigating cytokines release, NO expression, and oxidative stress.
Collapse
Affiliation(s)
- Mohammed K Еlmahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Hoda S Elmahdi
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddеk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
7
|
Inhibition effect of PPAR-γ signaling on mast cell-mediated allergic inflammation through down-regulation of PAK1/ NF-κB activation. Int Immunopharmacol 2022; 108:108692. [DOI: 10.1016/j.intimp.2022.108692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
8
|
Ogawa H, Azuma M, Umeno A, Shimizu M, Murotomi K, Yoshida Y, Nishioka Y, Tsuneyama K. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation. Allergol Int 2022; 71:395-404. [PMID: 35346582 DOI: 10.1016/j.alit.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Refractory asthma, which is caused by several factors including neutrophil infiltration is a serious complication of bronchial asthma. We previously reported that nerve growth factor (NGF) is involved in AHR. NGF-derived induction of hyperalgesia is dependent on neutrophils; however, this relationship remains unclear in respiratory disease. In this study, we examined the roles of neutrophils and NGF in refractory asthma. METHODS Using intranasal house dust mite sensitization, we established a mouse model of asthma with mixed inflammation (Mix-in). AHR, NGF production and hyperinnervation of the lungs were examined with or without different inhibitory treatments. The levels of the singlet oxygen markers, 10- and 12-(Z,E)-hydroxyoctadecadienoic acids (HODE) in the lungs, were measured by liquid chromatography-tandem mass spectrometry. An in vitro experiment was also performed to evaluate the direct effect of singlet oxygen on NGF production. RESULTS NGF production and hyperinnervation were higher in Mix-in mice than in conventional eosinophilic-asthmatic mice and were positively correlated with AHR. Asthmatic parameters were inhibited by NGF neutralizing Abs and myeloperoxidase (MPO) inhibition. The 10- and 12-(Z,E)-HODEs levels were increased in the lungs and were positively correlated with MPO activity and NGF production. NGF was produced by bronchial epithelial cells in vitro upon stimulation with singlet oxygen. CONCLUSIONS Our findings suggest that neutrophil MPO-derived singlet oxygen induces increased NGF production, leading to AHR and 10- and 12-(Z,E)-HODEs production. These findings may help to develop new therapies targeting this mechanism and to establish a new biomarker for non-type 2 and refractory asthma.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Research Center for Education of Health Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Department of Ophthalmology, Shimane University Faculty of Medicine, Shimane, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Mayuko Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; LG Japan Lab Inc., Kanagawa, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
9
|
Martinez J, Cook DN. What's the deal with efferocytosis and asthma? Trends Immunol 2021; 42:904-919. [PMID: 34503911 PMCID: PMC9843639 DOI: 10.1016/j.it.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Mucosal sites, such as the lung, serve as crucial, yet vulnerable barriers to environmental insults such as pathogens, allergens, and toxins. Often, these exposures induce massive infiltration and death of short-lived immune cells in the lung, and efficient clearance of these cells is important for preventing hyperinflammation and resolving immunopathology. Herein, we review recent advances in our understanding of efferocytosis, a process whereby phagocytes clear dead cells in a noninflammatory manner. We further discuss how efferocytosis impacts the onset and severity of asthma in humans and mammalian animal models of disease. Finally, we explore how recently identified genetic perturbations or biological pathway modulations affect pathogenesis and shed light on novel therapies aimed at treating or preventing asthma.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Kopf S, Kumar V, Kender Z, Han Z, Fleming T, Herzig S, Nawroth PP. Diabetic Pneumopathy-A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Front Endocrinol (Lausanne) 2021; 12:765201. [PMID: 34899603 PMCID: PMC8655305 DOI: 10.3389/fendo.2021.765201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with diabetes are over-represented among the total cases reported with "idiopathic" pulmonary fibrosis (IPF). This raises the question, whether this is an association only or whether diabetes itself can cause pulmonary fibrosis. Recent studies in mouse models of type 1 and type 2 diabetes demonstrated that diabetes causes pulmonary fibrosis. Both types of diabetes trigger a cascade, starting with increased DNA damage, an impaired DNA repair, and leading to persistent DNA damage signaling. This response, in turn, induces senescence, a senescence-associated-secretory phenotype (SASP), marked by the release of pro-inflammatory cytokines and growth factors, finally resulting in fibrosis. Restoring DNA repair drives fibrosis into remission, thus proving causality. These data can be translated clinically to patients with type 2 diabetes, characterized by long-term diabetes and albuminuria. Hence there are several arguments, to substitute the term "idiopathic" pulmonary fibrosis (IPF) in patients with diabetes (and exclusion of other causes of lung diseases) by the term "diabetes-induced pulmonary fibrosis" (DiPF). However, future studies are required to establish this term and to study whether patients with diabetes respond to the established therapies similar to non-diabetic patients.
