1
|
Pourmousavi L, Asadi RH, Zehsaz F, Jadidi RP. Potential therapeutic effects of crocin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7395-7420. [PMID: 38758225 DOI: 10.1007/s00210-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin's biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin's role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin's beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature's palette holds remarkable solutions for enhancing our health.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Farzad Zehsaz
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
2
|
García CJ, Beltrán D, Frutos-Lisón MD, García-Conesa MT, Tomás-Barberán FA, García-Villalba R. New findings in the metabolism of the saffron apocarotenoids, crocins and crocetin, by the human gut microbiota. Food Funct 2024; 15:9315-9329. [PMID: 39171480 DOI: 10.1039/d4fo02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The main constituents of saffron are the apocarotenoids crocins and crocetin, present in the stigmas. Numerous healthy properties, especially those related to the effects on the central nervous system, have been attributed to these compounds but the metabolites responsible for these effects are still unknown. Previous evidences in animal models suggest a role for the gut microbiota in the pharmacokinetics and the neuroprotective effects of these compounds. However, the interaction between these apocarotenoids and the gut microbiota has been poorly studied. In this article, we have thoroughly investigated the batch fermentation of crocin-1 and crocetin (10 μM) with human fecal samples of two donors at different incubation times (0-240 h) using a metabolomic approach. We corroborated a rapid transformation of crocin-1 which looses the glucose molecules through de-glycosylation reactions until its complete transformation into crocetin in 6 hours. A group of intermediate crocins with different degrees of glycosylation were detected in a very short time. Crocetin was further metabolized and new microbial metabolites produced by double-bond reduction and demethylation reactions were identified for the first time: dihydro and tetrahydro crocetins and di-demethyl crocetin. In addition, we detected changes in the levels of the short chain fatty acids valeric acid and hexanoic acid suggesting further structural modifications of crocetin or changes in the catabolic production of these compounds. This research is a pioneering study of the action of the human gut microbiota on the saffron apocarotenoids and goes one step further towards the discovery of metabolites potentially involved in the benefits of saffron.
Collapse
Affiliation(s)
- Carlos Javier García
- Research Group on Quality, Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - David Beltrán
- Research Group on Quality, Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Maria Dolores Frutos-Lisón
- Research Group on Quality, Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Maria Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Rocío García-Villalba
- Research Group on Quality, Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| |
Collapse
|
3
|
Vignault A, Vaysse C, Bertand K, Krisa S, Courtois A, Moras B, Richard T, Gaudout D, Pourtau L. Characterization of Crocetin Isomers in Serum Samples via UHPLC-DAD-MS/MS and NMR after Saffron Extract (Safr'Inside™) Consumption. Metabolites 2024; 14:190. [PMID: 38668318 PMCID: PMC11052503 DOI: 10.3390/metabo14040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The therapeutic effects of saffron have been reported and described in relation to its major derivatives. Among them, in terms of saffron's properties, crocin and crocetin absorption and bioavailability have been the most studied. Nevertheless, the metabolism of these major compounds of saffron has not yet been entirely elucidated. Current data indicate that the phase 2 metabolism of crocetins go through conjugation reactions. Crocetins could also be present in isomeric forms such as other carotenoids. Nonetheless, there are still shadow areas in regard to the measurements of the different circulating forms of crocetins after oral saffron extract administration (Safr'Inside™). In using various approaches, we propose the identification of a new cis isomeric form of crocetin, the 6-cis-crocetin. This compound was found in human serum samples after an oral administration of saffron extract. The 6-cis-crocetin represents 19% of the total crocetin measured after 45 min of consumption. These data mark, for the first time, the presence of a cis isomeric form of crocetin in human serum samples. Moreover, this study led to the development of an analytical method that is able to identify and quantify both isomeric forms (trans and cis).
