1
|
Zhang M, Sun X, Zhao F, Chen Z, Liu M, Wang P, Lu P, Wang X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118980. [PMID: 39454704 DOI: 10.1016/j.jep.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis is one of the pathological characteristics of advanced diabetic cardiomyopathy (DCM) and serves as the strong evidence of poor prognosis. Among them, the transdifferentiation of cardiac fibroblasts (CFs) may play a crucial role in the development of myocardial fibrosis in DCM. Tinglu Yixin granule (TLYXG) has been clinically used for many years and can significantly improve cardiac function of patients with DCM. However, the effect of TLYXG on myocardial fibrosis in DCM remains unknown, and the underlying mechanisms of its efficacy have yet to be fully understood. AIM OF THE STUDY This study aimed to investigate the impact and underlying mechanism of TLYXG on myocardial fibrosis in diabetes mice. MATERIALS AND METHODS The bioactive compounds in TLYXG were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of TLYXG in treating DCM was predicted using network pharmacology combined with molecular docking and protein-protein docking. The mice model of type 2 diabetes were established by intraperitoneal injection of streptozotocin (STZ) and the high-fat diet (HFD). Indicators of pancreatic islet function, lipids, oxidative stress, and inflammatory factors were tested using kits. Cardiac function was assessed in diabetic mice using echocardiography. Histologic staining was performed to evaluate myocardial hypertrophy and fibrosis. Mechanistically, the hypothesis was tested through rescue experiments. The expression levels of transient receptor potential channel 6 (TRPC6), transforming growth factor-β1 (TGF-β1), collagen I (COL-I) and alpha-smooth muscle actin (α-SMA), along with the mRNA and phosphorylation levels of SMAD family member 3 (Smad3) and protein 38 mitogen-activated protein kinase (p38 MAPK), were assessed using quantitative RT-qPCR, Western blot, immunohistochemistry, and immunofluorescence. Neonatal lactating mice were used to extract primary CFs for vitro experiments. Scratch and transwell assays were conducted to assess CFs migration and invasion abilities. Western blot and immunofluorescence were used to evaluate the expression levels of CFs transdifferentiation markers COL-I and α-SMA. RESULTS A total of 168 active ingredients were detected in TLYXG based on UPLC-MS and databases. Network pharmacology indicated that TLYXG could improve DCM through inflammatory mediator regulation of TRP channels, TGF-beta signaling pathway, and MAPK signaling pathway. ELISA results showed that TLYXG could ameliorate metabolic levels, inflammation, and oxidative stress in diabetic mice. Echocardiography suggested that TLYXG improved cardiac systolic and diastolic dysfunction in diabetic mice. Histological analysis revealed that TLYXG alleviated myocardial fibrosis in diabetes mice. Additionally, molecular docking analysis indicated strong binding activity between the main active ingredients of TLYXG and TRPC6 of the TRP family. At the molecular level, TLYXG reduced the mRNA and protein expression levels of TRPC6 and TGF-β1 and inhibited the mRNA and phosphorylation levels of Smad3 and p38 MAPK. Furthermore, TLYXG inhibited CFs migration and invasion, and reduced the expression levels of the CFs transdifferentiation markers COL-I and α-SMA. CONCLUSION TLYXG inhibited the proliferation, migration, invasion and transdifferentiation of CFs by suppressing TGF-β1/Smad3/p38 MAPK signaling through down-regulation of TRPC6, thereby ameliorating myocardial fibrosis in diabetes mice.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengqun Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
2
|
Jin L, Peng H, Wang Y, Chu C, Zhang X, Qian C, Zhan B, Zhu L, Yang D, Zhang L, Zhao Z. Mechanistic insights into the anti-oxidative and anti-inflammatory functions of covalent-reactive cinnamyl compounds within Cinnamomum cassia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156261. [PMID: 39740379 DOI: 10.1016/j.phymed.2024.156261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Cinnamomum cassia Presl (Lauraceae) is widely used as a medicinal plant in the folk medicine and pharmaceutic industry, for its promising anti-inflammatory, anti-oxidative, and anti-bacterial function. However, the major bioactive components were still in debate, and their underlying molecular mechanism was not yet fully understood. PURPOSE This study aimed to identify the bioactive ingredients of C. cassia and investigate the molecular mechanism using in vitro and in silico methods. METHODS UPLC-QTOF/MS/MS analysis was used to characterize the chemical constituents of alcoholic extract from C. cassia. Reduced glutathione was employed to deplete covalent active cinnamyl compounds. Subsequently, the anti-inflammatory and antioxidant effects of covalent reactive and non-covalent reactive ingredients from C. cassia extract were compared. Their molecular mechanisms were investigated using untargeted metabolomics, in vitro assays, surface plasmon resonance (SPR), and molecular modeling. RESULTS Chemical analysis and in vitro assays confirmed the covalent reactive cinnamyl compounds, such as cinnamaldehyde and 2-methoxycinnamaldehyde, exhibited anti-inflammatory and anti-oxidative activity on LPS-stimulated macrophages. Untargeted metabolomics revealed that cinnamaldehyde, one of the covalent reactive cinnamyl compounds, primarily affected amino acid metabolism, and glucose metabolism, promoted glutathione synthesis within LPS-stimulated macrophages, and affected the metabolic profile of M1 macrophages. Consistent with these findings, cinnamaldehyde significantly increased glutathione synthesis and induced glutathione efflux from murine macrophages. In contrast to the literature data, we observed that cinnamaldehyde did not cause GSH depletion, nor elevate the expression of glutamate-cysteine ligase (GCL) in proinflammatory macrophages at low concentrations. The SPR experiment and molecular modeling demonstrated that GCLC was the potential target of cinnamaldehyde. CONCLUSIONS Our study not only demonstrated the reactive cinnamyl species as the principal antioxidative component of C. cassia but also unveiled a novel molecular mechanism whereby covalent reactive compounds exert their antioxidative effects through covalent modification of GCLC at its active center.
Collapse
Affiliation(s)
- Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, PR China
| | - Huayong Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yingchao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chenliang Chu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, PR China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, PR China
| | - Bingjinfeng Zhan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Longping Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Lixia Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, PR China.
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Wu Q, Yao J, Xiao M, Zhang X, Zhang M, Xi X. Targeting Nrf2 signaling pathway: new therapeutic strategy for cardiovascular diseases. J Drug Target 2024; 32:874-883. [PMID: 38753446 DOI: 10.1080/1061186x.2024.2356736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Qi Wu
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Jiangting Yao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengyun Xiao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Xiawei Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinting Xi
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Liao G, Yan Q, Zhang M, Zhang X, Yang J, Huang H, Liu X, Jiang Y, Gong J, Zhan S, Li D, Huang X. Integrative analysis of network pharmacology and proteomics reveal the protective effect of Xiaoqinglong Decotion on neutrophilic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118102. [PMID: 38561057 DOI: 10.1016/j.jep.2024.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.
Collapse
Affiliation(s)
- Gang Liao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Qian Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Miaofen Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xinxin Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Jing Gong
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Detang Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Tian X, Wei J, Zhuang Y, Lin X, Liu L, Xia J, Huai W, Xiong Y, Chen Y. Effectiveness and safety of Chinese herbal footbaths as an adjuvant therapy for dysmenorrhea: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1397359. [PMID: 39161905 PMCID: PMC11331266 DOI: 10.3389/fphar.2024.1397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Objectives To evaluate the effectiveness and safety of Chinese herbal footbaths (CHF) as an adjunctive therapy in managing dysmenorrhea. Methods Ten electronic databases were searched to identify eligible randomized clinical trials (RCTs) from inception until June 2023. Outcome measurements encompassed the total effective rate, visual analog scale (VAS) score of pain intensity, Cox menstrual symptom scale (CMSS) score, symptom score, Traditional Chinese Medicine (TCM) syndrome scale, and any reported adverse events. The methodological quality of the included studies was assessed with the Cochrane collaboration tool. Review Manager 5.3 software was employed for quantitative synthesis, and funnel plots were utilized to evaluate potential reporting bias. Results Eighteen RCTs with 1,484 dysmenorrhea patients were included. The aggregated results suggested that the adjunctive CHF could significantly ameliorate dysmenorrhea, as evident from the improved total effective rate [risk ratio (RR) 1.18, 95% confidence interval (CI): 1.12 to 1.23, P < 0.00001], VAS (MD 0.88, 95% CI: 0.68 to 1.09, P < 0.00001), CMSS (MD 3.61, 95% CI: 2.73 to 4.49, P < 0.00001), symptom score (SMD 1.09, 95% CI: 0.64 to 1.53, P < 0.00001), and TCM syndrome scale (MD 3.76, 95% CI: 2.53 to 4.99, P < 0.0001). In addition, CHF presented fewer adverse events with a better long-term effect (RR 1.34, 95% CI: 1.11 to 1.63, P < 0.01) and diminished recurrence rate (RR 0.19, 95% CI: 0.09 to 0.39, P < 0.0001). Conclusion Current evidence implies that CHF may be an effective and safe adjunctive therapy for patients with dysmenorrhea. However, the methodological quality of the studies included was undesirable, necessitating further verification with more well-designed and high-quality multicenter RCTs. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=188256, identifier registration number.