Collapse
Affiliation(s)
- Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
| | - Peter P. Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
- *Correspondence: Peter P. Nawroth,
| |
Collapse
|
11
|
Liang Z, Wu L, Deng X, Liang Q, Xu Y, Deng R, Lv L, Ji M, Hao Z, He J. The Antioxidant Rosmarinic Acid Ameliorates Oxidative Lung Damage in Experimental Allergic Asthma via Modulation of NADPH Oxidases and Antioxidant Enzymes. Inflammation 2020; 43:1902-1912. [PMID: 32519269 DOI: 10.1007/s10753-020-01264-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress can induce lung damage and aggravate airway inflammation in asthma. Previously, we reported that rosmarinic acid (RA) exerted strong anti-inflammatory effects in a mouse allergic asthma model. Therefore, we hypothesized that RA might also have antioxidative effects in a superimposed asthma mouse model with oxidative lung damage challenged with ovalbumin (Ova) and hydrogen peroxide (H2O2). We evaluated the antioxidative and anti-asthmatic activity of RA and explored its possible mechanisms of action. Mice sensitized to Ova and challenged with Ova and H2O2 were treated with RA 1 h after challenge. RA treatment greatly diminished the number of inflammatory cells; decreased IL-4, IL-5, and IL-13 production; increased IFN-γ secretion; significantly downregulated ROS production; and markedly upregulated the activities of SOD, GPx, and CAT. Furthermore, RA treatment resulted in a significant increase in the expression of Cu/Zn SOD and a notable reduction in NOX-2 and NOX-4 expression in lung tissues. These findings suggest that RA may effectively alleviate oxidative lung damage and airway inflammation in asthma.
Collapse
Affiliation(s)
- Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Liqin Wu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Xin Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Qiuling Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Yangfeng Xu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Ruihan Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Li Lv
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Min Ji
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Zhihui Hao
- The Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Clyne A, Yang L, Yang M, May B, Yang AWH. Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang. PeerJ 2020; 8:e8685. [PMID: 32185106 PMCID: PMC7060917 DOI: 10.7717/peerj.8685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ding Chuan Tang (DCT), a traditional Chinese herbal formula, has been consistently prescribed for the therapeutic management of wheezing and asthma-related indications since the Song Dynasty (960-1279 AD). This study aimed to identify molecular network pharmacology connections to understand the biological asthma-linked mechanisms of action of DCT and potentially identify novel avenues for asthma drug development. METHODS Employing molecular docking (AutoDock Vina) and computational analysis (Cytoscape 3.6.0) strategies for DCT compounds permitted examination of docking connections for proteins that were targets of DCT compounds and asthma genes. These identified protein targets were further analyzed to establish and interpret network connections associated with asthma disease pathways. RESULTS A total of 396 DCT compounds and 234 asthma genes were identified through database search. Computational molecular docking of DCT compounds identified five proteins (ESR1, KDR, LTA4H, PDE4D and PPARG) mutually targeted by asthma genes and DCT compounds and 155 docking connections associated with cellular pathways involved in the biological mechanisms of asthma. CONCLUSIONS DCT compounds directly target biological pathways connected with the pathogenesis of asthma including inflammatory and metabolic signaling pathways.
