1
|
Guo SN, Jiang XQ, Chen N, Song SM, Fang Y, Xie QM, Fei GH, Wu HM. Melatonin regulates circadian clock proteins expression in allergic airway inflammation. Heliyon 2024; 10:e27471. [PMID: 38496876 PMCID: PMC10944242 DOI: 10.1016/j.heliyon.2024.e27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Asthma demonstrates a strong circadian rhythm with disrupted molecular clock. Melatonin which can directly regulate circadian rhythm has been reported to alleviate asthma, but whether this effect is related to its regulation on circadian clock has not yet been known. Here, female C57BL/6 mice were challenged with ovalbumin (OVA) to establish allergic airway inflammation, and were treated with melatonin or Luzindole to investigate whether the expressions of circadian clock proteins were changed in response to OVA and were affected by exogenous/endogenous melatonin. Airway inflammation, mucus secretion, protein expressions of circadian proteins (Bmal1, Per1, Clock, Timeless, Cry1 and Cry2), melatonin biosynthetase (ASMT, AANAT) and melatonin receptor (Mel-1A/B-R) were analyzed accordingly. The results showed that in the successfully established allergic airway inflammation model, inflammatory cells infiltration, expressions of circadian clock proteins in the lung tissues of OVA-challenged mice were all notably up-regulated as compared to that of the vehicle mice. Meanwhile, the protein expression of ASMT and the level of melatonin in the lung tissues were reduced in allergic mice, while the expression of melatonin receptor Mel-1A/B-R was markedly increased. After addition of exogenous melatonin, the OVA-induced airway inflammation was pronouncedly ameliorated, while simultaneously the OVA-induced expressions of Per1 and Clock were further increased. However, a melatonin receptor antagonist Luzindole further augmented the OVA-induced airway inflammation, accompanied with remarkably decreased expressions of Per1, Bmal1, Cry1 and Cry2 but notably increased expression of Timeless. Collectively, our results demonstrated that the expression of circadian clock proteins was increased in the lungs during allergic airway inflammation, and Per1 was a clock protein that can be regulated by both exogenous and endogenous melatonin, suggesting Per1 may be an important potential circadian clock target for melatonin as a negative regulatory factor against Th2-type airway inflammation.
Collapse
Affiliation(s)
- Si-Nuo Guo
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
| | - Xu-Qin Jiang
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
| | - Yu Fang
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
| | - Qiu-Meng Xie
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guang-He Fei
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, Hefei, 230022, China
| |
Collapse
|
2
|
Cao J, Xu R, Geng Y, Xu S, Guo M. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121068. [PMID: 36641069 DOI: 10.1016/j.envpol.2023.121068] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous pollutants with a wide range of plastic applications. More recently, microplastics are in the air and can be inhaled into the lungs, causing respiratory diseases. Knowledge of the underlying mechanisms by which microplastics may induce respiratory disease is still limited. This study used intranasal instillation to develop a model of lung injury. The histopathology result showed that the mouse lung had severe inflammatory responses, apoptosis and collagen deposition with chronic exposure to different sizes (Small: 1-5 μm and Large: 10-20 μm) of polystyrene microplastics (PS-MPS), and the damage of smaller sizes was obvious. The expression levels of the Toll-like receptors (TLRs) family, evolutionarily conserved pattern recognition receptors, were detected, and the levels of TLR2 mRNA was significantly increased. In transfection experiments, PS-MPS increased the inflammatory response in HEK293 cells with TLR2 expression. Furthermore, exposure to small polystyrene microplastics promoted oxidative stress and apoptosis, and accelerated the process of fibrosis. Interestingly, inhibition of the NF-κB signal relieves inflammation and oxidative stress, reduces apoptosis, and thus controls the fibrosis process. These results suggested that PS-MPS targeted binding to TLR2 and further exacerbated fibrosis by facilitating inflammation, oxidative stress, and apoptosis with the activation of NF-κB signal.
Collapse
Affiliation(s)
- Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuan Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shiwen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Shokry AA, El-Shiekh RA, Kamel G, Bakr AF, Ramadan A. Bioactive phenolics fraction of Hedera helix L. (Common Ivy Leaf) standardized extract ameliorates LPS-induced acute lung injury in the mouse model through the inhibition of proinflammatory cytokines and oxidative stress. Heliyon 2022; 8:e09477. [PMID: 35647334 PMCID: PMC9130539 DOI: 10.1016/j.heliyon.2022.e09477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Hedera helix L. (family Araliaceae) is classified as a conventional plant used as a medicinal product in the cure and prevention of upper respiratory tract inflammation and infection due to its secretolytic and broncholytic effects. Our research was conducted to authenticate the anti-inflammatory effect of ivy leaves extract in the prevention of acute lung injury (ALI) caused by intranasal administration of lipopolysaccharides (LPS). In-vitro antimicrobial, anti-inflammatory, and anti-oxidant were evaluated, in addition to the in-vivo acute lung inflammation model induced by LPS in mice. The animals were divided into seven groups randomly (each group containing 10 mice): control negative (saline only), control positive (LPS group), standard (Dexamethasone 2 mg/kg), ethanolic ivy leaves extract (EIE, 100 mg/kg), ethanolic ivy leaves extract (EIE, 200 mg/kg), saponin rich fraction (SRF, 100 mg/kg) and phenolic rich fraction (PRF, 100 mg/kg). Right lungs were homogenized to determine the levels of SOD, MDA, catalase, IL-10, TNF-α, NO, IL-1β, IL-6, PGE2, and MPO. Left lungs were excised for histopathology and histomorphometry. Immunohistochemistry of Cox-2 and TNF-α levels were measured. Additionally, Western blotting was used to determine the levels of phosphorylated MAPK. Also, the ethanolic extract was also standardized through HPLC analysis for its content of rutin.The data showed that the oral supplementation with EIE, 200 mg/kg significantly (P < 0.05) decreased the pro-inflammatory mediators, and oxidative stress biomarkers induced by LPS. Interestingly, the phenolics showed promising activity, therefore they are responsible for the action. In conclusion, the standardized ivy leaf extract could be advised for acute lung injury for its antimicrobial, anti-oxidant, and anti-inflammatory activities. Ivy leaf is a traditional perennial edible herb used as an anti-inflammatory agent for respiratory disorders. The plant significantly reduced the serum oxidative stress biomarkers and inflammatory cytokines in the in-vivo acute lung inflammation model induced by LPS. Also, it had antimicrobial activity. Phenolics not saponins are responsible for the activity of the plant.
Collapse
Affiliation(s)
- Aya A. Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
- Corresponding author.