Collapse
Affiliation(s)
- Xiaoping Tian
- CDUTCM-KEELE Health and Medical Sciences Institute, School of Basic Medical Sciences, School of Acupuncture, Moxibustion, and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Wei
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yijia Zhuang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaoding Lin
- CDUTCM-KEELE Health and Medical Sciences Institute, School of Basic Medical Sciences, School of Acupuncture, Moxibustion, and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liu Liu
- CDUTCM-KEELE Health and Medical Sciences Institute, School of Basic Medical Sciences, School of Acupuncture, Moxibustion, and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xia
- CDUTCM-KEELE Health and Medical Sciences Institute, School of Basic Medical Sciences, School of Acupuncture, Moxibustion, and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenying Huai
- CDUTCM-KEELE Health and Medical Sciences Institute, School of Basic Medical Sciences, School of Acupuncture, Moxibustion, and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xiong
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yunhui Chen
- CDUTCM-KEELE Health and Medical Sciences Institute, School of Basic Medical Sciences, School of Acupuncture, Moxibustion, and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Peng H, Chu C, Jin L, Zhang J, Yang Z, Zhu L, Yang D, Zhao Z. Study on Oleum cinnamomi Inhibiting Cutibacterium acnes and Its Covalent Inhibition Mechanism. Molecules 2024; 29:3165. [PMID: 38999117 PMCID: PMC11243273 DOI: 10.3390/molecules29133165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Oleum cinnamomi (OCM) is a volatile component of the Cinnamomum cassia Presl in the Lauraceae family, which displays broad-spectrum antibacterial properties. It has been found that OCM has a significant inhibitory effect against Cutibacterium acnes (C. acnes), but the precise target and molecular mechanism are still not fully understood. In this study, the antibacterial activity of OCM against C. acnes and its potential effect on cell membranes were elucidated. Metabolomics methods were used to reveal metabolic pathways, and proteomics was used to explore the targets of OCM inhibiting C. acnes. The yield of the OCM was 3.3% (w/w). A total of 19 compounds were identified, representing 96.213% of the total OCM composition, with the major constituents being phenylpropanoids (36.84%), sesquiterpenoids (26.32%), and monoterpenoids (15.79%). The main component identified was trans-cinnamaldehyde (85.308%). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of OCM on C. acnes were 60 µg/mL and 180 µg/mL, respectively. The modified proteomics results indicate that cinnamaldehyde was the main bioactive ingredient within OCM, which covalently modifies the ABC transporter adenosine triphosphate (ATP)-binding protein and nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase, hindering the amino acid transport process, and disrupting the balance between NADH and nicotinamide adenine dinucleoside phosphorus (NAD+), thereby hindering energy metabolism. We have reported for the first time that OCM exerts an antibacterial effect by covalent binding of cinnamaldehyde to target proteins, providing potential and interesting targets to explore new control strategies for gram-positive anaerobic bacteria.
Collapse
Affiliation(s)
- Huayong Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
- School of Pharmaceutical Sciences, Jishou University, Jishou 416000, China
| | - Chenliang Chu
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526060, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Jianing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Zilei Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Longping Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| |
Collapse
|
7
|
Wei P, Huang S, Yang J, Zhao M, Chen Q, Deng X, Chen J, Li Y. Identification and characterization of chemical constituents in Mahuang Guizhi Decoction and their metabolites in rat plasma and brain by UPLC-Q-TOF/MS. CHINESE HERBAL MEDICINES 2024; 16:466-480. [PMID: 39072205 PMCID: PMC11283210 DOI: 10.1016/j.chmed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Mahuang Guizhi Decoction (MGD), an essential herbal pair in traditional Chinese medicine, is able to release cold, fever and asthma, mainly containing alkaloids, flavonoids, phenylpropanoids and amino acids. However, the absorption and distribution of these four category compounds in vivo still remained unclearly. Methods In our research, we utilized UPLC-Q-TOF-MS technique to identify the constituents within MGD, as well as the prototypes of MGD and their metabolites absorbed in plasma and brain. We further profiled the drug-time curve of prototypes and metabolites of MGD both in plasma and brain. Results Our results showed that 105 constituents were characterized in MGD. Thirty of them could be absorbed into blood, and ten of them could be distributed into brain. We also discovered eight new bio-transformed metabolites in blood, and a half of which could pass through the blood-brain barrier. In addition, all components detected in vivo could be absorbed and distributed immediately. Conclusion These findings provide an approachable method to analyze the potential bio-active compounds in MGD and their in vivo behaviors, which could promote the efficacious material basis study of MGD and the security of clinical utilization.
Collapse
Affiliation(s)
- Ping Wei
- Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Juan Yang
- Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Mo Zhao
- Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Qiugu Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xiaoyu Deng
- Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yisheng Li
- Shenzhen Longgang Otorhinolaryngology Hospital, Shenzhen 518100, China
| |
Collapse
|
8
|
Zhang WJ, Chen RQ, Tang X, Li PB, Wang J, Wu HK, Xu N, Zou MF, Luo SR, Ouyang ZQ, Chen ZK, Liao XX, Wu H. Naoxintong capsule for treating cardiovascular and cerebrovascular diseases: from bench to bedside. Front Pharmacol 2024; 15:1402763. [PMID: 38994201 PMCID: PMC11236728 DOI: 10.3389/fphar.2024.1402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Rui-qi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Tang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery, Foshan Sanshui District People’s Hospital, Foshan, Guangdong, China
| | - Hai-ke Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ning Xu
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ming-fei Zou
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Sen-rong Luo
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-qi Ouyang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-kai Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu-xing Liao
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Yan J, Zhang C, Wang Y, Yan X, Jin L. Efficacy and safety of Shen Gui capsules for chronic heart failure: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1347828. [PMID: 38659585 PMCID: PMC11039789 DOI: 10.3389/fphar.2024.1347828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Although Shen Gui capsules (SGCP) are widely used as an adjuvant treatment for chronic heart failure (CHF), their clinical efficacy and safety remain controversial. Purpose To assess the efficacy and safety of SGCP in the treatment of CHF through a systematic review and meta-analysis, to provide high-quality evidence for evidence-based medicine. Methods Seven databases were searched for randomized controlled trials (RCTs) assessing SGCP for CHF, from inception to 9 January 2023. RCT quality of evidence was evaluated using the Cochrane Handbook for the Evaluation of Intervention Systems to assess risk of bias and Grading of Recommendations Assessment, Development, and Evaluation. A meta-analysis with subgroup and sensitivity analyses was performed using Review Manager 5.4 and Stata 12. Results Nine RCTs representing 888 patients with CHF were included in the review. Meta-analysis revealed that SGCP combined with conventional heart failure therapy is more advantageous for improving left ventricular ejection fraction [LVEF; mean difference (MD) = 5.26, 95% confidence interval (CI) (3.78, 6.74), p < 0.0000] and increasing effective rate [relative risk (RR) = 1.21, 95%CI (1.14, 1.29), p < 0.001] compared with conventional therapy alone. The experimental treatment also reduced brain natriuretic peptide [MD = -100.15, 95%CI (-157.83, -42.47), p = 0.0007], left ventricular end-diastolic diameter [MD = -1.93, 95%CI (-3.22, -0.64), p = 0.003], and hypersensitive C-reactive protein [MD = -2.70, 95%CI (-3.12,-2.28), p < 0.001] compared with the control group. However, there was not a statistically significant difference in tumor necrosis factor-α [MD = -14.16, 95%CI (-34.04, 5.73), p = 0.16] or left ventricular end-systolic diameter [MD = -1.56, 95%CI (-3.13, 0.01), p = 0.05]. Nor was there a statistically significant between-groups difference in incidence of adverse events (p > 0.05). Conclusion SGCP combined with conventional heart failure therapy can improve LVEF and increase the effective rate to safely treat patients with CHF. However, further high-quality studies are needed to confirm these findings, due to the overall low quality of evidence in this literature. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/logout.php, PROSPERO [CRD42023390409].
Collapse
Affiliation(s)
- Jiaqi Yan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaorong Zhang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanping Wang
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Cardiovascular Department, The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yan
- Medical Examination Center, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Jin
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Cardiovascular Department, The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Kim MH, Ahn S, Hur N, Oh SY, Son CG. The additive effect of herbal medicines on lifestyle modification in the treatment of non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1362391. [PMID: 38464716 PMCID: PMC10920213 DOI: 10.3389/fphar.2024.1362391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) is difficult to manage because of its complex pathophysiological mechanism. There is still no effective treatment other than lifestyle modification (LM) such as dietary modifications, regular physical activity, and gradual weight loss. Herbal medicines from traditional Chinese Medicine and Korean Medicine have been shown to be effective in the treatment of NAFLD based on many randomized controlled trials. This systematic review and meta-analysis aims to evaluate the additive effects of herbal medicines on LM in the treatment of NAFLD. Methods: Two databases (PubMed and Cochrane library) were searched using keywords related to NAFLD and herbal medicines. Then the randomized controlled trials (RCTs) evaluating the therapeutic effects of herbal medicines combined with LM were selected. The pooled results were analyzed as mean difference (MD) with 95% confidence interval (CI) for continuous data, and risk ratio (RR) with 95% CI for dichotomous data. Results and Discussion: Eight RCTs with a total of 603 participants were included for this review study. Participants were administered with multi-herbal formulas (Yiqi Sanju Formula, Tiaogan Lipi Recipe, and Lingguizhugan Decoction) or single-herbal extracts (Glycyrrhiza glabra L., Magnoliae offcinalis, Trigonella Foenum-graecum L. semen, Portulaca oleracea L., and Rhus Coriaria L. fructus) along with LM for 12 weeks. The meta-analysis showed a significant improvement in ultrasoundbased liver steatosis measured by odds ratio (OR) in the herbal medicine group than those with LM alone (OR = 7.9, 95% CI 0.7 to 95.2, p < 0.1). In addition, herbal medicines decreased the levels of aspartate transferase (MD -7.5, 95% CI -13.4 to -1.7, p = 0.01) and total cholesterol (MD -16.0, 95% CI -32.7 to 0.7, p = 0.06) more than LM alone. The meta-analysis partially showed clinical evidence supporting the additive benefits of herbal medicines for NAFLD in combination with LM. Whereas, it is necessary to provide a solid basis through higher-quality studies using a specific herbal medicine.