Collapse
Affiliation(s)
- Allison Clyne
- Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Liping Yang
- Department of Pharmacy, Beijing Hospital, Beijing, China
- National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yang
- National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Trial Center, Beijing Hospital, Beijing, China
| | - Brian May
- Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Angela Wei Hong Yang
- Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Szychowski KA, Gmiński J. The Elastin-Derived Peptide VGVAPG Does Not Activate the Inflammatory Process in Mouse Cortical Astrocytes In Vitro. Neurotox Res 2020; 37:136-145. [PMID: 31691186 PMCID: PMC6942026 DOI: 10.1007/s12640-019-00114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
During vascular aging or in pathological conditions in humans, elastin is degraded and its by-products, the elastin-derived peptides (EDPs), enter the blood circulation. EDPs may be detected in the serum of healthy subjects or people who suffered a stroke. Moreover, recent evidence suggests a potential role of inflammatory mechanisms in neurological conditions, which are usually not categorized as inflammatory. Therefore, the present in vitro study was conducted to investigate the impact of the VGVAPG peptide on the activation of inflammatory process in mouse primary astrocytes, which were maintained in phenol red-free DMEM/F12 supplemented with 10% fetal bovine serum. The cells were exposed to VGVAPG or VVGPGA peptides for 24 and 48 h; this was followed by the determination of the activity of caspase-1 and levels of SOD, CAT, PPARγ, NF-κB, IL-1β, and IL-1βR1. Furthermore, rosiglitazone-a PPARγ agonist-was applied. Our study pioneered the finding that the VGVAPG peptide increases caspase-1 activity in astrocytes in vitro. The VGVAPG peptide simultaneously decreases the release of IL-1β into the cell-culture medium from astrocytes. The ELISA method revealed that the VGVAPG peptide increases the protein expression of SOD1 whereas it decreases the expression of IL-1βR1, CAT, and NF-κB. Therefore, the available data suggest that the VGVAPG peptide (concentration 10 nM) synergistically acts with agonists of PPARγ in mouse astrocytes. However, given the lack of sufficient data to explain the molecular mechanism of action of the VGVAPG peptide in the nervous system, more studies in this area are necessary.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
14
|
Helal MG, Megahed NA, Abd Elhameed AG. Saxagliptin mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life Sci 2019; 239:117017. [PMID: 31678284 DOI: 10.1016/j.lfs.2019.117017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Saxagliptin (Saxa), a dipeptidyl dipeptidase-4 (DPP-4) inhibitor, is widely used for the treatment of type 2 diabetes mellitus. It has been documented to have immunomodulatory and anti-inflammatory actions. Our objective was to delineate the protective effect and the underlying mechanism of Saxa-in comparison with Dexamethasone (Dexa) - in airway inflammation induced by ovalbumin (OVA) in mice. METHODS Mice were OVA-sensitized and challenged for the induction of acute asthma. Mice were orally administrated Saxa or Dexa. Total and differential cell counts, lactate dehydrogenase (LDH) and total protein concentrations were assessed in bronchoalveolar lavage fluid (BALF). The toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-kB), reduced glutathione (GSH), and total nitrate/nitrite products (NOx) levels as well as myeloperoxidase (MPO) activity in lung tissues were measured. Histopathological examination of the lung specimens was carried out using the hematoxylin and eosin (H & E) staining. RESULTS Histopathological examination revealed that both Saxa and Dexa ameliorated OVA-induced inflammatory changes and significantly reduced total and differential leukocyte counts, LDH and total protein level in BALF upon comparison with OVA group. In addition, both treatments significantly mitigated OVA-induced oxidative stress as evidenced by diminished lung NOx level and MPO activity and elevated GSH level. The elevation of TLR4 and NF-kB levels in lung tissue were ameliorated by Saxa and Dexa administration. CONCLUSION Saxa had marked antiasthmatic effect in OVA-induced allergic asthma through modulation of TLR4 and NF-κB signaling. Also, Saxa may represent a promising therapeutic agent for acute allergic asthma.
Collapse
Affiliation(s)
- Manar G Helal
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | | | - Ahmed G Abd Elhameed
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
15
|
Khateeb J, Fuchs E, Khamaisi M. Diabetes and Lung Disease: A Neglected Relationship. Rev Diabet Stud 2019; 15:1-15. [PMID: 30489598 DOI: 10.1900/rds.2019.15.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a systemic disorder associated with inflammation and oxidative stress which may target many organs such as the kidney, retina, and the vascular system. The pathophysiology, mechanisms, and consequences of diabetes on these organs have been studied widely. However, no work has been done on the concept of the lung as a target organ for diabetes and its implications for lung diseases. AIM In this review, we aimed to investigate the effects of diabetes and hypoglycemic agent on lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis, pulmonary hypertension, and lung cancer. We also reviewed the potential mechanisms by which these effects may affect lung disease patients. RESULTS Our results suggest that diabetes can affect the severity and clinical course of several lung diseases. CONCLUSIONS Although the diabetes-lung association is epidemiologically and clinically well-established, especially in asthma, the underlying mechanism and pathophysiology are not been fully understood. Several mechanisms have been suggested, mainly associated with the pro-inflammatory and proliferative properties of diabetes, but also in relation to micro- and macrovascular effects of diabetes on the pulmonary vasculature. Also, hypoglycemic drugs may influence lung diseases in different ways. For example, metformin was considered a potential therapeutic agent in lung diseases, while insulin was shown to exacerbate lung diseases; this suggests that their effects extend beyond their hypoglycemic properties.