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gehan Kamel
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
- Corresponding author.
| |
Collapse
|
5
|
A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin Med J (Engl) 2022; 135:1474-1485. [PMID: 35261352 PMCID: PMC9481440 DOI: 10.1097/cm9.0000000000002010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Sepsis, a serious condition with high mortality, usually causes sepsis associated encephalopathy (SAE) that involves neuronal cell death. However, the cell death programs involved and their underlying mechanisms are not clear. This study aimed to explore the regulatory mechanisms of different cell death programs in SAE. Methods: A neonatal rat model of SAE was established by cecal ligation and perforation. Survival rate and vital signs (mean arterial pressure and heart rate) were monitored, nerve reflexes were evaluated, and cortical pathological changes were observed by hematoxylin and eosin staining. The expression of pyroptosis, apoptosis, and necroptosis (PANoptosis)-related proteins, mitogen- activated protein kinase (MAPK), and its upstream regulator toll-like receptor 9 (TLR9) were detected. The expression of TLR9 in neurons was observed by immunofluorescence staining. The ultrastructure of neurons was observed by transmission electron microscope. Results: First, PANoptosis was found in cortical nerve cells of the SAE rats. Meanwhile, the subunits of MAPKs, p38 MAPK, Jun N- terminal kinase, and extracellular signal-regulated kinase (ERK) were activated. After pharmacologically inhibiting each of the subunits, only p38 MAPK was found to be associated with PANoptosis. Furthermore, blocking the p38 MAPK signaling pathway activated necroptosis but inhibited apoptosis and pyroptosis. When necroptosis was pharmacologically inhibited, apoptosis and pyroptosis were reactivated. Finally, we found that the expression of TLR9, a regulator of MAPKs, was significantly increased in this model. After down-regulation of TLR9, p38 MAPK, and ERK signaling pathways were inhibited, which led to the inhibition of PANoptosis. Further analysis found that down-regulation of TLR9 improved the survival rate and reduced the pathological changes in SAE rats. Conclusions: Our study showed that the programs comprising PANoptosis are activated simultaneously in SAE rats. TLR9 activated PANoptosis through the p38 MAPK signaling pathway. TLR9 may work as a potential target for SAE treatment.
Collapse
|
6
|
Sun X, Shen W, Li Z, Zhang W. CCCTC-binding factor transcriptionally regulates Galectin-7 and activates the JNK/STAT3 axis to aggravate bronchial epithelial cell injury. Pediatr Pulmonol 2022; 57:90-99. [PMID: 34643340 DOI: 10.1002/ppul.25726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Studies have shown that the expression of CCCTC-binding factor (CTCF) is significantly upregulated in the airway epithelial cells of asthmatic patients, suggesting that CTCF may play an important role in the progression of asthma. MATERIAL/METHODS Human bronchial epithelial cells BEAS-2B were stimulated with transforming growth factor-β1 (TGF-β1) at a concentration of 10 ng/ml, and CTCF overexpression plasmid and CTCF small interfering RNA were transfected into the cells. The proliferation, apoptosis, inflammatory factor secretion, and airway remodeling marker protein expression of injured cells were detected. We bidirectionally regulated Galectin-7 expression in TGF-β1-induced BEAS-2B cells and overexpress CTCF, while interfering with Galectin-7 to further explore the regulatory effect of CTCF on Galectin-7. We introduced SP600125, a c-Jun N-terminal kinase c-Jun (JNK) pathway inhibitor, to investigate whether CTCF affects asthma progression through the JNK pathway. RESULTS The expression of CTCF in BEAS-2B cells induced by TGF-β1 was significantly upregulated, interfering with CTCF expression promoted cell proliferation, inhibited apoptosis, reduced inflammatory factors secretion, and decreased the expression of airway remodeling marker protein. Luciferase reporter gene analysis and chromatin immunoprecipitation verified that CTCF directly bound to Galectin-7 promoter. The effect of Galectin-7 on cells is consistent with the effect of CTCF on cells. The regulatory effect of CTCF on injured cells was indeed mediated by activation of the JNK/STAT3 axis. CONCLUSIONS CTCF transcriptionally regulated Galectin-7 and activated JNK/STAT3 axis to aggravate bronchial epithelial cell injury.
Collapse
Affiliation(s)
- Xinrong Sun
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Wenna Shen
- Department of Respiration, Xi'an Children's Hospital, Xi'an, China
| | | | - Wanggang Zhang
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Zhang HY, Xie QM, Zhao CC, Sha JF, Ruan Y, Wu HM. CpG Oligodeoxynucleotides Attenuate OVA-Induced Allergic Airway Inflammation via Suppressing JNK-Mediated Endoplasmic Reticulum Stress. J Asthma Allergy 2021; 14:1399-1410. [PMID: 34848975 PMCID: PMC8619852 DOI: 10.2147/jaa.s334541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose CpG-ODN has been found to attenuate allergic airway inflammation in our previous study. Here, we aimed to further investigate whether CpG-ODN exerts such effect via regulating endoplasmic reticulum (ER) stress and revealed the underlying mechanism. Methods Five-week-old C57BL/6 mice were randomly grouped and treated with or without CpG-ODN or/and SP600125. Meantime, RAW264.7 cells were used to investigate the effect of CpG-ODN on OVA-induced ER stress in vitro. The cellularity of bronchoalveolar lavage fluid (BALF) was classified and counted after Wright-Giemsa staining. HE and PAS staining methods were applied to analyze airway inflammation. The protein levels of IL-4, IL-5, IL-13, p-JNK, JNK, CHOP, XBP1, ATF6α and GRP78 in lung tissues were detected by Western blotting. Correspondingly, the ER stress markers were detected by Western blotting and immunofluorescence in RAW264.7 cells. Results In OVA-induced allergic airway inflammation, CpG-ODN significantly suppressed inflammatory cells infiltration, goblet cell hyperplasia and the protein expression of Th2 cytokines. Moreover, OVA exposure strongly increased the activation of ER stress with higher protein expressions of CHOP, XBP1, ATF6α and GRP78. However, these OVA-induced increase of ER stress markers were markedly suppressed by CpG-ODN treatment. In addition, exposure to OVA significantly increased the phosphorylation of JNK, which was significantly reduced by CpG-ODN treatment. Remarkably, single treatment of SP600125, an antagonist of JNK, functioned similarly as CpG-ODN in mitigating allergic airway inflammation and suppressing OVA-induced activation of ER stress; however, no significant synergistic effect was evidenced by combined treatment of SP600125 and CpG-ODN. Furthermore, in OVA-stimulated RAW264.7 cells, we also found that OVA stimulation increased the expressions of ER stress markers, and CpG-ODN significantly reduced their expression levels via suppressing the phosphorylation of JNK. Conclusion These results indicated that CpG-ODN mitigates allergic airway inflammation via suppressing the activation of JNK-medicated ER stress.
