1
|
Fang WK, Xu DD, Liu D, Li YY, Liu MH, Pang DW, Tang HW. Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Anal Chem 2023; 95:5443-5453. [PMID: 36930753 DOI: 10.1021/acs.analchem.3c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Meng-Han Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
2
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Wang X, Yu L, Xiong X, Chen Y, Men B. Bone Marrow Mesenchymal Stem Cells (BMSCs) Transplantation Alleviates Acute Pancreatitis Through Inhibiting Inflammation and Promoting Caspase-8 Apoptosis Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are capable of multipolar differentiation and repairing injured tissues. Herein, we aimed to investigate the mechanism by how BMSCs modulate the apoptotic pathway in the acute pancreatitis (AP). In this study, primary BMSCs were cultured and
administrated into 10 AP mice while 10 healthy mice were taken as a blank group and 10 AP mice as a control group. The mouse pancreatic tissues were assessed by HE staining and evaluated by pancreatitis score and serum amylase detection. Level of inflammatory factors CRP and TNF-α
was measured by ELISA and PIPK1, PIPK3, MLKL and Caspase-8 expression was detected by RT-qPCR and Western blot. The pancreatitis score (7.29±1.36) and the serum amylase score of (453.66±103.67) mu/ml of BMSCs group was significantly higher than that of control group, indicating
increased tissue repair after BMSCs treatment. BMSCs group exhibited a higher level of CRP (711.01±115.31) and TNF-α (132.81±22.13) in serum compared to control group (p < 0.05). PIPK1, PIPK3, and MLKL expression in BMSCs group decreased (p <
0.05) whereas Caspase-8 was increased (p < 0.05). On the other hand, BMSCs group presented upregulated PIPK1, PIPK3, and MLKL (p < 0.05) and downregulated Caspase-8 (p < 0.05). In conclusion, BMSCs regulate cell apoptosis by upregulating Caspase-8 expression,
and downregulating PIPK1, PIPK3 and MLKL level, thereby alleviating the inflammation in AP.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610016, China
| | - Lan Yu
- Department of Western Pharmacy, Chengdu First People’s Hospital, Chengdu, Sichuan, 610016, China
| | - Xing Xiong
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610016, China
| | - Yao Chen
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610016, China
| | - Bo Men
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, Sichuan, 610016, China
| |
Collapse
|
4
|
du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J 2021; 36:e22052. [PMID: 34862979 DOI: 10.1096/fj.202101100rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melvin R Hayden
- Division of Endocrinology Diabetes and Metabolism, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.,Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Bai J, Bai J, Yang M. Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation. Gut Liver 2021; 15:771-781. [PMID: 33495423 PMCID: PMC8444107 DOI: 10.5009/gnl20210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 11/04/2022] Open
Abstract
Background/Aims Interleukin-22 (IL-22) is an important cytokine maintaining homeostasis at barrier surfaces. In this study, the role of IL-22 in acute pancreatitis-associated intestinal injury was further explored. Methods Severe acute pancreatitis (SAP) was induced by administration of L-arginine in Balb/c mice at different time gradients. Histopathological examinations were made in both the pancreas and small intestine. Furthermore, recombinant murine IL-22 (rIL-22) was administrated to L-arginine-induced SAP mice by intraperitoneal injection. The mRNA levels of IL-22R1, Reg-IIIβ, Reg-IIIγ, Bcl-2, and Bcl-xL were detected in the small intestine by real-time polymerase chain reaction, and protein levels of total and phosphorylated STAT3 were assessed via Western blot. Results Compared with normal control group, 72 hours of L-arginine exposure induced the most characteristic histopathological changes of SAP, evidenced by pathological changes and serum amylase levels. Meanwhile, significant pancreatitis-associated intestinal mucosa injury was also observed. The gene expression levels of antimicrobial proteins Reg-IIIβ, Reg-IIIγ and anti-apoptosis proteins Bcl-2, Bcl-xL were downregulated in small intestine. Furthermore, Larginine- induced SAP was attenuated by rIL-22 treatment. Importantly, pancreatitis-associated intestinal mucosa injury was also ameliorated, reflected by improved pathological changes and significant increase in gene expression levels of Reg-IIIβ, Reg-IIIγ, Bcl-2 and Bcl-xL. Consistently, serum amylase levels and mortality were decreased in mice treated with rIL-22. Mechanistically, the upregulated expressions of these protective genes were achieved by activating STAT3. Conclusions Exogenous rIL-22 attenuates L-arginine-induced acute pancreatitis and intestinal mucosa injury in mice, via activating STAT3 signaling pathway and enhancing the expression of antimicrobial peptides and antiapoptotic genes.