Collapse
Affiliation(s)
- Myung-Ho Kim
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Subin Ahn
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Nayeon Hur
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Seung-Yun Oh
- Department of Sasang Constitutional Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Jia W, He X, Jin W, Gu J, Yu S, He J, Yi Z, Cai B, Gao H, Yang L. Ramulus Cinnamomi essential oil exerts an anti-inflammatory effect on RAW264.7 cells through N-acylethanolamine acid amidase inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116747. [PMID: 37311500 DOI: 10.1016/j.jep.2023.116747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 μg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 μg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.
Collapse
Affiliation(s)
- Wei Jia
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiwen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wenhui Jin
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310006, China
| | - Siyu Yu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zhiwei Yi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Bing Cai
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
12
|
Li L, Wang N, Fan X, He N, Zhang T. A preparation technology of volatile components in Linggui Zhugan decoction based on the transfer of cinnamaldehyde and its anti-gastric ulcer effect. Saudi Pharm J 2023; 31:101833. [PMID: 38028222 PMCID: PMC10651668 DOI: 10.1016/j.jsps.2023.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aims to preserve the volatile components of Linggui Zhugan (LGZG) decoction, offering an experimental foundation for subsequent preparations efforts. Methods Two modern sample preparation processes were compared with the traditional method approach using HPLC fingerprints. After identifying the main volatile components in LGZG aqueous decoction, the inclusion method of inclusion compounds (IC-LGZG) was established and optimized at laboratory, pilot and production scales. Characterization, stability testing of IC-LGZG, and experiments on gastric ulcer rats were conducted to validate the transferability of chemical composition and pharmaceutical efficacy. Results The study focused on preserving the volatile components in LGZG modern preparations. HPLC analysis revealed cinnamaldehyde (CA) as the main volatile component in LGZG decoction. The optimized IC-LGZG preparation involved heating aromatic water to 40 °C, adding 20 g/L of β-Cyclodextrin (β-CD), keeping warm and stirring at 300 r for 30 min. This process exhibited good repeatability across different verification tests at varying scales. IC-LGZG obtained effectively transferred CA molecules into the β-CD molecules via encapsulation, remaining stable when stored in sealed and dark conditions. Finally, CA, IC-LGZG and M-LGZG (a mixture of IC-LGZG and water-soluble extract powder) effectively prevented the formation of gastric ulcer by mitigating reductions in IL-10, SOD and the increase of TNF-α, NO, MDA in serum. Conclusion The IC-LGZG prepared using this process successfully transfers volatile components, both chemically and pharmacologically, making it suitable for modern preparations of LGZG.
Collapse
Affiliation(s)
- Ling Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Wei W, Wu S, Zhou C, Chen T, Zhu J, Feng S, Zhan X, Liu C. Network pharmacology combined with molecular docking and experimental validation to explore the potential mechanism of Cinnamomi ramulus against ankylosing spondylitis. Ann Med 2023; 55:2287193. [PMID: 38019769 PMCID: PMC10836281 DOI: 10.1080/07853890.2023.2287193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Cinnamomi ramulus (C. ramulus) is frequently employed in the treatment of ankylosing spondylitis (AS). However, the primary constituents, drug targets, and mechanisms of action remain unidentified. METHODS In this study, various public databases and online tools were employed to gather information on the compounds of C. ramulus, drug targets, and disease targets associated with ankylosing spondylitis. The intersection of drug targets and disease targets was then determined to identify the common targets, which were subsequently used to construct a protein-protein interaction (PPI) network using the STRING database. Network analysis and the analysis of hub genes and major compounds were conducted using Cytoscape software. Furthermore, the Metascape platform was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Molecular docking studies and immunohistochemical experiments were performed to validate the core targets. RESULTS The network analysis identified 2-Methoxycinnamaldehyde, cinnamaldehyde, and 2-Hydroxycinnamaldehyde as the major effective compounds present in C. ramulus. The PPI network analysis revealed PTGS2, MMP9, and TLR4 as the most highly correlated targets. GO and KEGG analyses indicated that C. ramulus exerts its therapeutic effects in ankylosing spondylitis through various biological processes, including the response to hormones and peptides, oxidative stress response, and inflammatory response. The main signaling pathways involved were IL-17, TNF, NF-kappa B, and Toll-like receptor pathways. Molecular docking analysis confirmed the strong affinity between the key compounds and the core targets. Additionally, immunohistochemical analysis demonstrated an up-regulation of PTGS2, MMP9, and TLR4 levels in ankylosing spondylitis. CONCLUSIONS This study provides insights into the effective compounds, core targets, and potential mechanisms of action of C. ramulus in the treatment of ankylosing spondylitis. These findings establish a solid groundwork for future fundamental research in this field.
Collapse
Affiliation(s)
- Wendi Wei
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sitan Feng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Song Y, Jung YS, Park S, Park HS, Lee SJ, Maeng S, Kim H, Kim DO, Park KW, Kang H. Anti-Inflammatory Effects and Macrophage Activation Induced by Bioavailable Cinnamon Polyphenols in Mice. Mol Nutr Food Res 2023; 67:e2200768. [PMID: 37658489 DOI: 10.1002/mnfr.202200768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/02/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sunghyun Park
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Se Jung Lee
- Department of Genetic Engineering, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| |
Collapse
|
15
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Zhang N, Zhang D, Zhang Q, Zhang R, Wang Y. Mechanism of Danggui Sini underlying the treatment of peripheral nerve injury based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33528. [PMID: 37171334 PMCID: PMC10174355 DOI: 10.1097/md.0000000000033528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Danggui Sini is a traditional Chinese medicine prescription for treating peripheral nerve injury (PNI). We studied the mechanisms of this decoction through network pharmacology analysis and molecular docking. Using R language and Perl software, the active components and predicted targets of Danggui Sini, as well as the related gene targets of PNI, were mined through TCMSP, GeneCards, OMIM, TTD, and DrugBank. The network diagram of active components and intersection targets was constructed using Cytoscape software and the STRING database. The CytoNCA plug-in was used to screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. AutoDock was used to analyze the molecular docking of key targets and core compounds of diseases. The drug component disease target regulatory network showed that the key components included quercetin, kaempferol, naringenin, and licochalcone A, which play key roles in the whole network and may be the primary compounds associated with the action of Danggui Sini against PNI. PPI network topology analysis showed high degree values for RELA, JUN, MAPK1, RB1, and FOS. Enrichment analysis showed that the core targets of Danggui Sini participated in pathways associated with neurogenesis-multiple diseases. Molecular docking showed that the active ingredients in Danggui Sini had a good binding ability with key targets. We conclude that many active components of Danggui Sini play therapeutic roles in PNI treatment by regulating RELA, JUN, MAPK1, RB1, and FOS, and multiple other targets in inflammation, immunity, and lipid metabolism.
Collapse
Affiliation(s)
- Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Port Hospital, Dalian, China
| | - Dandan Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Women and Children's MedicalGroup, Dalian, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruisu Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Jo HG, Baek E, Lee D. Comparative Efficacy of East Asian Herbal Formulae Containing Astragali Radix-Cinnamomi Ramulus Herb-Pair against Diabetic Peripheral Neuropathy and Mechanism Prediction: A Bayesian Network Meta-Analysis Integrated with Network Pharmacology. Pharmaceutics 2023; 15:pharmaceutics15051361. [PMID: 37242603 DOI: 10.3390/pharmaceutics15051361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The Astragali Radix-Cinnamomi Ramulus herb-pair (ACP) has been widely used in the treatment of diabetic peripheral neuropathy (DPN) as part of East Asian herbal medicine (EAHM). Eligible randomized controlled trials (RCTs) were identified by searching 10 databases. The outcomes investigated were response rate, sensory nerve conduction velocity (SNCV), and motor nerve conduction velocity (MNCV) in four regions of the body. The compounds in the ACP and their targets of action, disease targets, common targets, and other relevant information were filtered using network pharmacology. Forty-eight RCTs, with 4308 participants, and 16 different interventions were identified. Significant differences were observed in the response rate, MNCV, and SNCV, as all EAHM interventions were superior to conventional medicine or lifestyle modification. The EAHM formula containing the ACP ranked highest in more than half of the assessed outcomes. Furthermore, major compounds, such as quercetin, kaempferol, isorhamnetin, formononetin, and beta-sitosterol, were found to suppress the symptoms of DPN. The results of this study suggest that EAHM may increase therapeutic efficacy in DPN management, and EAHM formulations containing the ACP may be more suitable for improving treatment response rates to NCV and DPN therapy.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam 13549, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
18
|
Li J, Huang HY, Lin YCD, Zuo H, Tang Y, Huang HD. Cinnamomi ramulus inhibits cancer cells growth by inducing G2/M arrest. Front Pharmacol 2023; 14:1121799. [PMID: 37007025 PMCID: PMC10063822 DOI: 10.3389/fphar.2023.1121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Cinnamomi ramulus (CR) is one of the most widely used traditional Chinese medicine (TCM) with anti-cancer effects. Analyzing transcriptomic responses of different human cell lines to TCM treatment is a promising approach to understand the unbiased mechanism of TCM. Methods: This study treated ten cancer cell lines with different CR concentrations, followed by mRNA sequencing. Differential expression (DE) analysis and gene set enrichment analysis (GSEA) were utilized to analyze transcriptomic data. Finally, the in silico screening results were verified by in vitro experiments. Results: Both DE and GSEA analysis suggested the Cell cycle pathway was the most perturbated pathway by CR across these cell lines. By analyzing the clinical significance and prognosis of G2/M related genes (PLK1, CDK1, CCNB1, and CCNB2) in various cancer tissues, we found that they were up-regulated in most cancer types, and their down-regulation showed better overall survival rates in cancer patients. Finally, in vitro experiments validation on A549, Hep G2, and HeLa cells suggested that CR can inhibit cell growth by suppressing the PLK1/CDK1/ Cyclin B axis. Discussion: This is the first study to apply transcriptomic analysis to investigate the cancer cell growth inhibition of CR on various human cancer cell lines. The core effect of CR on ten cancer cell lines is to induce G2/M arrest by inhibiting the PLK1/CDK1/Cyclin B axis.