Collapse
Affiliation(s)
- Hai-Yun Zhang
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
8
|
Chida K, Sakurai Y, Ohtani A, Masuda T, Ohtsuki S, Tanaka H, Akita H. Proteomics Analysis of Lymphatic Metastasis-Related Proteins Using Highly Metastatic Human Melanoma Cells Originated by Sequential in Vivo Implantation. Biol Pharm Bull 2021; 44:1551-1556. [PMID: 34602565 DOI: 10.1248/bpb.b21-00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metastasis of cancer cells to lymph nodes (LN) is a common modality of metastasis in clinical settings, but the mechanisms involved in lymphatic metastasis remain unclear compared to hematogenous metastasis to bones and the brain. To elucidate the molecular mechanisms responsible for melanoma LN metastasis, we first generated LN metastasis-prone melanoma cells (C8161F2) by the sequential in vivo transplantation of parental melanoma cells (C8161F0). Although the in vitro/in vivo proliferative potential of these melanoma cells were similar, the metastatic potential of the C8161F2 for LNs was significantly enhanced. We then conducted a proteomics analysis to identify the proteins and pathways that contribute to LN metastasis. We identified six proteins (three: up-regulated and three: down-regulated) whose expressions were statistically significantly different by more than 2-fold in the two cell groups. Some of these genes are responsible for the activation of the transforming growth factor-β (TGF-β)-related pathway, a well-known inducer of epithelial-mesenchymal transition (EMT). In addition, a gene ontology analysis revealed that the enhanced cell-cell adhesion appears to be involved in lymphatic metastasis. In conclusion, we established highly lymphatic metastatic melanoma cells, which would be valuable for studies of the molecular mechanisms responsible for lymphatic metastasis.
Collapse
Affiliation(s)
- Katsuyuki Chida
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Asa Ohtani
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Hiroki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
9
|
Cakir Cetin A, Ecevit MC, Gumustekin M, Pekcetin C, Ozbal S, Efe H, Koca P, Akcay O, Tuncok Y. Therapeutic effects of melatonin on an ovalbumin-induced allergic rhinitis model in rats. Auris Nasus Larynx 2021; 48:1109-1119. [PMID: 33965284 DOI: 10.1016/j.anl.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to investigate the therapeutic effects of melatonin in an experimental AR model. METHODS Thirty-two Wistar rats were randomised into four groups (n = 8 each). The experimental AR model was established in the saline (SF), ethanol, and melatonin groups via intraperitoneal (i.p.) injections and intranasal application of ovalbumin. The SF, ethanol, and melatonin groups received daily i.p. saline, 2% ethanol dissolved in saline, and 10 mg/kg melatonin dissolved in 2% ethanol and saline. The control group received the same amount of i.p. and intranasal saline. Total nasal symptom scores were recorded in all rats on days 1 (baseline), 15, 20, 25, and 30. Serum ovalbumin-specific IgE, IL-13, and melatonin levels were measured on days 1 (baseline), 15, and 30. The nasal mucosa of all rats was scored histopathologically. RESULTS The total nasal symptom scores and serum ovalbumin-specific IgE values of the SF, ethanol, and melatonin groups were significantly higher on day 15 than those of the control group. On day 30, the scores and serum ovalbumin-specific IgE values of the melatonin group were similar to those of the control, whereas the SF and ethanol groups had statistically higher scores. The histological scores of the SF and ethanol groups were significantly higher than those of the control and melatonin groups, but no significant difference was found between the melatonin and control groups. CONCLUSION Melatonin reduced total nasal symptom scores and serum ovalbumin-specific IgE levels and improved histological inflammation parameters in the ovalbumin-induced rat experimental AR model.
Collapse
Affiliation(s)
- Asli Cakir Cetin
- Department of Otorhinolaryngology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey.
| | - Mustafa Cenk Ecevit
- Department of Otorhinolaryngology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Mukaddes Gumustekin
- Department of Pharmacology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Cetin Pekcetin
- Department of Histology & Embriology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Seda Ozbal
- Department of Histology & Embriology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Hande Efe
- Department of Medical Biology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Pelin Koca
- Department of Pharmacology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Ozge Akcay
- Department of Pharmacology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| | - Yesim Tuncok
- Department of Pharmacology, Dokuz Eylul University, School of Medicine, Izmir 35340, Turkey
| |
Collapse
|
10
|
Wang W, Gao J. Effects of melatonin on protecting against lung injury (Review). Exp Ther Med 2021; 21:228. [PMID: 33603837 DOI: 10.3892/etm.2021.9659] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Melatonin (MT; N-acetyl-5-methoxy-tryptamine), which has multiple effects and roles, is secreted from the pineal gland at night according to the daily rhythm. In addition to circadian regulation, MT has anti-inflammatory, antioxidant and anticancer functions. Recent studies postulated that MT serves a critical role in apoptosis, anti-ischemic reperfusion injury and anti-proliferative effects on various cells. The current review reported on the underlying mechanism behind the protective effect of MT on lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung ischemia-reperfusion injury, sepsis-induced lung injury and ventilator-induced lung injury. MT is considered an adjuvant with therapeutic drugs for preventing inflammation and is responsible for regulating patient sleep cycles in the intensive care unit. The current review described the anti-inflammatory and antioxidant efficiency of MT with a focus on the molecular mechanisms of action in various lung injuries.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
11
|
Huang G, Su J, Zhao W, Deng Z, Wang P, Dong H, Zhao H, Cai S. JNK modulates RAGE/β-catenin signaling and is essential for allergic airway inflammation in asthma. Toxicol Lett 2021; 336:57-67. [PMID: 33075463 DOI: 10.1016/j.toxlet.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
As a leading cause of occupational asthma, toluene diisocyanate (TDI)-induced asthma is an inflammatory disease of the airways with one of the most significant characteristics involving inflammation, in which the receptor of advanced glycation end products (RAGE) plays an extremely important role. However, the mechanism underlying the upregulation of RAGE is still unknown. The aim of the present study was to examine whether JNK mediates β-catenin stabilization via activation of RAGE in asthma. Herein from the results by analyzing the blood from healthy donors and patients with asthma, it was found that the expression of RAGE and p-JNK is highly correlated and elevated concomitantly with the severity of bronchial asthma. Additionally, upon sensitizing and challenging the mice with TDI, we found that RAGE inhibitor (FPS-ZM1) and JNK inhibitor (SP600125) significantly reduced the TDI-induced asthma inflammation in vivo. Furthermore, SP600125 also considerably restored RAGE and p-JNK expression. Besides, the in vitro results from TDI-HSA treatment of 16HBE cells reveal that therapeutic inhibition of JNK reduced TDI driving RAGE expression and β-catenin translocation, while treatment with Anisomycin, a JNK agonist, showed the opposite effect. Moreover, genetic knockdown of RAGE does not contribute to JNK phosphorylation, indicating that JNK functions upstream of RAGE. Collectively, these findings highlight a role for JNK signaling in RAGE/β-catenin regulation and have important therapeutic implications for the treatment of TDI induced asthma.