Collapse
Affiliation(s)
- Adeline Vignault
- Activ’Inside, 33750 Beychac et Caillau, France; (B.M.); (D.G.); (L.P.)
| | - Carole Vaysse
- Nutrition-Health & Lipid Biochemistry Department, ITERG, 33610 Canejan, France; (C.V.); (K.B.)
| | - Karène Bertand
- Nutrition-Health & Lipid Biochemistry Department, ITERG, 33610 Canejan, France; (C.V.); (K.B.)
| | - Stéphanie Krisa
- Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, University of Bordeaux, 33140 Villenave d’Ornon, France; (S.K.); (A.C.); (T.R.)
| | - Arnaud Courtois
- Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, University of Bordeaux, 33140 Villenave d’Ornon, France; (S.K.); (A.C.); (T.R.)
| | - Benjamin Moras
- Activ’Inside, 33750 Beychac et Caillau, France; (B.M.); (D.G.); (L.P.)
| | - Tristan Richard
- Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, University of Bordeaux, 33140 Villenave d’Ornon, France; (S.K.); (A.C.); (T.R.)
| | - David Gaudout
- Activ’Inside, 33750 Beychac et Caillau, France; (B.M.); (D.G.); (L.P.)
| | - Line Pourtau
- Activ’Inside, 33750 Beychac et Caillau, France; (B.M.); (D.G.); (L.P.)
| |
Collapse
|
4
|
Ali A, Wani AB, Malla BA, Poyya J, Dar NJ, Ali F, Ahmad SB, Rehman MU, Nadeem A. Network Pharmacology Integrated Molecular Docking and Dynamics to Elucidate Saffron Compounds Targeting Human COX-2 Protein. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2058. [PMID: 38138161 PMCID: PMC10744988 DOI: 10.3390/medicina59122058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Cyclooxygenase-2 (COX-2) is mostly linked to inflammation and has been validated as a molecular target for treating inflammatory diseases. The present study aimed to identify novel compounds that could inhibit COX-2, which is associated with various diseases including inflammation, and in such a scenario, plant-derived biomolecules have been considered as attractive candidates. Materials and Methods: In the present study, physiochemical properties and toxicity of natural compounds/drugs were determined by SWISSADME and ProTox-II. In the present study, the molecular docking binding features of saffron derivatives (crocetin, picrocrocin, quercetin, safranal, crocin, rutin, and dimethylcrocetin) against human COX-2 protein were assessed. Moreover, protein-protein interactions, topographic properties, gene enrichment analysis and molecular dynamics simulation were also determined. Results: The present study revealed that picrocrocin showed the highest binding affinity of -8.1 kcal/mol when docked against the COX-2 protein. PROCHECK analysis revealed that 90.3% of the protein residues were found in the most favored region. Compartmentalized Protein-Protein Interaction identified 90 interactions with an average interaction score of 0.62, and the highest localization score of 0.99 found in secretory pathways. The Computed Atlas of Surface Topography of Proteins was used to identify binding pockets and important residues that could serve as drug targets. Use of WEBnmα revealed protein dynamics by using normal mode analysis. Ligand and Receptor Dynamics used the Molecular Generalized Born Surface Area approach to determine the binding free energy of the protein. Gene enrichment analysis revealed that ovarian steroidogenesis, was the most significant enrichment pathway. Molecular dynamic simulations were executed for the best docked (COX-2-picrocrocin) complex, and the results displayed conformational alterations with more pronounced surface residue fluctuations in COX-2 with loss of the intra-protein hydrogen bonding network. The direct interaction of picrocrocin with various crucial amino-acid residues like GLN203, TYR385, HIS386 and 388, ASN382, and TRP387 causes modifications in these residues, which ultimately attenuates the activity of COX-2 protein. Conclusions: The present study revealed that picrocrocin was the most effective biomolecule and could be repurposed via computational approaches. However, various in vivo and in vitro observations are still needed.