Collapse
Affiliation(s)
- Jing Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yun Tang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Extraction of bioactive compounds from cinnamon residues with deep eutectic solvents and its molecular mechanism. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
20
|
Wang P, Chi J, Guo H, Wang SX, Wang J, Xu EP, Dai LP, Wang ZM. Identification of Differential Compositions of Aqueous Extracts of Cinnamomi Ramulus and Cinnamomi Cortex. Molecules 2023; 28:molecules28052015. [PMID: 36903261 PMCID: PMC10004064 DOI: 10.3390/molecules28052015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Cinnamomi ramulus (CR) and Cinnamomi cortex (CC), both sourced from Cinnamomum cassia Presl, are commonly used Chinese medicines in the Chinese Pharmacopeia. However, while CR functions to dissipate cold and to resolve external problems of the body, CC functions to warm the internal organs. To clarify the material basis of these different functions and clinical effects, a simple and reliable UPLC-Orbitrap-Exploris-120-MS/MS method combined with multivariate statistical analyses was established in this study with the aim of exploring the difference in chemical compositions of aqueous extracts of CR and CC. As the results indicated, a total of 58 compounds was identified, including nine flavonoids, 23 phenylpropanoids and phenolic acids, two coumarins, four lignans, four terpenoids, 11 organic acids and five other components. Of these compounds, 26 significant differential compounds were identified statistically including six unique components in CR and four unique components in CC. Additionally, a robust HPLC method combined with hierarchical clustering analysis (HCA) was developed to simultaneously determine the concentrations and differentiating capacities of five major active ingredients in CR and CC: coumarin, cinnamyl alcohol, cinnamic acid, 2-methoxycinnamic acid and cinnamaldehyde. The HCA results showed that these five components could be used as markers for successfully distinguishing CR and CC. Finally, molecular docking analyses were conducted to obtain the affinities between each of the abovementioned 26 differential components, focusing on targets involved in diabetes peripheral neuropathy (DPN). The results indicated that the special and high-concentration components in CR showed high docking scores of affinities with targets such as HbA1c and proteins in the AMPK-PGC1-SIRT3 signaling pathway, suggesting that CR has greater potential than CC for treating DPN.
Collapse
Affiliation(s)
- Pei Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jun Chi
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Guo
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shun-Xiang Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Er-Ping Xu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Li-Ping Dai
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (L.-P.D.); (Z.-M.W.); Tel.: +86-187-0365-1652 (L.-P.D.)
| | - Zhi-Min Wang
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (L.-P.D.); (Z.-M.W.); Tel.: +86-187-0365-1652 (L.-P.D.)
| |
Collapse
|
21
|
Chang K, Zeng N, Ding Y, Zhao X, Gao C, Li Y, Wang H, Liu X, Niu Y, Sun Y, Li T, Shi Y, Wu C, Li Z. Cinnamaldehyde causes developmental neurotoxicity in zebrafish via the oxidative stress pathway that is rescued by astaxanthin. Food Funct 2022; 13:13028-13039. [PMID: 36449017 DOI: 10.1039/d2fo02309a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Toxicology studies provide a reliable dose range for the use of compounds. Zebrafish show unique advantages in toxicology research. Cinnamaldehyde (Cin) is one of the main active compounds isolated from Cinnamon trees and other species of the genus Cinnamomum. In this study, we investigated the developmental neurotoxicity of cinnamaldehyde in zebrafish and preliminarily explored its underlying mechanism. Cinnamaldehyde causes developmental neurotoxicity in zebrafish, as evidenced by the damage to ventricular structures, eye malformations, shortened body length, trunk curvature, decreased neuronal fluorescence, and pericardial oedema. Moreover, it can induce abnormal behaviour and gene expression in zebrafish. After treatment with the oxidative stress inhibitor astaxanthin, the behaviour and abnormal gene expression were reversed. All of these data demonstrated that the developmental neurotoxicity of cinnamaldehyde might be attributed to oxidative stress. In addition, this study also confirmed that zebrafish is a reliable model for toxicity studies.
Collapse
Affiliation(s)
- Kaihui Chang
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yonghe Ding
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiangzhong Zhao
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chengwen Gao
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yafang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haoxu Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoyu Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yujuan Niu
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yuanchao Sun
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Teng Li
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yongyong Shi
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chuanhong Wu
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
Gao F, Niu Y, Sun L, Li W, Xia H, Zhang Y, Geng S, Guo Z, Lin H, Du G. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115573. [PMID: 35917893 DOI: 10.1016/j.jep.2022.115573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mufangji decoction (MFJD), a famous traditional Chinese medicine formula in Synopsis of Golden Chamber (Jingui yaolue), has been utilized to treat cough and asthma and release chest pain over 2000 years in China. Chinese old herbalist doctor use MFJD to treat lung cancer and cancerous pleural fluid, but the preventive effect of MFJD on lung cancer and the underlying mechanism are indefinite. AIM OF THE STUDY The goal of this study is to explore the efficacy and mechanism of Mufangji decoction preventing lung cancer referring to the traditional use. MATERIALS AND METHODS Tumor allograft experiment and host versus tumor experiment were used to observe the direct anti-tumor effect and indirect anti-tumor immune effect, the mouse lung carcinogenic model was used to evaluate the dose-response and the preventive effect of MFJD on lung cancer. The active ingredients of MFJD were obtained by UPLC-MS/MS. The potential targets of MFJD were screened by network pharmacology and transcriptomics. The therapeutic targets and pathways of MFJD on lung cancer were obtained by protein-protein interaction, molecular docking and David database. The predicted results were verified in vitro and in vivo. RESULTS MFJD could significantly prevent tumor growth in host versus tumor experiment but could not in tumor allograft experiment, indicating an anti-tumor immune effect against lung cancer. MFJD could reduce lung nodules with a dose-response in mouse lung carcinogenic model. Myeloperoxidase (MPO) was selected as the core target due to the highest degree value in Protein-Protein interaction network and had potently binding activity to sinomenine and dehydrocostus lactone in molecular docking. In vivo, MPO-expressed neutrophils are negatively correlated with lung cancer progression and MFJD could promote the neutrophil-related immune surveillance. In vitro, sinomenine and dehydrocostus lactone could promote neutrophil phagocytosis, MPO and ROS production in a dose dependent manner. The major compounds from MFJD were identified to regulate 36 targets for lung cancer prevention by UPLC-MS/MS, network pharmacology and transcriptomics. David database exhibited that MFJD plays an important role in immunoregulation by modulating 4 immune-related biological processes and 3 immune-related pathways. CONCLUSIONS MFJD prevents lung cancer by mainly promoting MPO expression to maintain neutrophil immune surveillance, its key compounds are sinomenine and dehydrocostus lactone.
Collapse
Affiliation(s)
- Fan Gao
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Yuju Niu
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Luyao Sun
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Wenwen Li
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Haojie Xia
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Yaru Zhang
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, 451150, China.
| | - Zhenzhen Guo
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Haihong Lin
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Gangjun Du
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, 451150, China.
| |
Collapse
|
23
|
Yan Y, Zhang J, Liu H, Lin Z, Luo Q, Li Y, Ruan Y, Zhou S. Efficacy and safety of the Chinese herbal medicine Xiao-qing-long-tang for allergic rhinitis: A systematic review and meta-analysis of randomized controlled trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115169. [PMID: 35257842 DOI: 10.1016/j.jep.2022.115169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/05/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The classic Chinese herbal medicine formula Xiao-qing-long-tang (XQLT) is commonly recommended to manage allergic rhinitis (AR), but the treatment efficacy and safety of XQLT are uncertain. AIM OF THE STUDY This study aimed to evaluate the effectiveness and safety of XQLT in treating AR. MATERIALS AND METHODS Nine databases were searched from their inception to April 2021. Randomized controlled trials (RCTs) evaluating XQLT for AR were included. The methodological quality of the studies was assessed using the Cochrane risk-of-bias tool. A meta-analysis and a subgroup meta-analysis were conducted to evaluate the effectiveness of XQLT. RESULTS Twenty-four RCTs were included in this meta-analysis. XQLT was compared to both placebo and Western medicine (WM), and XQLT combined with WM was compared with WM alone. Meta-analyses were conducted for total nasal symptom scores (TNSS), four individual nasal symptom scores, quality of life (QoL), effective rate, and recurrence rate. The TNSS decreased after XQLT treatment and combination treatment (mean difference (MD): -0.79; 95% confidence interval (CI) [-1.20, -0.38], standardized mean difference (SMD): -1.42; 95% CI [-1.59, -1.24], and SMD: -1.84; 95% CI [-2.08, -1.60]). The two individual nasal symptom scores decreased after XQLT treatment and combination treatment; these nasal symptoms comprised rhinorrhea (SMD: -0.30; 95% CI [-0.58, -0.02] and SMD: -0.48; 95% CI [-0.70, -0.26]), and nasal obstruction (SMD: -0.54; 95% CI [-0.78, -0.30] and SMD: -0.54; 95% CI [-0.76, -0.32). XQLT and XQLT combined with WM achieved a better effective rate than WM (risk ratio (RR): 1.18; 95% CI [1.11, 1.25] and RR: 1.16; 95% CI [1.10, 1.23]) and a lower recurrence rate than WM (RR: 0.24; 95% CI [0.13, 0.43] and RR: 0.47; 95% CI [0.31, 0.72]). XQLT was well tolerated in patients being treated for AR. CONCLUSION Our results indicated that oral XQLT may alleviate the TNSS, rhinorrhea scores, and nasal obstruction scores of AR and is safe to use in clinical practice. However, more RCTs that follow rigorous methodologies and evaluate well-accepted outcome measures are required to evaluate the effectiveness of XQLT.