Collapse
Affiliation(s)
- Guohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinwei Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhixuan Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Zhong Q, Zhan M, Wang L, Chen D, Zhao N, Wang J, Huang Y, Zhang X, He S, Zhang H. Upregulation of the expression of Toll-like receptor 9 in basophils in patients with allergic rhinitis: An enhanced expression by allergens. Scand J Immunol 2020; 93:e13003. [PMID: 33247440 DOI: 10.1111/sji.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
It was reported that the expression of Toll-like receptor (TLR) 9 may be related to Th2-type allergic inflammation including allergic rhinitis (AR). However, little is known about the expression of TLR9 in the basophils in AR. In the present study, the expression of TLR9 was examined by flow cytometry analysis, and the expression of TLR9 mRNA in KU812 was determined by quantitative real-time PCR. The results showed that the percentage of TLR9+ CCR3+ cells in blood granulocytes increased by 46% in patients with AR, but not in peripheral blood mononuclear cells (PBMCs). Allergens namely Dermatophagoide allergen extract (DAE) and Platanus pollen allergen extract (PPAE) upregulated the expression of TLR9 in CCR3+ granulocytes by 76% and 84%, respectively. DAE and PPAE also enhanced the proportions of TLR9+ CD123+ HLA-DR- cells and TLR9+ CCR3+ CD123+ HLA-DR- cells in granulocytes and PBMCs of patients with AR. In order to investigate the actions of allergens on basophils, KU812 cells were used. It was observed that all KU812 cells expressed TLR9, and the expression intensity of TLR9 in a single KU812 cell was elevated by CpG. IL-37, IL-31, IL-33, Artemisia sieversiana wild allergen extract (ASWAE), DAE, OVA and Der p 1 induced an increase in the expression of TLR9 mRNA and IL-6 production in KU812 cells. It was shown that the percentage of TLR9-expressing basophils increased in the blood of ovalbumin (OVA)-sensitized mice. In conclusion, an increased expression of TLR9 and the production of IL-6 in basophils implicate that the contribution of basophils to AR is likely via TLR9.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Pathophysiology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Mengmeng Zhan
- Department of Pathophysiology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Ling Wang
- Department of Pathophysiology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| | - Dong Chen
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Nan Zhao
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yixia Huang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaowen Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shaoheng He
- Department of Pathophysiology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China.,Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huiyun Zhang
- Department of Pathophysiology, Translational Medicine Institute, Shenyang Medical College, Shenyang, China
| |
Collapse
|
13
|
Yi L, Cui J, Wang W, Tang W, Teng F, Zhu X, Qin J, Wuniqiemu T, Sun J, Wei Y, Dong J. Formononetin Attenuates Airway Inflammation and Oxidative Stress in Murine Allergic Asthma. Front Pharmacol 2020; 11:533841. [PMID: 33013383 PMCID: PMC7500463 DOI: 10.3389/fphar.2020.533841] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma has been considered as a respiratory disorder with pathological features of airway inflammation and remodeling, which involves oxidative stress. Formononetin (FMT) is a bioactive isoflavone obtained from Chinese herb Radix Astragali, and has been reported to have notable anti-inflammatory and antioxidant effects in several diseases. The purpose of our study was to elaborate the effects of FMT on asthma and the underlying mechanisms. To establish allergic asthma model, BALB/c mice were given ovalbumin (OVA) sensitization and challenge, treated with FMT (10, 20, 40 mg/kg) or dexamethasone (2 mg/kg). The effects of FMT on lung inflammation and oxidative stress were assessed. In OVA-induced asthmatic mice, FMT treatments significantly ameliorated lung function, alleviated lung inflammation including infiltration of inflammatory cells, the elevated levels of interleukin (IL)-4, IL-5, and IL-13, immunoglobulin (Ig) E, C-C motif chemokine ligand 5 (CCL5, also known as RANTES), CCL11 (also called Eotaxin-1), and IL-17A. In addition, FMT treatments eminently blunted goblet cell hyperplasia and collagen deposition, and remarkably reduced oxidative stress as displayed by decreased reactive oxygen species (ROS), and increased superoxide diamutase (SOD) activity. Furthermore, to clarify the potential mechanisms responsible for the effects, we determined the inflammation and oxidation-related signaling pathway including nuclear factor kappa β (NF-κB), c-Jun N-terminal kinase (JNK), and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). FMT treatments appeared to dramatically inhibit the activation of NF-κB and JNK, significantly elevated the expression of heme oxygenase 1 (HO-1) but failed to activate expression of Nrf2. In conclusion, our study suggested that FMT had the therapeutic effects in attenuating airway inflammation and oxidative stress in asthma.
Collapse
Affiliation(s)
- La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69:e12657. [PMID: 32281677 DOI: 10.1111/jpi.12657] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The pineal gland hormone melatonin continues to be of considerable interest to biomedical researchers. Of particular interest is the pattern of secretion of melatonin in relation to sleep timing as well as its potential role in certain diseases. Measuring melatonin in biological fluids such as blood and saliva presents particular methodological challenges since the production and secretion of the hormone are known to be extremely low during the light phase in almost all situations. Active secretion only occurs around the time of lights out in a wide range of species. The challenge then is to develop practical high-throughput assays that are sufficiently sensitive and accurate enough to detect levels of melatonin less than 1 pg/mL in biological fluids. Mass spectrometry assays have been developed that achieve the required sensitivity, but are really not practical or even widely available to most researchers. Melatonin radioimmunoassays and ELISA have been developed and are commercially available. But the quality of the results that are being published is very variable, partly not only because of poor experimental designs, but also because of poor assays. In this review, I discuss issues around the design of studies involving melatonin measurement. I then provide a critical assessment of 21 immunoassay kits marketed by 11 different companies with respect to validation, specificity and sensitivity. Technical managers of the companies were contacted in an attempt to obtain information not available online or in kit inserts. A search of the literature was also conducted to uncover papers that have reported the use of these assays, and where possible, both daytime and night-time plasma or saliva melatonin concentrations were extracted and tabulated. The results of the evaluations are disturbing, with many kits lacking any validation studies or using inadequate validation methods. Few assays have been properly assessed for specificity, while others report cross-reaction profiles that can be expected to result in over estimation of the melatonin levels. Some assays are not fit for purpose because they are not sensitive enough to determine plasma or saliva DLMO of 10 and 3 pg/mL, respectively. Finally, some assays produce unrealistically high daytime melatonin levels in humans and laboratory animals in the order of hundreds of pg/mL. In summary, this review provides a comprehensive and unique assessment of the current commercial melatonin immunoassays and their use in publications. It provides researchers new to the field with the information they need to design valid melatonin studies from both the perspective of experimental/clinical trial design and the best assay methodologies. It will also hopefully help journal editors and reviewers who may not be fully aware of the pitfalls of melatonin measurement make better informed decisions on publication acceptability.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Zhao CC, Xie QM, Xu J, Yan XB, Fan XY, Wu HM. TLR9 mediates the activation of NLRP3 inflammasome and oxidative stress in murine allergic airway inflammation. Mol Immunol 2020; 125:24-31. [PMID: 32623292 DOI: 10.1016/j.molimm.2020.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 01/13/2023]
Abstract
Toll-like receptor 9 (TLR9) has been reported to mediate airway inflammation, however, the underlying mechanism is poorly understood. In the present study, our objective was to reveal whether TLR9 regulates NLRP3 inflammasome and oxidative stress in murine allergic airway inflammation and Raw264.7 cells. Female wild type(WT)and TLR9-/-mice on C57BL/6 background were used to induce allergic airway inflammation by challenge of OVA, and Raw264.7 cells with or without TLR9 knockdown by small interfering RNA (siRNA) were stimulated by S.aureus. The results demonstrated that deletion of TLR9 effectively attenuated OVA-induced allergic airway inflammation including inflammatory cells infiltration and goblet cell hyperplasia. Meanwhile, OVA-induced protein expression of NLRP3, caspase-1(p20) and mature IL-1β, as well as secretion of IL-1β and IL-18 in wild type mice (WT) was obviously suppressed by TLR9 deficiency. Concomitantly, the expression of oxidative markers 8-OhDG and nitrotyrosine was increased in OVA-challenged WT mice, while TLR9 deficiency significantly inhibited such increase. Similarly, in the in vitro study, we found that knockdown of TLR9 markedly suppressed S.aureus-induced activation of NLRP3 inflammasome and oxidative stress in Raw264.7 cells. Collectively, our findings indicated that TLR9 may mediate allergic airway inflammation via activating NLRP3 inflammasome and oxidative stress.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Juan Xu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Xue-Bo Yan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Xiao-Yun Fan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China.