Collapse
Affiliation(s)
- Jasmin Khateeb
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel
| | - Eyal Fuchs
- Pulmonary Division, Rambam Health Care Campus, Haifa, Israel
| | - Mogher Khamaisi
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
16
|
Maślanka T, Otrocka-Domagała I, Zuśka-Prot M, Gesek M. Beneficial effects of rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, in a mouse allergic asthma model is not associated with the recruitment or generation of Foxp3-expressing CD4 + regulatory T cells. Eur J Pharmacol 2019; 848:30-38. [PMID: 30710547 DOI: 10.1016/j.ejphar.2019.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
The activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to attenuate allergic airway inflammation (AAI). To gain better understanding of mechanisms underlying this effect, the impact of rosiglitazone (RSG), a PPAR-γ agonist, on CD4+ effector (Teff) and Foxp3-expressing regulatory (Treg) T cells in a mouse model of allergic asthma was studied. Furthermore, we investigated whether the activation of PPAR-γ may directly affect IL-4, IL-10 and IL-17 production by CD4+ T cells. RSG attenuated but did not prevent ovalbumin (OVA)-induced AAI, and this effect was PPAR-γ-dependent. RSG reduced but did not abolish the OVA-induced increase in the count of CD4+ Teff cells in the mediastinal lymph nodes (MLNs) and lungs, and this effect was PPAR-γ-dependent. RSG did not affect the absolute number of Treg cells in the MLNs and lungs of OVA-immunized mice. In vitro exposure of lung lymphocytes to RSG did not influence the percentage of IL-4-, IL-10- and IL-17-producing CD4+ T cells. Our results indicate that the impairment of clonal expansion of CD4+ Teff cells in the MLNs is involved in the anti-asthmatic properties of PPAR-γ agonists. Activation of PPAR-γ did not affect the recruitment of Treg cells to the MLNs and lungs nor did it induce their local generation. This indicates that Treg cells are not involved in producing the anti-asthmatic effect of PPAR-γ agonists. The results suggest that beneficial effects of PPAR-γ agonists in asthma treatment are not mediated through a direct inhibitory effect on IL-4, IL-10 and IL-17 production by CD4+ Teff cells.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland.
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Monika Zuśka-Prot
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Michał Gesek
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
17
|
Lotfi R, Rezaiemanesh A, Mortazavi SH, Karaji AG, Salari F. Immunoresolvents in asthma and allergic diseases: Review and update. J Cell Physiol 2018; 234:8579-8596. [PMID: 30488527 DOI: 10.1002/jcp.27836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023]
Abstract
Asthma and allergic diseases are inflammatory conditions developed by excessive reaction of the immune system against normally harmless environmental substances. Although acute inflammation is necessary to eradicate the damaging agents, shifting to chronic inflammation can be potentially detrimental. Essential fatty-acids-derived immunoresolvents, namely, lipoxins, resolvins, protectins, and maresins, are anti-inflammatory compounds that are believed to have protective and beneficial effects in inflammatory disorders, including asthma and allergies. Accordingly, impaired biosynthesis and defective production of immunoresolvents could be involved in the development of chronic inflammation. In this review, recent evidence on the anti-inflam]matory effects of immunoresolvents, their enzymatic biosynthesis routes, as well as their receptors are discussed.