Collapse
Affiliation(s)
- Yajie Yan
- Otorhinolaryngology Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jiajun Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Haolan Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Ze Lin
- South China Agricultural University, Guangzhou, 510642, China.
| | - Qiulan Luo
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Yunying Li
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Yan Ruan
- Otorhinolaryngology Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shiqing Zhou
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Otorhinolaryngology Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
24
|
Integrated Experimental Approach, Phytochemistry, and Network Pharmacology to Explore the Potential Mechanisms of Cinnamomi Ramulus for Rheumatoid Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6060677. [PMID: 36160710 PMCID: PMC9499804 DOI: 10.1155/2022/6060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Cinnamomi Ramulus (CR) has been extensively used as a remedy for inflammatory diseases in China. This study adopted an integrative approach of experimental research, phytochemistry, and network pharmacology to investigate its alleviative effects on rheumatoid arthritis (RA) and the underlying potential mechanisms. CR extract (50, 100, and 200 mg/kg) and methotrexate (MTX) significantly ameliorated RA symptoms in the collagen-induced arthritis (CIA) rat model. They also reduced paw volume, arthritis index, proinflammatory cytokines (TNF-α, IL-17A, IL-6, and IL-1β), and oxidative damage. Sixty-three compounds were systematically identified as the basic components of CR. Fifty-five common genes obtained from compounds and GEO databases were employed to construct the protein-protein interaction (PPI) network. Among them, 20 hub genes were identified via the cytoHubba. Enrichment analysis of the common genes indicated that the TNF signaling pathway and IL-17 signaling pathway might be the potential key pathways. Moreover, molecular docking methods confirmed the high affinity between the top 10 bioactive components of CR and the top 10 targets. In addition, in vitro results showed that CR extract (0.2, 0.4, and 0.8 mg/mL) inhibited inflammation and oxidative damage in MH7A cells stimulated by lipopolysaccharide (LPS). In summary, this study adopted multiple approaches to elucidate the protective effect and potential mechanisms of CR on RA, indicating that CR might be a promising herbal candidate for further investigation of RA treatment.
Collapse
|
25
|
Lim JO, Kim YH, Lee IS, Kim WI, Lee SJ, Pak SW, Shin IS, Kim T. Cinnamomum cassia (L.) J.Presl Alleviates Allergic Responses in Asthmatic Mice via Suppression of MAPKs and MMP-9. Front Pharmacol 2022; 13:906916. [PMID: 36034804 PMCID: PMC9405665 DOI: 10.3389/fphar.2022.906916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of asthma is gradually increasing, and endangers human health. Many therapeutic agents have been developed to address this concern. Cinnamomum cassia (L.) J.Presl is a traditional herbal remedy in China, Japan, and Korea and used mainly to control common cold, cough, pneumonitis and fever in Donguibogam, a medical encyclopedia of Korea. Therefore, we investigated whether C. cassia (L.) J.Presl extract (CCE) confers protective effects on asthma model induced by ovalbumin (OVA). The animals were received intraperitoneal administration of OVA on day 1 and 14, and then subjected to OVA inhalation from day 21–23. They were orally treated CCE (30 and 100 mg/kg) from day 18–23. CCE administration decreased allergic responses, including airway hyperresponsiveness, eosinophilia, inflammatory cytokine production, and immunoglobulin E in OVA-exposed mice, along with the decline in inflammatory cell count and mucus secretion in respiratory tract. Additionally, CCE suppressed MAPK phosphorylation and MMP-9 expression in OVA-exposed mice. Overall, CCE treatment attenuated allergic responses induced by OVA exposure, which may be connected to the suppression of MAPK phosphorylation.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ik Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
- *Correspondence: In-Sik Shin, ; Taesoo Kim,
| | - Taesoo Kim
- R&D Strategy Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: In-Sik Shin, ; Taesoo Kim,
| |
Collapse
|
26
|
Anticancer activity of herbal formula Jisilhaebaekgyeji-Tang against human breast cancer cells and its mechanism. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Yi O, Lin Y, Hu M, Hu S, Su Z, Liao J, Liu B, Liu L, Cai X. Lactate metabolism in rheumatoid arthritis: Pathogenic mechanisms and therapeutic intervention with natural compounds. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154048. [PMID: 35316725 DOI: 10.1016/j.phymed.2022.154048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common chronic and systemic autoimmune disease characterized by persistent inflammation and hyperplasia of the synovial membrane, the degradation of cartilage, and the erosion of bones in diarthrodial joints. The inflamed joints of patients with RA have been recognized to be a site of hypoxic microenvironment which results in an imbalance of lactate metabolism and the accumulation of lactate. Lactate is no longer considered solely a metabolic waste product of glycolysis, but also a combustion aid in the progression of RA from the early stages of inflammation to the late stages of bone destruction. PURPOSE To review the pathogenic mechanisms of lactate metabolism in RA and investigate the potential of natural compounds for treating RA linked to the regulation of imbalance in lactate metabolism. METHODS Research advances in our understanding of lactate metabolism in the pathogenesis of RA and novel pharmacological approaches of natural compounds by targeting lactate metabolic signaling were comprehensively reviewed and deeply discussed. RESULTS Lactate produced by RA synovial fibroblasts (RASFs) acts on targeted cells such as T cells, macrophages, dendritic cells and osteoclasts, and affects their differentiation, activation and function to accelerate the development of RA. Many natural compounds show therapeutic potential for RA by regulating glycolytic rate-limiting enzymes to limit lactate production, and affecting monocarboxylate transporter and acetyl-CoA carboxylase to inhibit lactate transport and conversion. CONCLUSION Regulation of imbalance in lactate metabolism offers novel therapeutic approaches for RA, and natural compounds capable of targeting lactate metabolic signaling constitute potential candidates for development of drugs RA.
Collapse
Affiliation(s)
- Ouyang Yi
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Mingyue Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jin Liao
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 030027, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
28
|
Qin C, Wu M, Wang X, Zhang W, Qi G, Wu NY, Liu X, Lu Y, Zhang J, Chai Y. Study on the mechanism of Danshen-Guizhi drug pair in the treatment of ovarian cancer based on network pharmacology and in vitro experiment. PeerJ 2022; 10:e13148. [PMID: 35411258 PMCID: PMC8994495 DOI: 10.7717/peerj.13148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Our study aims to explore the active components and mechanisms of the Danshen-Guizhi drug pair in treating ovarian cancer by network pharmacology and in vitro experiment. The "component-target-pathway" diagram of the Danshen-Guizhi drug pair was established by network pharmacology, and the effective active components, important targets as well as potential mechanisms of the Danshen-Guizhi drug pair were analyzed. The predicted results were verified by molecular docking and in vitro experiments. The main active components of the Danshen-Guizhi drug pair in the treatment of ovarian cancer are salviolone, luteolin, β-sitosterol and tanshinone IIA. The main core target is PTGS2. The pathways involved mainly include the cancer pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway. The molecular docking results showed that salviolone and tanshinone IIA had good binding ability to the target. The expression of PTGS2 mRNA and PGE2 in ovarian cells were significantly inhibited by salviolone. The mechanism of the Danshen-Guizhi drug pair in the treatment of ovarian cancer may be regulating cell proliferation, apoptosis and tumor immunity. This provides a theoretical basis for the clinical development and application of the Danshen-Guizhi drug pair.
Collapse
Affiliation(s)
- Chongzhen Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Menglin Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinru Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenda Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangzhao Qi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na-Yi Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoting Liu
- The Second People’s Hospital of Hunan Province, Changsha, China
| | - Yaoyao Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingmin Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuna Chai
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2022; 34:43-63. [PMID: 35024180 PMCID: PMC8655139 DOI: 10.1016/j.jare.2021.06.023] [Citation(s) in RCA: 376] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury. Objectives This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs. Methods A literature search was carried out regarding our topic with the keywords of “atherosclerosis” or “Nrf2/HO-1” or “vascular endothelial cells” or “oxidative stress” or “Herbal medicine” or “natural products” or “natural extracts” or “natural compounds” or “traditional Chinese medicines” based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed. Results These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies. Conclusion Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.