| |
Collapse
|
16
|
Zhao CC, Xu J, Xie QM, Fan XY, Fei GH, Wu HM. Apolipoprotein E negatively regulates murine allergic airway inflammation via suppressing the activation of NLRP3 inflammasome and oxidative stress. Int Immunopharmacol 2020; 81:106301. [PMID: 32062073 DOI: 10.1016/j.intimp.2020.106301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (ApoE) has been reported as a steroid unresponsive gene and functions as a negative regulator of airway hyperreactivity (AHR) and goblet cell hyperplasia in house dust mite (HDM)-challenged mice. However, the role of ApoE in Ovalbumin (OVA)-induced allergic airway inflammation disease and the underlying mechanism are still unknown. In the present study, murine allergic airway inflammation was induced by inhaled OVA for consecutive 7 days in wild type (WT) and ApoE-/- mice. In the OVA-induced model, the ApoE level in the bronchoalveolar lavage fluid (BALF) and lung tissues was significantly higher than that of control mice. And ApoE deficiency aggravated airway inflammation including leukocytes infiltration, goblet cell hyperplasia and IgE production as compared to those of WT mice after OVA- challenged, suggesting ApoE servers as an endogenous negative regulator of airway inflammation. Furthermore, OVA challenge elevated the activation of NLRP3 inflammasome with higher protein expression of NLRP3, caspase1 and IL-1β, enhanced oxidative stress with higher expression of 8-OHdG, nitrotyrosine and SOD2, increased the expression of mitochondrial fusion/fission markers including Optic Atrophy 1 (OPA1), Mitofusion 2 (Mfn2), dynamin-related protein 1 (DRP1) and Fission 1 (Fis1). However, these OVA-induced changes were augmented in ApoE-/- mice. Collectively, our results demonstrated that the OVA-induced airway inflammation was aggravated in ApoE-/- mice, and suggested that the underlying mechanism may be associated with the augmented activation of NLRP3 inflammasome and oxidative stress in ApoE-/- mice, therefore targeting ApoE pathway might be a novel therapy approach for allergic airway diseases such as asthma.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Juan Xu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiao-Yun Fan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Guang-He Fei
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
17
|
Wu HM, Zhao CC, Xie QM, Xu J, Fei GH. TLR2-Melatonin Feedback Loop Regulates the Activation of NLRP3 Inflammasome in Murine Allergic Airway Inflammation. Front Immunol 2020; 11:172. [PMID: 32117301 PMCID: PMC7025476 DOI: 10.3389/fimmu.2020.00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is suggested to initiate the activation of NLRP3 inflammasome, and considered to be involved in asthma. The findings that melatonin modulates TLRs-mediated immune responses, together with the suppressing effect of TLRs on endogenous melatonin synthesis, support the possibility that a feedback loop exists between TLRs system and endogenous melatonin synthesis. To determine whether TLR2-melatonin feedback loop exists in allergic airway disease and regulates NLRP3 inflammasome activity, wild-type (WT) and TLR2−/− mice were challenged with OVA to establish allergic airway disease model. Following OVA challenge, WT mice exhibited increased-expression of TLR2, activation of NLRP3 inflammasome and marked airway inflammation, which were all effectively inhibited in the TLR2−/− mice, indicating that TLR2-NLRP3 mediated airway inflammation. Meanwhile, melatonin biosynthesis was reduced in OVA-challenged WT mice, while such reduction was notably rescued by TLR2 deficiency, suggesting that TLR2-NLRP3-mediated allergic airway inflammation was associated with decreased endogenous melatonin biosynthesis. Furthermore, addition of melatonin to OVA-challenged WT mice pronouncedly ameliorated airway inflammation, decreased TLR2 expression and NLRP3 inflammasome activation, further implying that melatonin in turn inhibited airway inflammation via suppressing TLR2-NLRP3 signal. Most interestingly, although melatonin receptor antagonist luzindole significantly reduced the protein expressions of ASMT, AANAT and subsequent level of melatonin in OVA-challenged TLR2−/− mice, it exhibited null effect on leukocytes infiltration, Th2-cytokines production and NLRP3 activity. These results indicate that a TLR2-melatonin feedback loop regulates NLRP3 inflammasome activity in allergic airway inflammation, and melatonin may be a promising therapeutic medicine for airway inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Hui-Mei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Cui-Cui Zhao
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Qiu-Meng Xie
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Juan Xu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Sevoflurane Prevents Airway Remodeling via Downregulation of VEGF and TGF-β1 in Mice with OVA-Induced Chronic Airway Inflammation. Inflammation 2019; 42:1015-1022. [PMID: 30680697 DOI: 10.1007/s10753-019-00963-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Asthma is characterized by chronic airway inflammation, which is the underlying cause of airway remodeling featured by goblet cell hyperplasia, subepithelial fibrosis, and proliferation of smooth muscle. Sevoflurane has been used to treat life-threatening asthma and our previous study shows that sevoflurane inhibits acute lung inflammation in ovalbumin (OVA)-induced allergic mice. However, the effect of sevoflurane on airway remodeling in the context of chronic airway inflammation and the underlying mechanism are still unknown. Here, female C57BL/6 mice were used to establish chronic airway inflammation model. Hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Sirius red (SR) staining were used to evaluate airway remodeling. Protein levels of α-SMA, VEGF, and TGF-β1 in lung tissues were detected by western blotting analyses and immunohistochemistry staining. Results showed that inhalation of sevoflurane inhibited chronic airway inflammation including inflammatory cell infiltration and pro-inflammatory cytokine production in BALF of the OVA-challenged mice. Meanwhile, sevoflurane suppressed airway thickening, goblet cell hyperplasia, smooth muscle hyperplasia, collagen deposition, and fiber hyperplasia in the lung tissues of the mice with airway remodeling. Most notably, sevoflurane inhibited the OVA-induced expressions of VEGF and TGF-β1. These results suggested that sevoflurane effectively inhibits airway remodeling in mouse model of chronic airway inflammation, which may be due to the downregulation of VEGF and TGF-β1in lung tissues. Therefore, our results indicate a potential role of sevoflurane in inhibiting airway remodeling besides its known suppression effect on airway inflammation, and support the use of sevoflurane in treating severe asthma in ICU.