Collapse
Affiliation(s)
- Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Shuhama, Alusteng, Srinagar 190006, India
| | - Amir Bashir Wani
- Genome Engineering and Societal Biotechnology Lab., Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar 190006, India;
| | - Bashir Ahmad Malla
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, Dharwad 580009, India
| | - Nawab John Dar
- SALK Institute for Biological Studies, La Jolla, San Diego, CA 92037, USA;
| | - Fasil Ali
- Department of Studies and Research in Biochemistry, Mangalore University, Mangalore 571232, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Shuhama, Alusteng, Srinagar 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Cerdá-Bernad D, Costa L, Serra AT, Bronze MR, Valero-Cases E, Pérez-Llamas F, Candela ME, Arnao MB, Barberán FT, Villalba RG, García-Conesa MT, Frutos MJ. Saffron against Neuro-Cognitive Disorders: An Overview of Its Main Bioactive Compounds, Their Metabolic Fate and Potential Mechanisms of Neurological Protection. Nutrients 2022; 14:5368. [PMID: 36558528 PMCID: PMC9781906 DOI: 10.3390/nu14245368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saffron (Crocus sativus L.) is a spice used worldwide as a colouring and flavouring agent. Saffron is also a source of multiple bioactive constituents with potential health benefits. Notably, saffron displays consistent beneficial effects against a range of human neurological disorders (depression, anxiety, sleeping alterations). However, the specific compounds and biological mechanisms by which this protection may be achieved have not yet been elucidated. In this review, we have gathered the most updated evidence of the neurological benefits of saffron, as well as the current knowledge on the main saffron constituents, their bioavailability and the potential biological routes and postulated mechanisms by which the beneficial protective effect may occur. Our aim was to provide an overview of the neuroprotective effects attributed to this product and its main bioactive compounds and to highlight the main research gaps that need to be further pursued to achieve full evidence and understanding of the benefits of saffron. Overall, improved clinical trials and adequately designed pre-clinical studies are needed to support the evidence of saffron and of its main bioactive components (e.g., crocin, crocetin) as a therapeutic product to combat neurological disorders.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Leonor Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | | | - María Emilia Candela
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Francisco Tomás Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío García Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Frutos
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
6
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
7
|
Rashad WA, Sakr S, Domouky AM. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci Rep 2022; 12:10233. [PMID: 35715565 PMCID: PMC9205959 DOI: 10.1038/s41598-022-14252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Acrolein (Ac) is the second most commonly inhaled toxin, produced in smoke of fires, tobacco smoke, overheated oils, and fried foods; and usually associated with lung toxicity. Crocin (Cr) is a natural carotenoid with a direct antioxidant capacity. Yet, oral administration of crocin as a natural rout is doubtful, because of poor absorbability. Therefore, the current study aimed to compare the potential protective effect of oral versus intraperitoneal (ip) crocin in mitigating Ac-induced lung toxicity. 50 Adult rats were randomly divided into 5 equal groups; Control (oral-saline and ip-saline) group, Cr (oral-Cr and ip-Cr) group, Ac group, oral-Cr/Ac group, and ip-Cr/Ac group; for biochemical, histopathological, and immunohistochemical investigations. Results indicated increased oxidative stress and inflammatory biomarkers in lungs of Ac-treated group. Histopathological and immunohistochemical examinations revealed lung edema, infiltration, fibrosis, and altered expression of apoptotic and anti-apoptotic markers. Compared to oral-Cr/Ac group, the ip-Cr/Ac group demonstrated remarkable improvement in the oxidative, inflammatory, and apoptotic biomarkers, as well as the histopathological alterations. In conclusion, intraperitoneal crocin exerts a more protective effect on acrolein-induced lung toxicity than the orally administered crocin.
Collapse
Affiliation(s)
- Walaa Abdelhaliem Rashad
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt.
| | - Samar Sakr
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| |
Collapse
|
8
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
9
|
Guo ZL, Li MX, Li XL, Wang P, Wang WG, Du WZ, Yang ZQ, Chen SF, Wu D, Tian XY. Crocetin: A Systematic Review. Front Pharmacol 2022; 12:745683. [PMID: 35095483 PMCID: PMC8795768 DOI: 10.3389/fphar.2021.745683] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and produced in biological systems by hydrolysis of crocin as a bioactive metabolite. It is known to exist in several medicinal plants, the desiccative ripe fruit of the cape jasmine belonging to the Rubiaceae family, and stigmas of the saffron plant of the Iridaceae family. According to modern pharmacological investigations, crocetin possesses cardioprotective, hepatoprotective, neuroprotective, antidepressant, antiviral, anticancer, atherosclerotic, antidiabetic, and memory-enhancing properties. Although poor bioavailability hinders therapeutic applications, derivatization and formulation preparation technologies have broadened the application prospects for crocetin. To promote the research and development of crocetin, we summarized the distribution, preparation and production, total synthesis and derivatization technology, pharmacological activity, pharmacokinetics, drug safety, drug formulations, and preparation of crocetin.