Collapse
Affiliation(s)
- Ramin Lotfi
- Student Research Committee, Department of immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamidreza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Reddy AT, Lakshmi SP, Banno A, Reddy RC. Role of GPx3 in PPARγ-induced protection against COPD-associated oxidative stress. Free Radic Biol Med 2018; 126:350-357. [PMID: 30118830 PMCID: PMC6368849 DOI: 10.1016/j.freeradbiomed.2018.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Cigarette smoke, a source of numerous oxidants, produces oxidative stress and exaggerated inflammatory responses that lead to irreversible lung tissue damage. It is the single, most significant risk factor for chronic obstructive pulmonary disease (COPD). Although an intrinsic defense system that includes both enzymatic and non-enzymatic modulators exists to protect lung tissues against oxidative stress, impairment of these protective mechanisms has been demonstrated in smokers and COPD patients. The antioxidant enzyme GSH peroxidase (GPx) is an important part of this intrinsic defense system. Although cigarette smoke has been shown to downregulate its expression and activity, the underlying mechanism is not known. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor with antioxidant effects. PPARγ activation has demonstrated protective effects against cigarette smoke-induced oxidative stress and inflammation. Molecular mechanisms for PPARγ's antioxidant function likewise remain to be elucidated. This study explored the link between PPARγ and GPx3 and found a positive association in cigarette smoke extract (CSE)-exposed human bronchial epithelial cells. Moreover, we provide evidence that identifies GPx3 as a PPARγ transcriptional target. Attenuation of antioxidant effects in the absence of GPx3 highlights the antioxidant's prominent role in mediating PPARγ's function. We also demonstrate that ligand-mediated PPARγ activation blocks CSE-induced reactive oxygen species and hydrogen peroxide production via upregulation of GPx3. In summary, our findings describing the molecular mechanisms involving GPx3 and PPARγ in CSE-induced oxidative stress and inflammation may provide valuable information for the development of more effective therapeutics for COPD.
Collapse
Affiliation(s)
- Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Asoka Banno
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
19
|
Li T, Yan F, Meng X, Wang J, Ting Kam RK, Zeng X, Liu Z, Zhou H, Yang F, Ren R, Liao K, Liu L. Improvement of glucocorticoid-impaired thymus function by dihydromyricetin via up-regulation of PPARγ-associated fatty acid metabolism. Pharmacol Res 2018; 137:76-88. [PMID: 30227260 DOI: 10.1016/j.phrs.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022]
Abstract
T lymphocytes produced by the thymus are essential mediators of immunity. Accelerated thymic atrophy appears in the patients with administration of glucocorticoids (GCs) which are commonly-used drugs to treat autoimmune and infectious diseases, leading to dysregulation of immunity with manifestation of progressive diminution of new T cell production. However, there is no ideal method to overcome such side effects of GCs. In the current study, we proposed a composition of dexamethasone (DEX) and dihydromyricetin (DMY) derived from a medicinal plant, which could protect from DEX-induced thymus damage and simultaneously enhance the anti-inflammatory effect of DEX. In the current study, we found that DEX-damaged thymic cellularity and architecture, reduced thymocyte numbers, induced thymocyte apoptosis and dropped CD4+ and CD8+ double positive T cell numbers in thymus which was effectively improved by co-treatment with DMY. Quantification of signal joint TCR delta excision circles (TRECs) and Vβ TCR spectratyping analysis were employed to determine the thymus function with indicated treatments. The results showed that DEX-impaired thymus output and decreased TCR cell diversity which was ameliorated by co-treatment with DMY. iTRAQ 2D LC-MS/MS was applied to analyze the proteomic profiling of thymus of mice treated with or without indicated agents, followed by informatics analysis to identify the correlated signaling pathway. After validated by Western blotting and Real-time PCR, we found that PPARγ-associated fatty acid metabolism was increased in the thymic tissues of the animals treated with DMY plus DEX than the animals treated with DEX alone. The agonist and antagonist of PPARγ were further employed to verify the role of PPARγ in the present study. Furthermore, DMY demonstrated a synergistic effect with co-administration of DEX on suppressing inflammation in vivo. Collectively, DMY relieved thymus function damaged by DEX via regulation of PPARγ-associated fatty acid metabolism. Our findings may provide a new strategy on protection of thymus from damage caused by GCs by using appropriate adjuvant natural agents through up-regulation of PPARγ-associated fatty acid metabolism.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Fenggen Yan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Xiongyu Meng
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jingrong Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Richard Kin Ting Kam
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China; Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Xing Zeng
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Rutong Ren
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Kangsheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
20
|
Abdеlaziz RR, Еlmahdy MK, Suddek GM. Flavocoxid attenuates airway inflammation in ovalbumin-induced mouse asthma model. Chem Biol Interact 2018; 292:15-23. [PMID: 29986831 DOI: 10.1016/j.cbi.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023]
Abstract
Asthma is a common airways inflammatory disease. This study provides evidence on the efficacy of flavocoxid against ovalbumin (OVA)-induced allergic airways inflammation in a mouse model of asthma. Airway inflammation was induced by intrapеritonеal injection of 10 mg ovalbumin (OVA) on day zero and day 7 followed by OVA challenge starting from 14th day to 16th day. Beclomethasone; a standard anti-inflammatory agent was selected as a drug in asthma. Flavocoxid (20 mg/kg, i. p.) was administered on day zero till 16th day followed by OVA challenge. At the end of the study, lung weight index, bronchoalveolar lavage fluid (BALF) content of total and differential WBCs, interleukin-13(IL-13), in addition to lung tissue nitrate/nitrite (NO) and oxidative stress biomarkers were measured. Also, histological and immunohistochemical analysis were conducted. Daily i. p. injection of flavocoxid (20 mg/kg) significantly improved airway inflammation. Inflammatory cells in BALF, malondialdehyde (MDA), NO and IL-13 significantly declined with concomitant increase in superoxide dismutase (SOD) activity. Histopathological examination and immunohistochеmical staining of mast cells were correlated with observed biochemical improvements. Collectively, these results demonstrate that flavocoxid mitigates the allergic airway inflammation induced by ovalbumin through attenuation of IL-13, NO expressions and oxidative stress.