Collapse
Key Words
- 7-HMR, (−)-7(S)-hydroxymatairesinol
- ADH, andrographolide
- AGE, advanced glycation end product
- AMP, Athyrium Multidentatum
- APV, aqueous extracts of Prunella Vulgaris
- ARE, antioxidant reaction elements
- AS, atherosclerosis
- ASD-IV, Astragaloside IV
- ASP, Angelica sinensis polysaccharide
- ASTP, Astragalus polysacharin
- Akt, protein kinase B
- Ang, Angiotensin
- ApoE, apolipoprotein E
- Atherosclerosis
- BAECs, bovine artery endothelial cells
- BBR, Berberine
- BITC, benzyl isothiocyanate
- C3G, Cyanidin-3-O-glucoside
- CINM, Cinnamaldehyde
- CNC, Cap'n'collar
- CREB, cAMP-response element binding protein
- CVDs, cardiovascular diseases
- CVRF, cardiovascular risk factors
- DMY, Dihydromyricetin
- ECC, (−)-Epicatechin
- ECs, endothelial cells
- EGCG, epigallocatechin-3-O-gallate
- ERK, extracellular regulated protein kinases
- ET, endothelin
- EXS, Xanthoceras sorbifolia
- FFA, Fatty Acids
- GPx, Glutathione peroxidase
- GSD Rg1, Ginsenoside Rg1
- GTE, Ganoderma tsugae extracts
- Gau A, Glaucocalyxin A
- HAMS, human anthocyanin medicated serum
- HG, high glucose
- HIF-1, Hypoxia-inducible factor 1
- HO-1, heme oxygenase
- HUVECs, human umbilical vein endothelial cells
- HXC, Huoxue capsule
- Hcy, Homocysteine
- Herbal medicine
- ICAM, intercellular adhesion molecule
- IL, interleukin
- KGRE, extracts of KGR
- KRG, Korean red ginseng
- Keap1, kelch-like epichlorohydrin-related proteins
- LWDH, Liuwei-Dihuang pill
- MA, maslinic acid
- MAPKK, mitogen-activated protein kinase kinase
- MAPKs, mitogen-activated protein kinases
- MCGA3, 3-O-caffeoyl-1-methylquinic acid
- MCP-1, monocyte chemotactic protein 1
- MMPs, matrix metalloproteinases
- Molecular mechanism
- NAF, Nepeta Angustifolia
- NF-κB, nuclear factor kappa-B
- NG, naringenin
- NQO1, NAD(P)H: quinone oxidoreductase
- Nrf2, nuclear factor erythroid-2 related factor 2
- Nrf2/HO-1 signaling
- OA, Oleanolic acid
- OMT, Oxymatrine
- OX-LDL, oxidized low density lipoprotein
- Oxidative stress
- PA, Palmitate
- PAA, Pachymic acid
- PAI-1, plasminogen activator Inhibitor-1
- PEITC, phenethyl isocyanate
- PI3K, phosphatidylinositol 3 kinase
- PKC, protein kinase C
- PT, Pterostilbene
- RBPC, phenolic extracts derived from rice bran
- ROS, reactive oxygen species
- SAL, Salidroside
- SFN, sulforaphane
- SMT, Samul-Tang Tang
- SOD, superoxide dismutase
- Sal B, salvianolic acid B
- SchB, Schisandrin B
- TCM, traditional Chinese medicine
- TNF, tumor necrosis factor
- TXA2, Thromboxane A2
- TrxR1, thioredoxin reductase-1
- US, uraemic serum
- VA, Vanillic acid
- VCAM, vascular cell adhesion molecule
- VEC, vascular endothelial cells
- VEI, vascular endothelial injury
- Vascular endothelial cells
- XAG, xanthoangelol
- XXT, Xueshuan Xinmaining Tablet
- Z-Lig, Z-ligustilide
- eNOS, endothelial NO synthase
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| |
Collapse
|
30
|
The System Research of the Molecular Mechanism of Quyushengxin Capsule in the Treatment of Osteonecrosis of the Femoral Head. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2968075. [PMID: 35069756 PMCID: PMC8767393 DOI: 10.1155/2022/2968075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/02/2022]
Abstract
Osteonecrosis of the femoral head (ONFH) is a chronic and irreversible disease that has a risk of eventually developing into a joint collapse and resulting in joint dysfunction. Quyushengxin capsule (QYSXC) is an effective and safe traditional Chinese medicine used in the treatment of ONFH. In this present study, an integrated approach was used to investigate the mechanism of QYSXC in the treatment of ONFH, which contained systems pharmacology, molecular docking, and chip experiment. In the systems pharmacology, target fishing, protein-protein interaction (PPI), Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, and herbs-compounds-targets-pathways (H-C-T-P) network construction were performed to study the mechanism of QYSXC in the treatment of ONFH. The results showed that 15 key compounds, 8 key targets, and 8 key signaling pathways were found for QYSXC in the treatment with ONFH. Then, molecular docking was performed to further explore the interaction between some key compounds and key targets. After that, the chip experiment was performed to verify some target factors, including ICAM-1, IL-6, IL-1α, IL-1β, IL-2, IL-4, IL-10, and TNF-α. The results of this work may provide a theoretical basis for further research on the molecular mechanism of QYSXC in the treatment of ONFH.
Collapse
|
31
|
Han R, Ren HC, Zhou S, Gu S, Gu YY, Sze DMY, Chen MH. Conventional disease-modifying anti-rheumatic drugs combined with Chinese Herbal Medicine for rheumatoid arthritis: A systematic review and meta-analysis. J Tradit Complement Med 2022; 12:437-446. [PMID: 36081815 PMCID: PMC9446108 DOI: 10.1016/j.jtcme.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid Arthritis (RA) remains a major global public health challenge. Disease-modifying anti-rheumatic drugs (DMARDs) are standard therapeutic drugs for RA. Conventional DMARDs (c-DMARDs) are a subgroup of approved synthetic DMARDs. The c-DMARDs experienced lesser response with longer disease duration or drug exposure, and unwanted adverse events (AEs). The combination treatments (CTs) of c-DMARDs and Chinese Herbal Medicines (CHMs) were often used in RA clinical trials for increasing the therapeutic effectiveness and reducing the AEs. This systematic review aimed to evaluate the efficacy and safety of the CTs for RA. Databases were searched from inception to October 2020 for identification of randomized controlled trials (RCTs) that investigated the CTs in the management of RA. Twenty-three RCTs with 2,441 participants were included. The assessments and analyses found CTs improved American College of Rheumatology (ACR) 20 (RR: 1.33, 95% CI [1.21, 1.45], 10 studies, n=1,075) and alleviated AEs (RR: -0.40, 95% CI [-0.30, -0.53], 19 studies, n=2,011) in comparison with c-DMARDs. The CTs also significantly improved RA symptoms and patient-reported outcomes; reduced disease activity score (DAS) 28, serum acute-phase reactants and RA biomarkers. The five most commonly used herbs in included studies were Angelicae Sinensis Radix, Paeoniae Radix Alba, Cinnamomi Ramulus, Glycyrrhizae Radix et Rhizoma, and Clematidis Radix et Rhizoma. Pharmacological studies indicated these CHMs could contribute to the outcomes. The integrated CHMs potentially increased the overall effectiveness of c-DMARDs and alleviated AEs in management of RA. Large sample and rigorously designed RCTs are required for future studies. An up-to-date systematic review of conventional DMARDs combined with Chinese Herbal Medicines (CHMs) for rheumatoid arthritis. Integrated CHMs increased overall effectiveness of conventional DMARDs and reduced adverse events. Five most commonly used CHMs possessed multi-pharmacological effects contributing to the outcomes.
Collapse
Affiliation(s)
- Rong Han
- Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong
| | - Hong Cheng Ren
- Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong
| | - Sitong Zhou
- Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong
| | - Sherman Gu
- Knox Chinese Healing & Myotherapy, Melbourne, VIC, Australia
| | - Yue-Yu Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510080, China
| | - Daniel Man-yuen Sze
- School of Health and Biomedical Science, RMIT University, Melbourne, Australia
- Corresponding authors.
| | - Meng-Hua Chen
- School of Health and Biomedical Science, RMIT University, Melbourne, Australia
- Aussway Chinese Medicine Centre, Melbourne, VIC, Australia
- Corresponding author. School of Health and Biomedical Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
32
|
Mou Y, Wang X, Wang T, Wang Y, Wang H, Zhao H, Chen Q, Xia L, Zhang Y. Clinical application and pharmacological mechanism of Wuling powder in the treatment of ascites: A systematic review and network pharmacological analysis. Biomed Pharmacother 2021; 146:112506. [PMID: 34883450 DOI: 10.1016/j.biopha.2021.112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/30/2023] Open
Abstract
Ascites is one of the common complications in patients with decompensated liver cirrhosis and liver cancer. Wuling powder (WLP) is a classic prescription for the treatment of water retention caused by bladder gasification. It is also widely used in the treatment of ascites. This systematic review aimed to evaluate the clinical efficacy of WLP and determine its effective chemical components based on a large number of related pieces of literature. The pharmacological effects and chemical constituents of WLP were summarized. Besides, the clinical research status of WLP in the treatment of ascites caused by liver cancer and cirrhosis was analyzed. The key targets and pathways of WLP in the treatment of ascites based on network pharmacology analysis were also discussed. Furthermore, the core components and core targets of WLP in the treatment of ascites using molecular docking were verified and the interaction sites were predicted, to provide a theoretical and scientific basis for the clinical application of WLP.