Collapse
Affiliation(s)
- Zi-Liang Guo
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Gang Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Ze Du
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Qiang Yang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,Institute of Chemical Technology, Northwest Minzu University, Lanzhou, China
| | - Sheng-Fu Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Di Wu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Kadoglou NPE, Christodoulou E, Kostomitsopoulos N, Valsami G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother Res 2021; 35:6735-6753. [PMID: 34448254 DOI: 10.1002/ptr.7260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Saffron, the dried stigma of Crocus sativus L., is used in traditional medicine for its healing properties and the treatment of various pathological conditions. The present literature review aimed to summarize and evaluate the preclinical and clinical data regarding the protective effects and mechanisms of saffron and its main components (crocin, crocetin, safranal) on cardiovascular risk factors and diseases. Many in vitro and animal studies have been conducted implicating antioxidant, hypolipidemic, anti-diabetic, and antiinflammatory impact of saffron and its constituents. Notably, there is evidence of direct atherosclerosis regression and stabilization in valid atherosclerosis-prone animal models. However, current clinical trials have shown mostly weak effects of saffron and its constituents on cardiovascular risk factors: (a) Modest lowering of fasting blood glucose, without significant reduction of HbA1c in type 2 diabetic patients, (b) moderate/controversial hypolipidemic effects, (c) negligible hypotensive effect, and (d) inconsistent modification of metabolic syndrome parameters. There are important drawbacks in clinical trial design, including the absence of pharmacokinetic/pharmacodynamic tests, the wide variance of doses and cohorts' characteristics, the small number of patients, the short duration. Therefore, large, properly designed, high-quality clinical trials, focusing on specific conditions are required to evaluate the biological/pharmacological activities and firmly establish the clinical efficacy of saffron and its possible therapeutic uses in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Xu Z, Lin S, Gong J, Feng P, Cao Y, Li Q, Jiang Y, You Y, Tong Y, Wang P. Exploring the Protective Effects and Mechanism of Crocetin From Saffron Against NAFLD by Network Pharmacology and Experimental Validation. Front Med (Lausanne) 2021; 8:681391. [PMID: 34179049 PMCID: PMC8219931 DOI: 10.3389/fmed.2021.681391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem but no drug has been approved for its treatment. Animal experiments and clinical trials have demonstrated the beneficial of saffron on NAFLD. However, the bioactive ingredients and therapeutic targets of saffron on NAFLD are unclear. Purpose: This study aimed to identify the bioactive ingredients of saffron responsible for its effects on NAFLD and explore its therapy targets through network pharmacology combined with experimental tests. Methods: Various network databases were searched to identify bioactive ingredients of saffron and identify NAFLD-related targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to enrich functions and molecular pathways of common targets and the STRING database was used to establish a protein-protein interaction network (PPI). The effect of crocetin (CCT) on NAFLD was evaluated in a mouse model of NAFLD by measuring the biomarkers of lipid, liver and renal function, oxidative stress, and inflammation. Liver histopathology was performed to evaluate liver injury. Nuclear factor erythroid-related factor (Nrf2) and hemeoxygenase-1 (HO-1) were examined to elucidate underlying mechanism for the protective effect of saffron against NAFLD. Results: A total of nine bioactive ingredients of saffron, including CCT, with 206 common targets showed therapeutic effects on NAFLD. Oxidative stress and diabetes related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effects of the active bioactive ingredients on NAFLD. Treatment with CCT significantly reduced the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), blood urea nitrogen (BUN), creatinine (CR), and uric acid (UA). CCT significantly increased the activities of superoxide dismutase (SOD), and catalase (CAT). Histological analysis showed that CCT suppressed high-fat diet (HFD) induced fat accumulation, steatohepatitis, and renal dysfunctions. Results of ELISA assay showed that CCT decreased the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and increased the expression of HO-1 and Nrf2. Conclusion: This study shows that CCT is a potential bioactive ingredient of saffron that treats NAFLD. Its mechanism of action involves suppressing of oxidative stress, mitigating inflammation, and upregulating Nrf2 and HO-1 expression.