Collapse
|
19
|
Wu HM, Xie QM, Zhao CC, Xu J, Fan XY, Fei GH. Melatonin biosynthesis restored by CpG oligodeoxynucleotides attenuates allergic airway inflammation via regulating NLRP3 inflammasome. Life Sci 2019; 239:117067. [PMID: 31738882 DOI: 10.1016/j.lfs.2019.117067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
AIMS Both CpG oligodeoxynucleotide (CpG-ODN) and melatonin have been reported to induce Th1 response and contribute to allergic asthma resistance. Here, we aimed to reveal how they confer such effect as well as whether they crosstalk with each other. MAIN METHODS Six-week-old Female C57BL/6 mice were challenged by OVA to induce allergic airway inflammation, and were treated with CpG-ODN, CpG-ODN plus Luzindole or melatonin respectively. Bronchoalveolar lavage fluid (BALF) cellularity was classified and counted by Wright's-Giemsa staining. HE and PAS staining were used to analyze airway inflammation. The levels of IL-4, IL-5, IL-13,GM-CSF and IFN-γ, as well as IL-1β and IL-18 were analyzed by ELISA. Protein expressions of ASMT, AANAT, NLRP3, IL-1β and caspase-1 in lung tissue were detected by Western blotting, expression of ASMT and AANAT were further observed by immunohistochemistry. KEY FINDINGS We found that CpG-ODN considerably suppressed OVA-induced airway leukocytes infiltration, goblet cell hyperplasia and Th2 cytokines production. Furthermore, the resolution effect of CpG-ODN on OVA-induced allergic airway inflammation occurred in parallel with decreased-activation of NLRP3 inflammasome and increased biosynthesis of melatonin. Blocking the effect of endogenous melatonin by Luzindole abolished the suppressive effect of CpG-ODN on OVA-induced airway inflammation and activation of NLRP3 inflammasome, suggesting such effect was mediated by endogenous melatonin. Moreover, exogenous melatonin pronouncedly ameliorated airway inflammation and decreased the activation of NLRP3 inflammasome. SIGNIFICANCE These results proven that CpG-ODN protects against allergic airway inflammation via suppressing the activation of NLRP3 inflammasome, and such effect may be resulted from the restored-production of melatonin.
Collapse
Affiliation(s)
- Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, China.
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, China
| | - Juan Xu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, China
| | - Xiao-Yun Fan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, China
| | - Guang-He Fei
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, China.
| |
Collapse
|
20
|
Zhao S, Chen Z, Zheng J, Dai J, Ou W, Xu W, Ai Q, Zhang W, Niu J, Mai K, Zhang Y. Citric acid mitigates soybean meal induced inflammatory response and tight junction disruption by altering TLR signal transduction in the intestine of turbot, Scophthalmus maximus L. FISH & SHELLFISH IMMUNOLOGY 2019; 92:181-187. [PMID: 31176009 DOI: 10.1016/j.fsi.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of citric acid on the involvement of TLRs in the soybean meal induced inflammatory response and tight junction disruption in the distal intestine of juvenile turbot (Scophthalmus maximus L.). Four isonitrogenous and isolipidic practical diets were formulated: fish meal-based diet (FM); 40% fish meal protein in FM replaced with soybean meal protein (SBM); SBM + 1.5% citric acid and SBM + 3% citric acid. Compared to the FM, diet SBM significantly increased the gene expression of TLRs (TLR2, TLR3, TLR5b, TLR9, TLR21, TLR22) and MyD88, as well as TLR related molecules (NF-κB, IRF-3, p38 and JNK), which were remarkably reduced by dietary citric acid. Similarly, citric acid supplementation in SBM markedly depressed gene expression of pro-inflammatory cytokines (TNF-α and IFN-γ) and pore-forming tight junction protein Claudin-7, and enhanced gene expression of the anti-inflammatory cytokine TGF-β1 and TJ proteins related to the decrease in paracellular permeability (Claudin-3, Claudin-4, Occludin, Tricellulin and ZO-1). Compared to the SBM, the concentration of IgM and C4 in serum was significantly reduced by dietary citric acid. In brief, dietary citric acid could synchronously inhibit TLRs-dependent inflammatory response regulated by NF-κB and IRF3, as well as cause TLRs-dependent tight junction disruption modulated by p38 and JNK. Therefore, citric acid could function on mitigating soybean meal induced enteropathy in the distal intestine of juvenile turbot.