Collapse
Affiliation(s)
- Rania R Abdеlaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Mohammеd Kh Еlmahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
21
|
Abuelezz SA. Nebivolol attenuates oxidative stress and inflammation in a guinea pig model of ovalbumin-induced asthma: a possible mechanism for its favorable respiratory effects. Can J Physiol Pharmacol 2018; 96:258-265. [PMID: 29319332 DOI: 10.1139/cjpp-2017-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An experimental model of ovalbumin (OVA) induced asthma was used to assess the effects of nebivolol, the third-generation selective β1-adrenergic receptor blocker, on airway reactivity, lung inflammation, and oxidative stress markers. The asthma induction protocol was done by OVA sensitization and challenge. Guinea pigs were classified into control, asthmatic, or asthmatic receiving nebivolol either 7.5 or 15 mg·kg-1·day-1 orally. At the end of the study respiratory, the anti-inflammatory and antioxidative effects of nebivolol were assessed. The asthmatic group exhibited a significant increase in early and late airway resistance, airway hyperreactivity to histamine, total and absolute leucocytic count, tumor necrosis factor-α, and interleukin-6 in bronchoalveolar lavage fluid and lung lipid peroxidation and a significant decrease in superoxide dismutase and glutathione compared to the control group. Additionally, there was a significant decrease in lung endothelial nitric oxide synthase (eNOS) and a significant increase in inducible nitric oxide synthase (iNOS) mRNA expression compared to the control group. The high dose of nebivolol counteracted the increased airway resistance induced by OVA, whereas it had no effect on airway hyperresponsiveness. Moreover, nebivolol exhibited significant anti-inflammatory and antioxidant effects and restored the altered levels of eNOS and iNOS compared to the asthmatic group. Collectively, these results suggest a beneficial effect of nebivolol in asthma.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt.,Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
22
|
Chen H, Jiang Y, Yang Z, Hu W, Xiong L, Wang N, Liu X, Zheng G, Ouyang K, Wang W. Effects of Chimonanthus nitens Oliv. Leaf Extract on Glycolipid Metabolism and Antioxidant Capacity in Diabetic Model Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7648505. [PMID: 29057036 PMCID: PMC5625751 DOI: 10.1155/2017/7648505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
The paper investigated the antihyperglycemic and antihyperlipidemic efficacy and antioxidant capacity of Chimonanthus nitens Oliv. leaf extract (COE) in combination of high-glucose-fat diet-fed and streptozotocin-induced diabetic model mice. Various physiological indexes in diabetic model mice were well improved especially by oral administration of high dose of COE; the results were listed as follows. Fast blood glucose (FBG) level and serum triglyceride (TC), total cholesterol (TG), low-density lipoprotein cholesterol (LDLC), and malondialdehyde (MDA) as well as MDA in liver were significantly reduced; fasting serum insulin (FINS) and insulin sensitivity index (ISI) were both increased; high-density lipoprotein cholesterol (HDLC) in serum was significantly increased; total antioxidant capacity (T-AOC), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in serum and liver were apparently enhanced; liver coefficient (LC), liver transaminase, and alkaline phosphatase (ALP) were decreased. Furthermore, pancreas islets and liver in diabetic model mice showed some extend of improvement in morphology and function after 4 weeks of COE treatment. In consequence, COE was advantageous to regulate glycolipid metabolism and elevate antioxidant capacity in diabetic model mice. Thus, the present study will provide a scientific evidence for the use of COE in the management of diabetes and its related complications.