Collapse
Affiliation(s)
- Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Junjie Gong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yifeng Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuli Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Ya You
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yingpeng Tong
- School of Life Sciences, Taizhou University, Taizhou, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
12
|
Girme A, Pawar S, Ghule C, Shengule S, Saste G, Balasubramaniam AK, Deshmukh A, Hingorani L. Bioanalytical Method Development and Validation Study of Neuroprotective Extract of Kashmiri Saffron Using Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry (UFLC-MS/MS): In Vivo Pharmacokinetics of Apocarotenoids and Carotenoids. Molecules 2021; 26:molecules26061815. [PMID: 33807056 PMCID: PMC8005090 DOI: 10.3390/molecules26061815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Kashmir saffron (Crocus sativus L.), also known as Indian saffron, is an important Asian medicinal plant with protective therapeutic applications in brain health. The main bioactive in Kashmir or Indian Saffron (KCS) and its extract (CSE) are apocarotenoids picrocrocin (PIC) and safranal (SAF) with carotenoids, crocetin esters (crocins), and crocetins. The ultra-fast liquid chromatography(UFLC)- photodiode array standardization confirmed the presence of biomarkers PIC, trans-4-GG-crocin (T4C), trans-3-Gg-crocin (T3C), cis-4-GG-crocin (C4C), trans-2-gg-crocin (T2C), trans-crocetin (TCT), and SAF in CSE. This study’s objectives were to develop and validate a sensitive and rapid UFLC-tandem mass spectrometry method for PIC and SAF along T4C and TCT in rat plasma with internal standards (IS). The calibration curves were linear (R2 > 0.990), with the lower limit of quantification (LLOQ) as 10 ng/mL. The UFLC-MS/MS assay-based precision (RSD, <15%) and accuracy (RE, −11.03–9.96) on analytical quality control (QC) levels were well within the acceptance criteria with excellent recoveries (91.18–106.86%) in plasma samples. The method was applied to investigate the in vivo pharmacokinetic parameters after oral administration of 40 mg/kg CSE in the rats (n = 6). The active metabolite TCT and T4C, PIC, SAF were quantified for the first time with T3C, C4C, T2C by this validated bioanalytical method, which will be useful for preclinical/clinical trials of CSE as a potential neuroprotective dietary supplement.
Collapse
Affiliation(s)
- Aboli Girme
- Correspondence: ; Tel.: +91-704-353-4016 or +91-982-506-3959
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lambrianidou A, Koutsougianni F, Papapostolou I, Dimas K. Recent Advances on the Anticancer Properties of Saffron ( Crocus sativus L.) and Its Major Constituents. Molecules 2020; 26:E86. [PMID: 33375488 PMCID: PMC7794691 DOI: 10.3390/molecules26010086] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death globally with an estimated 9.6 million deaths in 2018 and a sustained rise in its incidence in both developing and developed countries. According to the WHO, about 1 in 6 deaths is due to cancer. Despite the emergence of many pioneer therapeutic options for patients with cancer, their efficacy is still time-limited and noncurative. Thus, continuous intensive screening for superior and safer drugs is still ongoing and has resulted in the detection of the anticancer properties of several phytochemicals. Among the spices, Crocus sativus L. (saffron) and its main constituents, crocin, crocetin, and safranal, have attracted the interest of the scientific community. Pharmacological experiments have established numerous beneficial properties for this brilliant reddish-orange dye derived from the flowers of a humble crocus family species. Studies in cultured human malignant cell lines and animal models have demonstrated the cancer prevention and antitumor activities of saffron and its main ingredients. This review provides an insight into the advances in research on the anticancer properties of saffron and its components, discussing preclinical data, clinical trials, and patents aiming to improve the pharmacological properties of saffron and its major ingredients.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (A.L.); (F.K.); (I.P.)
| |
Collapse
|
14
|
Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2020; 62:3232-3249. [PMID: 33356506 DOI: 10.1080/10408398.2020.1864279] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saffron (Crocus sativus L.) is used as a spice for its organoleptic characteristics related to its coloring and flavoring properties, and it has been also used in traditional medicine to treat various diseases. The main chemical components responsible for these properties are crocin, crocetin and safranal. These compounds have been shown to have a wide spectrum of biological activities, including several properties as antigenotoxic, antioxidant, anticancer, anti-inflammatory, antiatherosclerotic, antidiabetic, hypotensive, hypoglycemic, antihyperlipidemic, antidegenerative and antidepressant, among others. This review article highlights the antioxidant effects of these bioactive compounds to reduce reactive oxygen species (ROS) and the mechanisms of action involved, since there are a multitude of diseases related to oxidative stress and the generation of free radicals (FRs). Recent studies have shown that the effects of crocin, crocetin and safranal against oxidative stress include the reduction in lipid peroxidation (malondialdehyde [MDA] levels) and nitric oxide (NO) levels, and the increase in the levels of glutathione, antioxidant enzymes (superoxide dismutase [SOD], catalase (CAT) and glutathione peroxidase [GPx]) and thiol content. Therefore, due to the great antioxidant effects of these saffron compounds, it makes saffron a potential source of bioactive extracts for the development of bioactive ingredients, which can be used to produce functional foods.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | | | - María José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| |
Collapse
|
15
|
Pang Q, Zhang W, Li C, Li H, Zhang Y, Li L, Zang C, Yao X, Zhang D, Yu Y. Antidementia effects, metabolic profiles and pharmacokinetics of GJ-4, a crocin-rich botanical candidate from Gardeniae fructus. Food Funct 2020; 11:8825-8836. [PMID: 32966490 DOI: 10.1039/d0fo01678k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crocins, a series of hydrophilic carotenoids that are either mono- or di-glycosyl polyene esters of crocetin extracted from dried saffron stigma or fruits of gardenia, are attracting much attention due to their wide range of pharmacological effects. In our previous study, GJ-4, a mixture of crocin analogues, was obtained and derived from gardenia fruits. Mainly 18 crocin analogues were identified from GJ-4 and found to exhibit neuroprotective effects in in vitro and in vivo models. In this present study, we continue to investigate the therapeutic effects of GJ-4 on learning and memory impairments in a 2VO-induced VaD model, and the potential mechanism. In addition, the metabolic profiles and pharmacokinetic properties of GJ-4 were determined using liquid chromatography-electrospray ionization-mass spectrometry after single and multiple oral doses. All these findings presented here will serve as a solid basis to develop GJ-4 as a new therapeutic agent for dementia.