Collapse
Affiliation(s)
- Sifan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jing Zheng
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weiqi Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jin Niu
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, PR China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
21
|
Kennaway DJ. A critical review of melatonin assays: Past and present. J Pineal Res 2019; 67:e12572. [PMID: 30919486 DOI: 10.1111/jpi.12572] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
There has been increased interest in the measurement of melatonin in plasma and saliva recently either as a marker of circadian phase or to understand the physiological role of melatonin. For both situations, there is a need for a specific assay for melatonin that is sensitive enough to detect low concentrations (<2 pg/mL). Since the mid-1970s, there have been many assays developed to measure melatonin in blood and saliva. Radioimmunoassays and ELISA have predominated because of their relative simplicity and high throughput. In this review, I show that the early radioimmunoassays while providing valuable information about nocturnal melatonin levels in humans, generally produced inaccurate basal (daytime) levels. Mass spectrometry assays, however, have provided us with the target values that immunoassays need to achieve, that is, daytime plasma melatonin levels <1 pg/mL. There are now many contemporary commercial assays available utilising both RIA and ELISA technologies, but not all achieve the standards set by the mass spectrometry assays. The performance of these assays is reviewed. I conclude with recommendations on issues researchers need to consider when conducting melatonin studies, including the importance of time of day of collection, validation of assays, the potential causes of poor assay specificity at low levels, the advantages/disadvantages of using saliva vs plasma and extraction assays vs direct assays, kit manufacturers responsibilities and the reporting requirements when publishing melatonin studies.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Zhang W, Li X, Zhang Y. Rho-kinase inhibitor attenuates airway mucus hypersecretion and inflammation partly by downregulation of IL-13 and the JNK1/2-AP1 signaling pathway. Biochem Biophys Res Commun 2019; 516:571-577. [PMID: 31235256 DOI: 10.1016/j.bbrc.2019.06.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 11/26/2022]
Abstract
We measured the effect of Rho-kinase on inflammation and mucus hypersecretion in the airways of mouse models of asthma. Additionally, we aimed to determine if these effects were the result of JNK 1/2-AP1 pathway inhibition.We sensitized and challenged female C57BL/6 mice using house dust mites (HDM) followed by treatment with an inhibitor of Rho-kinase. Lung tissue was harvested to evaluate inflammation and mucus secretion in the airways of asthma mice. Cytokine expression in broncho-alveolar lavage fluid (BALF) was established by ELISA and airway responsiveness, and was determined by the invasive lung function test. JNK1/2, p-JNK1/2, AP-1, and p-AP-1 protein expression was determined by Western blot analysis. Asthma model mice that were treated with Rho-kinase inhibitor showed a significantly decrease in inflammation score, inflammatory cells, and airway responsiveness. Additionally, we found that IL-13 expressions in BALF and mucus secretion were decreased in HDM-challenged mice treated with Rho-kinase inhibitor. Furthermore, Rho-kinase inhibitor treatment decreased the expression of JNK1/2 and AP-1 phosphorylation. Our findings indicated that the Rho-kinase inhibitor decreased HDM-induced mucus secretion as well as airway inflammation in asthma mice through regulation of the JNK1/2-AP-1 pathway.
Collapse
Affiliation(s)
- Wenqin Zhang
- Department of geriatric medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xin Li
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300073, China
| | - Yun Zhang
- Department of geriatric medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
23
|
Affiliation(s)
- David J. Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Research Building, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Anti-inflammatory Property of Galectin-1 in a Murine Model of Allergic Airway Inflammation. J Immunol Res 2019; 2019:9705327. [PMID: 31214624 PMCID: PMC6535876 DOI: 10.1155/2019/9705327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 03/19/2019] [Indexed: 11/18/2022] Open
Abstract
Galectin-1 (Gal-1) has immunomodulatory activities in various allergic inflammatory disorders, but its potential anti-inflammatory properties on allergic airway diseases have not been confirmed. We explored the pharmacological effects of Gal-1 on the progression of allergic airway inflammation and investigated the underlying mechanism. Female C57BL/6 mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-17 to establish an allergic airway inflammation model. In the challenge phase, a subset of mice was treated intraperitoneally with recombinant Gal-1 (rGal-1) or dexamethasone (Dex). We found that rGal-1 inhibited pulmonary inflammatory cell recruitment, mucus secretion, bronchoalveolar lavage fluid (BALF) inflammatory cell infiltration, and cytokine production. The treatment also suppressed the infiltration of eosinophils into the allergic lung as indicated by decreased expression levels of eotaxin and eosinophil peroxidase (EPX). However, only the expression levels of IL-25, neither IL-33 nor TSLP, were significantly decreased in the lung by rGal-1 treatment. These immunomodulatory effects in the allergic lung were correlated with the activation of extracellular signal-regulated kinase (ERK) signaling pathway and downregulation of endogenous Gal-1. In addition, rGal-1 reduced the plasma concentrations of anti-OVA immunoglobulin E (IgE) and IL-17. Our findings suggest that rGal-1 is an effective therapy for allergic airway inflammation in a murine model and may be a potential pharmacological target for allergic airway inflammatory diseases.
Collapse
|
25
|
Xu X, Wang G, Ai L, Shi J, Zhang J, Chen YX. Melatonin suppresses TLR9-triggered proinflammatory cytokine production in macrophages by inhibiting ERK1/2 and AKT activation. Sci Rep 2018; 8:15579. [PMID: 30349079 PMCID: PMC6197220 DOI: 10.1038/s41598-018-34011-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptor (TLR) signaling plays major roles in innate immune response in macrophages. Melatonin regulates TLR3- and TLR4-mediated innate immune responses in macrophages. However, it remains unknown whether melatonin regulates TLR9-mediated innate immune responses in macrophages. Here we demonstrated that melatonin suppressed TLR9 ligand-induced proinflammatory cytokines mRNA and protein production in peritoneal macrophages without interrupting the viability of peritoneal macrophages. Using a melatonin membrane receptors MT1/MT2 antagonist luzindole, we found that MT1 and MT2 were dispensable for melatonin’s inhibitory effects on TLR9-mediated proinflammatory cytokines production, even though melatonin upregulated mRNA expression of MT1 and MT2 in macrophages. Furthermore, melatonin did not affect mRNA expressions of TLR9 and MyD88 but attenuated TLR9 ligand-induced ERK1/2 and AKT phosphorylation without affecting p38 and NF-κB p65 phosphorylation. Also, melatonin inhibited TLR9-mediated proinflammatory cytokines production in vivo. Taken together, our results demonstrate that melatonin suppresses TLR9-triggered proinflammatory cytokines production in macrophages via melatonin membrane receptor-independent manners and probably through inhibiting ERK1/2 and AKT activation, which further elucidates the roles of melatonin in regulating TLR-mediated innate immune responses in macrophages.
Collapse
Affiliation(s)
- Xiongfei Xu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China. .,Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Guoquan Wang
- Department of Neurology, Junkang Hospital, Shanghai, 200125, China
| | - Lingling Ai
- Department of Otolaryngology, No. 455 Hospital of PLA, Shanghai, 200052, China
| | - Jianhui Shi
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yu-Xia Chen
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
26
|
Sevoflurane Inhibits the Th2 Response and NLRP3 Expression in Murine Allergic Airway Inflammation. J Immunol Res 2018; 2018:9021037. [PMID: 30363922 PMCID: PMC6186358 DOI: 10.1155/2018/9021037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/22/2018] [Accepted: 08/12/2018] [Indexed: 11/17/2022] Open
Abstract
Background Our colleagues have demonstrated an impressive therapeutic role of sevoflurane in a murine allergic airway inflammation model, but the mechanisms underlying this effect remain undefined. In this study, we tried to investigate the effect of sevoflurane on the resolution of allergic airway inflammation and to assess whether NLRP3 or the NLRP3 inflammasome is involved in this process. Methods Female (C57BL/6) mice were sensitized and challenged with ovalbumin (OVA). Then, some of the mice received MCC950 (10 mg/kg; i.p.) or 3% sevoflurane. Total and differential inflammatory cell numbers, proinflammatory cytokines in bronchoalveolar lavage fluid (BALF), the peribronchial inflammation density, and mucus production were evaluated. In addition, we analysed the protein levels of NLRP3, the apoptosis-associated speck-like protein containing the caspase activation and recruitment domain (ASC), pro-caspase-1, and caspase-1 in the lung tissue. Results We found that OVA-induced inflammatory cell recruitment to peribronchial regions, goblet cell hyperplasia, the serum levels of IgE, inflammatory cells, and the Th2 cytokine secretion in BALF was potently suppressed by sevoflurane with an efficacy comparable with that suppressed by MCC950 treatment. Furthermore, sevoflurane, similar to MCC950, clearly inhibited the OVA-induced activity of NLRP3 in the lungs. In addition, we found that OVA challenge failed to increase the expression of ASC, pro-caspase-1, and caspase-1 in the lungs and the levels of IL-18 and IL-1β in BALF. Conclusion Taken together, our data showed that sevoflurane ameliorated allergic airway inflammation by inhibiting Th2 responses and NLRP3 expression. The NLRP3 independent of inflammasomes participated in the pathogenesis of allergic asthma in this model.