Collapse
Affiliation(s)
- Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbing Hu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
23
|
Coutinho DS, Anjos-Valotta EA, do Nascimento CVMF, Pires ALA, Napimoga MH, Carvalho VF, Torres RC, E Silva PMR, Martins MA. 15-Deoxy-Delta-12,14-Prostaglandin J 2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma. Front Immunol 2017; 8:740. [PMID: 28713373 PMCID: PMC5491902 DOI: 10.3389/fimmu.2017.00740] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) has been described as an anti-inflammatory lipid mediator in several in vitro and in vivo studies, but its effect on allergic pulmonary inflammation remains elusive. The aim of this study was to investigate the therapeutic potential of 15d-PGJ2 based on distinct murine models of allergic asthma triggered by either ovalbumin (OVA) or house dust mite extract (HDM). Characteristics of lung inflammation, airway hyper-reactivity (AHR), mucus exacerbation, and lung remodeling in sensitized A/J mice treated or not with 15d-PGJ2 were assessed. 15d-PGJ2 treatments were carried out systemically or topically given via subcutaneous injection or intranasal instillation, respectively. Analyses were carried out 24 h after the last allergen provocation. Irrespective of the route of administration, 15d-PGJ2 significantly inhibited the peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis and also mucus exacerbation caused by either OVA or HDM challenge. The protective effect of 15d-PGJ2 occurred in parallel with inhibition of allergen-induced AHR and lung tissue production of pro-inflammatory cytokines, such as interleukin (IL)-5, IL-13, IL-17, and TNF-α. Finally, 15d-PGJ2 was found effective in inhibiting NF-κB phosphorylation upon HDM challenge as measured by Western blotting. In conclusion, our findings suggest that 15d-PGJ2 can reduce crucial features of asthma, including AHR, lung inflammation, and remodeling in distinct murine models of the disease. These effects are associated with a decrease in lung tissue generation of pro-inflammatory cytokines by a mechanism related to downregulation of NF-κB phosphorylation.
Collapse
Affiliation(s)
- Diego S Coutinho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Caio V M F do Nascimento
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia A Pires
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Vinícius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafael C Torres
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Naumenko EA, Ahlemeyer B, Baumgart-Vogt E. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene. ENVIRONMENTAL TOXICOLOGY 2017; 32:989-1006. [PMID: 27322098 DOI: 10.1002/tox.22299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/11/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.
Collapse
Affiliation(s)
- Ekaterina Anatolevna Naumenko
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan, 420008, Russia
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University Giessen, Aulweg 123, Giessen, 35385, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University Giessen, Aulweg 123, Giessen, 35385, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University Giessen, Aulweg 123, Giessen, 35385, Germany
| |
Collapse
|
25
|
Kim N, Thatcher TH, Sime PJ, Phipps RP. Corticosteroids inhibit anti-IgE activities of specialized proresolving mediators on B cells from asthma patients. JCI Insight 2017; 2:e88588. [PMID: 28194434 DOI: 10.1172/jci.insight.88588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Specialized proresolving mediators (SPMs) promote the resolution of inflammation and exert beneficial effects in animal models of chronic inflammatory diseases, including asthma. Previously, we have shown that certain SPMs reduce IgE production in B cells from healthy individuals, which has a critical role in allergic asthma. Here, we investigated the effects of SPMs on B cell IgE production in asthma patients. Peripheral blood mononuclear cells from asthma patients were treated with 17-HDHA or RvD1, and IgE levels were measured. RvD1 and 17-HDHA dampened IgE production in B cells from most asthma patients, whereas B cells from a subset of patients taking oral steroids were refractory to SPM treatment. Molecular mechanisms underlying the interaction between corticosteroids and SPMs were investigated by treating B cells from nonasthmatic donors with corticosteroids in vitro. Corticosteroids blocked the inhibitory effects of 17-HDHA and RvD1 on B cell IgE production by abolishing the suppressive activity of these mediators on IgE class switching. Corticosteroids decreased the expression of transcriptional repressor Bcl-6 as well as its suppressive activity on epsilon germline transcription. We conclude that 17-HDHA and RvD1 can reduce IgE production in asthma patients not taking high doses of steroids but that corticosteroids interfere with the ability of B cells to respond to proresolving mediators.