Collapse
Affiliation(s)
- Qianqian Pang
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Weiyang Zhang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People' Republic China
| | - Haibo Li
- Kanion Pharmaceutical Co. Ltd, State Key Laboratory of New-tech for Chinese Medicine Pharamaceutical Process, Lianyungang 222001, People' Republic China
| | - Yu Zhang
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Lin Li
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Caixia Zang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinsheng Yao
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Dan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yang Yu
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| |
Collapse
|
16
|
Fernández-Albarral JA, de Hoz R, Ramírez AI, López-Cuenca I, Salobrar-García E, Pinazo-Durán MD, Ramírez JM, Salazar JJ. Beneficial effects of saffron ( Crocus sativus L.) in ocular pathologies, particularly neurodegenerative retinal diseases. Neural Regen Res 2020; 15:1408-1416. [PMID: 31997799 PMCID: PMC7059587 DOI: 10.4103/1673-5374.274325] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Saffron (Crocus sativus L.) has been traditionally used in food preparation and as a medicinal plant. It currently has numerous therapeutic properties attributed to it, such as protection against ischemia, as well as anticonvulsant, antidepressant, anxiolytic, hypolipidemic, anti-atherogenic, anti-hypertensive, antidiabetic, and anti-cancer properties. In addition, saffron has remarkable beneficial properties, such as anti-apoptotic, anti-inflammatory and antioxidant activities, due to its main metabolites, among which crocin and crocetin stand out. Furthermore, increasing evidence underwrites the possible neuroprotective role of the main bioactive saffron constituents in neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, both in experimental models and in clinical studies in patients. Currently, saffron supplementation is being tested for ocular neurodegenerative pathologies, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration and glaucoma, among others, and shows beneficial effects. The present article provides a comprehensive and up to date report of the investigations on the beneficial effects of saffron extracts on the main neurodegenerative ocular pathologies and other ocular diseases. This review showed that saffron extracts could be considered promising therapeutic agents to help in the treatment of ocular neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Madrid, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Madrid, Spain
| | | | - María D Pinazo-Durán
- Unidad de Investigación Oftalmológica Santiago Grisolia, Universidad de Valencia, Valencia, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Madrid, Spain
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo; Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Madrid, Spain
| |
Collapse
|
17
|
Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMNR, Alonso GL. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019; 24:molecules24152827. [PMID: 31382514 PMCID: PMC6696252 DOI: 10.3390/molecules24152827] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
Crocus sativus L. has been cultivated throughout history to obtain its flowers, whose dried stigmas give rise to the spice known as saffron. Crocetin esters, picrocrocin, and safranal are the main metabolites of this spice, which possess a great bioactivity, although the mechanisms of action and its bioavailability are still to be solved. The rest of the flower is composed by style, tepals, and stamens that have other compounds, such as kaempferol and delphinidin, which have an important antioxidant capacity, and these can be applied in foods, phytopharmaceuticals, and cosmetics. The aim of this work was to provide an updated and critical review of the research on the main compounds of Crocus sativus L. flower, including the adequate analytical methods for their identification and quantification, with a focus on their bioactivity and bioavailability.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - María José Bagur
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | | | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
18
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|