Collapse
|
27
|
Li Q, Qi F, Meng X, Zhu C, Gao Y. Mst1 regulates colorectal cancer stress response via inhibiting Bnip3-related mitophagy by activation of JNK/p53 pathway. Cell Biol Toxicol 2018; 34:263-277. [PMID: 29063978 DOI: 10.1007/s10565-017-9417-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
The Hippo-Mst1 pathway is associated with tumor development and progression. However, little evidence is available for its role in colorectal cancer (CRC) stress response via mitochondrial homeostasis. In this study, we conducted gain-of function assay about Mst1 in CRC via adenovirus transfection. Then, cellular viability and apoptosis were measured via MTT, TUNEL assay, and typan blue staining. Mitochondrial function was detected via JC1 staining, mPTP opening assay, and immunofluorescence of cyt-c. Mitophagy was observed via western blots and immunofluorescence. Cell migration and proliferation were evaluated via Transwell and BrdU assay. Western blots were used to analyze the signaling pathways with JNK inhibitors or p53 siRNA. We found that Mst1 was down-regulated in CRC. Overexpression of Mst1 induced CRC apoptosis and impaired cell proliferation and migration. Functional studies have illustrated that recovery of Mst1 could activate JNK pathway which upregulated the p53 expression. The latter repressed Bnip3 transcription and activity, leading to the mitophagy arrest. The defective mitophagy impaired mitochondrial homeostasis, evoked cellular oxidative stress, and initiated the mitochondrial apoptosis. Meanwhile, bad-structured mitophagy also hindered the cancer proliferation via CyclinD/E. Moreover, Mst1-suppressed mitophagy was associated with CRC migration inhibition via regulation of CXCR4/7 expression. Collectively, our data described the comprehensive role of Mst1 in colorectal cancer stress response involving apoptosis, mobilization, and growth via handling mitophagy by JNK/p53/Bnip3 pathways.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Xiangchao Meng
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Chenpei Zhu
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| |
Collapse
|
28
|
Fu Y, Jiang W, Zhao Y, Huang Y, Zhang H, Wang H, Pu J. A Simple and Efficient Method for In Vivo Cardiac-specific Gene Manipulation by Intramyocardial Injection in Mice. J Vis Exp 2018. [PMID: 29708533 DOI: 10.3791/57074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Gene manipulation specifically in the heart significantly potentiate the investigation of cardiac disease pathomechanisms and their therapeutic potential. In vivo cardiac-specific gene delivery is commonly achieved by either systemic or local delivery. Systemic injection via tail vein is easy and efficient in manipulating cardiac gene expression by using recombinant adeno-associated virus 9 (AAV9). However, this method requires a relatively high amount of vector for efficient transduction, and may result in nontarget organ gene transduction. Here, we describe a simple, efficient, and time-saving method of intramyocardial injection for in vivo cardiac-specific gene manipulation in mice. Under anesthesia (without ventilation), the pectoral major and minor muscles were bluntly dissected, and the mouse heart was quickly exposed by manual externalization through a small incision at the fourth intercostal space. Subsequently, adenovirus encoding luciferase (Luc) and vitamin D receptor (VDR), or short hairpin RNA (shRNA) targeting VDR, was injected with a Hamilton syringe into the myocardium. Subsequent in vivo imaging demonstrated that luciferase was successfully overexpressed specifically in the heart. Moreover, Western blot analysis confirmed the successful overexpression or silencing of VDR in the mouse heart. Once mastered, this technique can be used for gene manipulation, as well as injection of cells or other materials such as nanogels in the mouse heart.
Collapse
Affiliation(s)
- Yanan Fu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College; Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Wenlong Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yuli Huang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College
| | - Heng Zhang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College;
| | - Hongju Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College
| | - Jun Pu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College; Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University;
| |
Collapse
|
29
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Wang L, Wang M, Li S, Wu H, Shen Q, Zhang S, Fang L, Liu R. Nebulized lidocaine ameliorates allergic airway inflammation via downregulation of TLR2. Mol Immunol 2018; 97:94-100. [PMID: 29609129 DOI: 10.1016/j.molimm.2018.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 01/15/2023]
Abstract
Nebulized lidocaine has been suggested to be beneficial in asthma therapy, but the underlying mechanisms are little known. We aimed to investigate whether Toll-like receptor (TLR) 2 was involved in the protective effect of lidocaine on allergic airway inflammation. Female C57BL/6 mice were sensitized and challenged with ovalbumin (OVA). Meanwhile, some of the mice were treated with TLR2 agonist (Pam3CSK4, 100 μg) intraperitoneally in combination with OVA on day 0. Just after allergen provocation, mice were treated with inhaled lidocaine or vehicle for 30 min. In this model, we found that lidocaine markedly attenuated OVA-evoked airway inflammation, leukocyte recruitment and mucus production. Moreover, lidocaine abrogated the increased concentrations of T cytokines and TNF-α in bronchoalveolar lavage fluid (BALF) of allergic mice, as well as reducing the expression of phosphorylated nuclear factor (P-NF)-κBp65 and the NOD-like receptor pyridine containing 3 (NLRP3), which are important for the production of pro-inflammatory cytokines. In addition, our study showed that lidocaine dramatically decreased OVA-induced increased expression of TLR2 in the lung tissues. Furthermore, activation of TLR2 aggravated OVA-challenged airway inflammation, meanwhile, it also elevated OVA-induced expression of P-NF-κBp65 and NLRP3 in the lungs. However, lidocaine effectively inhibited airway inflammation and counteracted the expression of P-NF-κBp65 and NLRP3 in allergic mice pretreated with Pam3CSK4. Taken together, the present study demonstrated that lidocaine prevented allergic airway inflammation via TLR2 in an OVA-induced murine allergic airway inflammation model. TLR2/NF-κB/NLRP3 pathway may serve as a promising therapeutic strategy for allergic airway inflammation.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Muzi Wang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Shuai Li
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Huimei Wu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Qiying Shen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Shihai Zhang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Lei Fang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Rongyu Liu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China.
| |
Collapse
|