Collapse
Affiliation(s)
- Nina Kim
- Department of Microbiology and Immunology
| | | | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, and.,Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Microbiology and Immunology.,Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
26
|
Chen H, Jiang Y, Yang Z, Hu W, Xiong L, Wang N, Liu X, Zheng G, Ouyang K, Wang W. Effects of Chimonanthus nitens Oliv. Leaf Extract on Glycolipid Metabolism and Antioxidant Capacity in Diabetic Model Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [DOI: https://doi.org/10.1155/2017/7648505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paper investigated the antihyperglycemic and antihyperlipidemic efficacy and antioxidant capacity of Chimonanthus nitens Oliv. leaf extract (COE) in combination of high-glucose-fat diet-fed and streptozotocin-induced diabetic model mice. Various physiological indexes in diabetic model mice were well improved especially by oral administration of high dose of COE; the results were listed as follows. Fast blood glucose (FBG) level and serum triglyceride (TC), total cholesterol (TG), low-density lipoprotein cholesterol (LDLC), and malondialdehyde (MDA) as well as MDA in liver were significantly reduced; fasting serum insulin (FINS) and insulin sensitivity index (ISI) were both increased; high-density lipoprotein cholesterol (HDLC) in serum was significantly increased; total antioxidant capacity (T-AOC), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in serum and liver were apparently enhanced; liver coefficient (LC), liver transaminase, and alkaline phosphatase (ALP) were decreased. Furthermore, pancreas islets and liver in diabetic model mice showed some extend of improvement in morphology and function after 4 weeks of COE treatment. In consequence, COE was advantageous to regulate glycolipid metabolism and elevate antioxidant capacity in diabetic model mice. Thus, the present study will provide a scientific evidence for the use of COE in the management of diabetes and its related complications.
Collapse
Affiliation(s)
- Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbing Hu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
27
|
Protective Effect of PPAR γ Agonists on Cerebellar Tissues Oxidative Damage in Hypothyroid Rats. Neurol Res Int 2016; 2016:1952561. [PMID: 28116157 PMCID: PMC5220477 DOI: 10.1155/2016/1952561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/06/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of the current study was to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARγ) agonists on cerebellar tissues oxidative damage in hypothyroid rats. The animals included seven groups: group I (control), the animals received drinking water; group II, the animals received 0.05% propylthiouracil (PTU) in drinking water; besides PTU, the animals in groups III, IV, V, VI, and VII, were injected with 20 mg/kg vitamin E (Vit E), 10 or 20 mg/kg pioglitazone, and 2 or 4 mg/kg rosiglitazone, respectively. The animals were deeply anesthetized and the cerebellar tissues were removed for biochemical measurements. PTU administration reduced thiol content, superoxide dismutase (SOD), and catalase (CAT) activities in the cerebellar tissues while increasing malondialdehyde (MDA) and nitric oxide (NO) metabolites. Vit E, pioglitazone, and rosiglitazone increased thiol, SOD, and CAT in the cerebellar tissues while reducing MDA and NO metabolites. The results of present study showed that, similar to Vit E, both rosiglitazone and pioglitazone as PPARγ agonists exerted protective effects against cerebellar tissues oxidative damage in hypothyroid rats.
Collapse
|
28
|
Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100:153-163. [PMID: 27352979 PMCID: PMC5145801 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is increasing evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of many of the major neurodegenerative and neuroinflammatory diseases, suggesting that mitochondrial and antioxidant pathways may represent potential novel therapeutic targets. Recent years have seen a rapidly growing interest in the use of therapeutic strategies that can limit the defects in, or even to restore, mitochondrial function while reducing free radical generation. The peroxisome proliferation-activated receptor gamma (PPARγ), a ligand-activated transcription factor, has a wide spectrum of biological functions, regulating mitochondrial function, mitochondrial turnover, energy metabolism, antioxidant defence and redox balance, immune responses and fatty acid oxidation. In this review, we explore the evidence for potential beneficial effects of PPARγ agonists in a number of neurological disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington's disease, ischaemia, autoimmune encephalomyelitis and neuropathic pain. We discuss the mechanisms underlying those beneficial effects in particular in relation to mitochondrial function, antioxidant defence, cell death and inflammation, and suggest that the PPARγ agonists show significant promise as therapeutic agents in otherwise intractable neurological disease.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
29
|
Xu Y, Romero R, Miller D, Kadam L, Mial TN, Plazyo O, Garcia-Flores V, Hassan SS, Xu Z, Tarca AL, Drewlo S, Gomez-Lopez N. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2476-2491. [PMID: 26889045 PMCID: PMC4779725 DOI: 10.4049/jimmunol.1502055] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023]
Abstract
Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tara N. Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Olesya Plazyo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|