Collapse
Affiliation(s)
- Jinxia Bai
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Meng Yang
- Dayi Primary Education Group, Shanghai, China
| |
Collapse
|
6
|
Inhibition of Rb phosphorylation leads to H 2S-mediated inhibition of NF-kB in acute pancreatitis and associated lung injury in mice. Pancreatology 2020; 20:647-658. [PMID: 32402695 DOI: 10.1016/j.pan.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis (AP), an inflammatory condition of pancreas, destructs the exocrine cells by releasing various pro-inflammatory cytokines that activates the stellate cells. However, the underlying molecular mechanism remains unclear. The present study investigated the role of retinoblastoma (Rb), hydrogen sulphide and nuclear factor-κB (NF-κB) in the regulation of exocrine cell proliferation under inflammatory condition. METHODS The randomly grouped male swiss mice were administered with 6 consecutive hourly i.p injections of caerulein to induce AP. Palbociclib (PD) (25 mg/kg body weight), a CDK4/6 inhibitor, was administered 1 h after the first cerulein injection intraperitoneally to block the RB pathway by inhibiting the activity of the CDK4/6 complexes and DL propargylglycine (PAG) which blocks the endogenous H2S production. RESULTS Pharmacological inhibition of CDK4/6 and H2S significantly improved pancreas and lung histopathological changes, decreased serum amylase level, both lung and pancreas myeloperoxidase (MPO) activity, TNFα expression and elevated IL10 expression. Furthermore, inhibition of RB pathway reduced cerulein-induced H2S level by reducing the expression of cystathionine gamma lyase (CSE) and NF-κB activation in pancreas and lungs. Also, blocking the RB signalling reduced the α-SMA expression in pancreas preventing the risk for pancreatic fibrosis. Whereas administration of H2S inhibitor PAG resulted in a decrease in CDK4/6-Rb expression in cerulein-induced AP. CONCLUSION These results reveal a novel link between H2S/RB/NF-κB pathways, in AP and provide insight into possible mechanism that can be targeted in prevention of inflammation to cancer development.
Collapse
|
7
|
Protective effect of diallyl disulfide against cerulein-induced acute pancreatitis and associated lung injury in mice. Int Immunopharmacol 2020; 80:106136. [PMID: 31991372 DOI: 10.1016/j.intimp.2019.106136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Garlic (Allium sativum) - derived organosulfur compound diallyl disulfide (DADS) possesses antioxidant, anti-inflammatory and anti-cancer effects. This study was aimed to investigate the anti-inflammatory role and the underlying molecular mechanisms of DADS in cerulein-induced acute pancreatitis (AP) and associated lung injury. Administration of DADS significantly attenuated the severity of pancreatic and pulmonary inflammation by inhibiting cerulein induced serum amylase, myeloperoxidase activity (MPO) and histological changes in pancreas and lung. Furthermore, the anti-inflammatory effect of DADS was associated with the decrease in tumor necrosis factor (TNF)-α,cystathionine-γ-lyase (CSE), preprotachykinin A (PPTA), neurokinin-1-receptor (NK1R) expression and hydrogen sulfide (H2S) production in both pancreas and lung. In addition, DADS reduced caerulein-induced I-κB degradation and subsequent translocation of NF-κB in the pancreas and lung. These results show for the first time that in AP, DADS exhibits an anti-inflammatory effect by inhibiting CSE/H2S and SP/NK1R signaling and NF-кB pathway.