Collapse
Affiliation(s)
- Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - XueZhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
33
|
Peng L, Lei Z, Rao Z, Yang R, Zheng L, Fan Y, Luan F, Zeng N. Cardioprotective activity of ethyl acetate extract of Cinnamomi Ramulus against myocardial ischemia/reperfusion injury in rats via inhibiting NLRP3 inflammasome activation and pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153798. [PMID: 34673348 DOI: 10.1016/j.phymed.2021.153798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND NLRP3 inflammasome activation and pyroptosis play an important role in myocardial ischemia/reperfusion injury (MI/RI). Cinnamomi ramulus (CR), is an important folk medicinal plant in China, which derived from the dried twig of Cinnamomum cassia (L.) Presl, has function of "warming and tonifying heart yang", and traditionally utilized to treat the cold, blood-cold amenorrhea, phlegm, edema, arthralgia, and palpitations as well as improve blood circulation. The aqueous extract of C. ramulus was reported to show significant therapeutic potential for treating MI/RI. Whereas, there are no previous investigations in China or abroad has reported the cardioprotective effects and underlying mechanism of the ethyl acetate extract of C. ramulus (CREAE) and its bioactive substance cinnamic acid (CA) in triggering NLRP3 inflammasome activation and subsequent pyroptosis. PURPOSE The present study aimed to assess the cardioprotective function of CREAE and CA against the MI/RI in rats and involved the underlying mechanisms. METHODS The MI/RI model was established in male SD rats by occlusion of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min, respectively. The rats were intragastrically administered with CREAE (74 and 37 mg/kg) and CA (45 mg/kg) for 7 successive days before vascular ligation. The cardioprotective effects of CREAE and CA against myocardial injury of rats were detected by HE staining, TTC staining, echocardiograms, and myocardial enzymes detections. Serum levels of inflammatory factors, such as IL-6, IL-1β, and TNF-α, were analyzed by ELISA kits to evaluate the effects of CREAE and CA. The protein and gene expression levels of NLRP3 and the pyroptosis-related factors in heart tissue were conducted by western blot and RT-qPCR. RESULTS Our results showed that CREAE and CA decrease myocardial infarct size and improve cardiac function, mitigate myocardial damage, and repress inflammatory response in rats after I/R. Mechanistically, our results revealed that CREAE and CA can dramatically suppress the activation of NLRP3 inflammasome and subsequent cardiomyocyte pyroptosis in myocardial tissues that as evidenced by downregulating the protein and gene expressions of NLRP3, ASC, IL-1β, caspase-1, gasdermin D, and N-terminal GSDMD. CONCLUSIONS Our data indicated that CREAE and CA may attenuate MI/RI through suppression of NLRP3 inflammasome and subsequent pyroptosis-related signaling pathways.
Collapse
Affiliation(s)
- Lixia Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ziqin Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Lang Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yuxin Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
34
|
Xu F, Hou T, Shen A, Jin H, Xiao Y, Yu W, Li X, Wang J, Liu Y, Liang X. Mechanism deconvolution of Qing Fei Pai Du decoction for treatment of Coronavirus Disease 2019 (COVID-19) by label-free integrative pharmacology assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114488. [PMID: 34358653 PMCID: PMC8329432 DOI: 10.1016/j.jep.2021.114488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has a long history in the prevention and treatment of pandemics. The TCM formula Lung Cleansing and Detoxifying Decoction (LCDD), also known as Qing Fei Pai Du Decoction, has been demonstrated effective against Coronavirus Disease 2019 (COVID-19). AIM OF THE STUDY This work aimed to elucidate the active ingredients, targets and pathway mechanism of LCDD related to suppression of inflammatory, immunity regulation and relaxation of airway smooth muscle for the treatment of COVID-19. MATERIALS AND METHODS Mining chemical ingredients reported in LCDD, 144 compounds covering all herbs were selected and screened against inflammatory-, immunity- and respiratory-related GPCRs including GPR35, H1, CB2, B2, M3 and β2-adrenoceptor receptor using a label-free integrative pharmacology method. Further, all active compounds were detected using liquid chromatography-tandem mass spectrometry, and an herb-compound-target network based on potency and content of compounds was constructed to elucidate the multi-target and synergistic effect. RESULTS Thirteen compounds were identified as GPR35 agonists, including licochalcone B, isoliquiritigenin, etc. Licochalcone B, isoliquiritigenin and alisol A exhibited bradykinin receptor B2 antagonism activities. Atractyline and shogaol showed as a cannabinoid receptor CB2 agonist and a histamine receptor H1 antagonist, respectively. Tectorigenin and aristofone acted as muscarinic receptor M3 antagonists, while synephrine, ephedrine and pseudoephedrine were β2-adrenoceptor agonists. Pathway deconvolution assays suggested activation of GPR35 triggered PI3K, MEK, JNK pathways and EGFR transactivation, and the activation of β2-adrenoceptor mediated MEK and Ca2+. The herb-compound-target network analysis found that some compounds such as licochalcone B acted on multiple targets, and multiple components interacted with the same target such as GPR35, reflecting the synergistic mechanism of Chinese medicine. At the same time, some low-abundance compounds displayed high target activity, meaning its important role in LCDD for anti-COVID-19. CONCLUSIONS This study elucidates the active ingredients, targets and pathways of LCDD. This is useful for elucidating multitarget synergistic action for its clinical therapeutic efficacy.
Collapse
Affiliation(s)
- Fangfang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Aijin Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hongli Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yuansheng Xiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Wenyi Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xiaonong Li
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
35
|
Quantitative and fingerprint analysis of proanthocyanidins and phenylpropanoids in Cinnamomum verum bark, Cinnamomum cassia bark, and Cassia twig by UPLC combined with chemometrics. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Effect of Huanglian Decoction on the Intestinal Microbiome in Stress Ulcer (SU) Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3087270. [PMID: 34603467 PMCID: PMC8483906 DOI: 10.1155/2021/3087270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/01/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Background Stress ulcer (SU) is a serious gastrointestinal mucosal lesion under acute stress. Huanglian decoction is a famous traditional Chinese medicine prescription, which has been used to treat digestive system diseases for thousands of years. Many clinical cases have proved that Huanglian decoction has a good effect on SU. Some studies have shown that the intestinal bacteria will be changed accordingly when the gastrointestinal mucosa is damaged. However, there are few published reports on the effect of the intestinal microbiome with SU mice that were treated by Huanglian decoction. In this study, we investigated the effect of the fecal microbiome in mice with SU by the 16S rDNA sequencing technology. Methods Male KM mice were induced by cold-restraint stress except for the normal control group and then treated by Huanglian decoction (Group HD) and Esomeprazole magnesium solution (Group ES) separately for 7 days. 16S rDNA sequencing technology analysis was applied to evaluate the changes of bacterial flora in mice feces. And, histopathological methods and molecular biological detection methods were also performed. Results Huanglian decoction could help to repair the gastric mucosal injury and regulate the relative content of TNF-α and IL-1β. Moreover, Huanglian decoction could increase the relative abundance of intestinal probiotics in the intestine of mice with SU, especially in Verrucomicrobiae and Akkermansia. Conclusions Huanglian decoction might effectively promote the repair of gastrointestinal mucosal injury and regulate the number and species of intestinal bacteria to maintain the stability of gastrointestinal microecology.
Collapse
|
37
|
Oanh NC, Lam TQ, Tien ND, Hornick JL, Ton VD. Effects of medicinal plants mixture on growth performance, nutrient digestibility, blood profiles, and fecal microbiota in growing pigs. Vet World 2021; 14:1894-1900. [PMID: 34475714 PMCID: PMC8404138 DOI: 10.14202/vetworld.2021.1894-1900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim Alternative natural materials to antibiotics for improving digestive health and growth performance are needed due to strengthening regulations related to the use of antibiotic growth promoters. The study aimed to evaluate the effects of medicinal plants mixture (60% Bidens pilosa L., 15% Urena lobata L., 15% Pseuderanthemum palatiferum, 5% Ramulus cinnamomi, and 5% Star anise) as alternative growth promotors on animal health, nutrient digestibility, blood parameters, and growth performance of growing pigs. Materials and Methods The study was conducted, from April 2020 to June 2020, at a private pig production farm located in Cam Giang district Hai Duong Province, Vietnam. Forty-eight 10-week-old crossbred (♂Duroc×♀ [Landrace×Yorkshire]) pigs, average initial body weight 30.3±1.42 kg, were randomly allocated to four dietary groups, three replicate pens per experimental group, with 4 pigs/pen. For 7 weeks, the pigs were fed a basal diet supplemented with the mixture at levels of 0, 20, 40, and 60 g/kg of feed. Results Final body weight, average daily gain, average daily feed intake, and feed conversion ratio, as well as apparent total tract digestibility of dry matter, organic matter, crude protein, ether extract, and gross energy were not significantly influenced by the diets (p>0.05). Inclusion of the plant mixture decreased significantly red blood cell count, blood cholesterol, urea nitrogen, and low-density lipoprotein (LDL) concentrations (p<0.05) compared with the control diet. No diet effect was observed on fecal Escherichia coli, Salmonella spp., Clostridium spp., and total bacteria counts. Conclusion The incorporation of the plant mixture into the diet of growing pigs reduced serum cholesterol, LDL, and urea concentrations with no adverse effect on performance and nutrient digestibility.