Collapse
|
8
|
Simultaneous multi-signal quantification for highly precise serodiagnosis utilizing a rationally constructed platform. Nat Commun 2019; 10:5361. [PMID: 31767865 PMCID: PMC6877524 DOI: 10.1038/s41467-019-13358-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Serodiagnosis with a single quantification method suffers from high false positive/negative rates. In this study, a three-channel platform with an accessional instrumented system was constructed for simultaneous electrochemical, luminescent, and photothermal quantification of H2S, a bio-indicator for acute pancreatitis (AP) diagnosis. Utilizing the specific reaction between platform and H2S, the three-channel platform showed high sensitivity and selectivity in the biological H2S concentration range. The three-channel platform was also feasible for identifying the difference in the plasma H2S concentrations of AP and normal mice. More importantly, the precision of AP serodiagnosis was significantly improved (>99.0%) using the three-signal method based on the three-channel platform and an optimized threshold, which was clearly higher than that of the single- or two-signal methods (79.5%–94.1%). Our study highlights the importance of constructing a multichannel platform for the simultaneous multi-signal quantification of bio-indicators, and provides rigorous ways to improve the precision of medical serodiagnosis. Single channel detection methods often suffer from false positives when analysing biological samples. Here, the authors report on the development of a three-channel detection device for measuring hydrogen sulphide in serum and demonstrate application in an in vivo model.
Collapse
|
9
|
Lv C, Jin Q. Maresin-1 Inhibits Oxidative Stress and Inflammation and Promotes Apoptosis in a Mouse Model of Caerulein-Induced Acute Pancreatitis. Med Sci Monit 2019; 25:8181-8189. [PMID: 31671079 PMCID: PMC6844145 DOI: 10.12659/msm.917380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to investigate the effects of maresin-1 (MaR1) in a mouse model of caerulein-induced acute pancreatitis (AP). Material/Methods Fifty C57BL/6 mice with caerulein-induced AP were divided into the untreated control group (N=10), the untreated AP model group (N=10), the MaR1-treated (low-dose, 0.1 μg) AP model group (N=10), the MaR1-treated (middle-dose, 0.5 μg) AP model group (N=10), and the MaR1-treated (high-dose, 1 μg) AP model group (N=10). Enzyme-linked immunoassay (ELISA) measured serum levels of amylase, lipase, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 and mRNA was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Malondialdehyde (MDA), protein carbonyls, superoxide dismutase (SOD), and the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) were measured. Histology of the pancreas included measurement of acinar cell apoptosis using the terminal-deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assay. Western blot measured Toll-like receptor 4 (TLR4), MyD88, and phospho-NF-κB p65, and apoptosis-associated proteins Bcl-2, Bax, cleaved caspase-3, and cleaved caspase-9. Results Following treatment with MaR1, serum levels of amylase, lipase, TNF-α, IL-1β, and IL-6 decreased, MDA and protein carbonyl levels decreased, SOD and the GSH/GSSG ratio increased in a dose-dependent manner. In the MaR1-treated AP mice, inflammation of the pancreas and the expression of inflammatory cytokines, pancreatic acinar cell apoptosis, Bcl-2 expression, and expression of TLR4, MyD88, and p-NF-κB p65 were reduced, but Bax, cleaved caspase-3, and cleaved caspase-9 expression increased. Conclusions In a mouse model of caerulein-induced AP, treatment with MaR1 reduced oxidative stress and inflammation and reduced apoptosis.
Collapse
Affiliation(s)
- Chengjie Lv
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Qi Jin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
10
|
Liu Y, Jia Q, Zhai X, Mao F, Jiang A, Zhou J. Rationally designed pure-inorganic upconversion nanoprobes for ultra-highly selective hydrogen sulfide imaging and elimination in vivo. Chem Sci 2019; 10:1193-1200. [PMID: 30774918 PMCID: PMC6349023 DOI: 10.1039/c8sc04464c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
Lung injury is a hydrogen sulfide (H2S)-associated complication with high mortality in acute pancreatitis (AP) cases. Herein, we used Prussian Blue (PB) as a H2S-responsive acceptor to develop a novel pure-inorganic upconversion nanoprobe for detecting and eliminating H2S, which can be used for diagnosing AP and alleviating lung injury. Upconversion nanoprobes with 5 nm PB shells were optimized to achieve outstanding in vitro H2S detection capacity (linear range: 0-150 μM, LOD: 50 nM), which met the in vivo serum H2S range, and thus were feasible for imaging H2S in vivo. More importantly, when combined with the traditional H2S synthetase inhibitor dl-PAG, the nanoprobes also served as a therapeutic agent that synergistically alleviated lung injury. As PB is an FDA-approved drug, our work proposes a potential clinical modality for the early diagnosis of AP, which will decrease lung injury-induced mortality and increase the survival rates of AP cases.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Qi Jia
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Xuejiao Zhai
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Fang Mao
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Anqi Jiang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Jing Zhou
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| |
Collapse
|