Collapse
Affiliation(s)
- Nguyen Cong Oanh
- Vietnam National University of Agriculture, Faculty of Animal Science, Ngo Xuan Quang Street, Trauquy, Gia Lam, 100000 Hanoi, Vietnam.,University of Liège, Faculty of Veterinary Medicine, FARAH Center, Department of Veterinary Management of Animal Resources, Quartier vallée 2, Avenue de Cureghem 6, B43a, 4000 Liège, Belgium
| | - Truong Quang Lam
- Vietnam National University of Agriculture, Faculty of Veterinary Medicine, Key Laboratory for Veterinary Biotechnology, Ngo Xuan Quang Street, Trauquy, Gia Lam, 100000 Hanoi, Vietnam
| | - Nguyen Dinh Tien
- Vietnam National University of Agriculture, Faculty of Animal Science, Ngo Xuan Quang Street, Trauquy, Gia Lam, 100000 Hanoi, Vietnam
| | - Jean-Luc Hornick
- Vietnam National University of Agriculture, Faculty of Animal Science, Ngo Xuan Quang Street, Trauquy, Gia Lam, 100000 Hanoi, Vietnam.,University of Liège, Faculty of Veterinary Medicine, FARAH Center, Department of Veterinary Management of Animal Resources, Quartier vallée 2, Avenue de Cureghem 6, B43a, 4000 Liège, Belgium
| | - Vu Dinh Ton
- Vietnam National University of Agriculture, Faculty of Animal Science, Ngo Xuan Quang Street, Trauquy, Gia Lam, 100000 Hanoi, Vietnam
| |
Collapse
|
38
|
The Extracts of Angelica sinensis and Cinnamomum cassia from Oriental Medicinal Foods Regulate Inflammatory and Autophagic Pathways against Neural Injury after Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9663208. [PMID: 34257822 PMCID: PMC8257381 DOI: 10.1155/2021/9663208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKβ and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1β, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.
Collapse
|
39
|
The Therapeutic Effect of Ge-Gen Decoction on a Rat Model of Primary Dysmenorrhea: Label-Free Quantitative Proteomics and Bioinformatic Analyses. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5840967. [PMID: 33344642 PMCID: PMC7725571 DOI: 10.1155/2020/5840967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/16/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022]
Abstract
Ge-Gen decoction (GGD) is widely used for the treatment of primary dysmenorrhea (PD) in China. However, the mechanisms that underlie this effect are unclear. We investigated the protective mechanism of GGD in a rat model of PD using label-free quantitative proteomics. The model was established by the administration of estradiol benzoate and oxytocin. Thirty rats were divided into three groups (ten rats/group): a control group (normal rats), a model group (PD rats), and a treatment group (PD rats treated with GGD). The serum levels of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were measured by ELISA. Nanohigh-performance liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS) was used to identify differentially expressed proteins (DEPs), and bioinformatics was used to investigate the protein function. Proteomic data were validated by western blot analysis. Oxytocin-induced writhing responses and abnormal serum levels of PGE2 and PGF2α were reversed following the administration of GGD. A total of 379 DEPs were identified; 276 were identified between the control group and the model group, 144 were identified between the model group and the treatment group, and 41 were identified as DEPs that were common to all groups. Bioinformatics revealed that the DEPs between the control group and the model group were mainly associated with cellular component biogenesis and binding processes. The DEPs between the model group and the treatment group were mainly involved in the protein binding and metabolic process. The expression levels of HSP90AB1 and the phosphorylation levels of ERK, JNK, and P-p38 in the uteri of rats in the three groups were consistent with the proteomic findings; MAP kinases (ERK, JNK, and p38) are known to be involved in the production of inflammatory cytokines and oxytocin signaling while HSP90AB1 is known to be associated with estrogen signaling. Collectively, these data indicate that GGD may exert its protective function on PD by regulating the inflammatory response and signaling pathways associated with oxytocin and estrogen.
Collapse
|
40
|
Ma LL, Liu HM, Luo CH, He YN, Wang F, Huang HZ, Han L, Yang M, Xu RC, Zhang DK. Fever and Antipyretic Supported by Traditional Chinese Medicine: A Multi-Pathway Regulation. Front Pharmacol 2021; 12:583279. [PMID: 33828481 PMCID: PMC8020597 DOI: 10.3389/fphar.2021.583279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease, 2019 (COVID-19), has spread rapidly around the world and become a major public health problem facing the world. Traditional Chinese medicine (TCM) has been fully committed to treat COVID-19 in China. It improved the clinical symptoms of patients and reduced the mortality rate. In light of the fever was identified as one of leading clinical features of COVID-19, this paper will first analyze the material basis of fever, including pyrogenic cytokines and a variety of the mediators of fever. Then the humoral and neural pathways of fever signal transmission will be described. The scattered evidences about fever recorded in recent years are connected in series. On this basis, the understanding of fever is further deepened from the aspects of pathology and physiology. Finally, combining with the chemical composition and pharmacological action of available TCM, we analyzed the mechanisms of TCMs to play the antipyretic effect through multiple ways. So as to further provide the basis for the research of antipyretic compound preparations of TCMs and explore the potential medicines for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Le-Le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chuan-Hong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ya-Nan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fang Wang
- State key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ming Yang
- State key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
41
|
Meresman GF, Götte M, Laschke MW. Plants as source of new therapies for endometriosis: a review of preclinical and clinical studies. Hum Reprod Update 2020; 27:367-392. [PMID: 33124671 DOI: 10.1093/humupd/dmaa039] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the disadvantages and limitations of current endometriosis therapy, there is a progressive increase in studies focusing on plant-derived agents as a natural treatment option with the intention of achieving high efficiency, avoiding adverse effects and preserving the chance for successful pregnancy. The heterogeneity of these studies in terms of evaluated agents, applied approaches and outcomes illustrates the need for an up-to-date summary and critical view on this rapidly growing field in endometriosis research. OBJECTIVE AND RATIONALE This review provides a comprehensive overview of plant-derived agents and natural treatment strategies that are under preclinical or clinical investigation and critically evaluates their potential for future endometriosis therapy. SEARCH METHODS An English language PubMed literature search was performed using variations of the terms 'endometriosis', 'natural therapy', 'herb/herbal', 'plant', 'flavonoid', 'polyphenol', 'phytochemical', 'bioactive', 'Kampo' and 'Chinese medicine'. It included both animal and human studies. Moreover, the Clinicaltrials.gov database was searched with the term 'endometriosis' for clinical trials on plant-derived agents. No restriction was set for the publication date. OUTCOMES Natural therapies can be assigned to three categories: (i) herbal extracts, (ii) specific plant-derived bioactive compounds and (iii) Chinese herbal medicine (CHM). Agents of the first category have been shown to exert anti-proliferative, anti-inflammatory, anti-angiogenic and anti-oxidant effects on endometrial cells and endometriotic lesions. However, the existing evidence supporting their use in endometriosis therapy is quite limited. The most studied specific plant-derived bioactive compounds are resveratrol, epigallocatechin-3-gallate, curcumin, puerarin, ginsenosides, xanthohumol, 4-hydroxybenzyl alcohol, quercetin, apigenin, carnosic acid, rosmarinic acid, wogonin, baicalein, parthenolide, andrographolide and cannabinoids, with solid evidence about their inhibitory activity in experimental endometriosis models. Their mechanisms of action include pleiotropic effects on known signalling effectors: oestrogen receptor-α, cyclooxygenase-2, interleukin-1 and -6, tumour necrosis factor-α, intercellular adhesion molecule-1, vascular endothelial growth factor, nuclear factor-kappa B, matrix metalloproteinases as well as reactive oxygen species (ROS) and apoptosis-related proteins. Numerous studies suggest that treatment with CHM is a good choice for endometriosis management. Even under clinical conditions, this approach has already been shown to decrease the size of endometriotic lesions, alleviate chronic pelvic pain and reduce postoperative recurrence rates. WIDER IMPLICATIONS The necessity to manage endometriosis as a chronic disease highlights the importance of identifying novel and affordable long-term safety therapeutics. For this purpose, natural plant-derived agents represent promising candidates. Many of these agents exhibit a pleiotropic action profile, which simultaneously inhibits fundamental processes in the pathogenesis of endometriosis, such as proliferation, inflammation, ROS formation and angiogenesis. Hence, their inclusion into multimodal treatment concepts may essentially contribute to increase the therapeutic efficiency and reduce the side effects of future endometriosis therapy.
Collapse
Affiliation(s)
- Gabriela F Meresman
- Institute of Biology and Experimental Medicine (IBYME-CONICET), C1428ADN Buenos Aires, Argentina
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
42
|
Antiarrhythmic Mechanisms of Chinese Herbal Medicine Dingji Fumai Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9185707. [PMID: 32256664 PMCID: PMC7109552 DOI: 10.1155/2020/9185707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Background Dingji Fumai decoction (DFD) is used to treat ventricular arrhythmia, and it has provided a very good curative effect. However, its cellular electrophysiological mechanism is unknown. Methods Electrocardiogram was recorded, and oxidative stress response and ion-channel-related molecules were detected in rats with barium chloride- and aconitine-induced ventricular arrhythmia. Moreover, whole-cell patch-clamp assay was used to investigate the inhibitory effect of DFD on Nav1.5 in Chinese hamster ovary cells. Results DFD prolonged the occurrence time and shortened the duration of ventricular arrhythmia, decreased the malondialdehyde and increased the superoxide dismutase, and alleviated the activation of Na+-K+-ATPase and connexin-43. DFD suppressed Nav1.5dose-dependently with an IC50 of 24.0 ± 2.4 mg/mL. Conclusions The clinical antiarrhythmic mechanisms of DFD are based on its antioxidant potential, alleviation of Na+-K+-ATPase and connexin-43, and class I antiarrhythmic properties by suppressing Nav1.5dose-dependently with an IC50 of 24.0 ± 2.4 mg/mL.
Collapse
|