1
|
Gallo G, Rubattu S, Volpe M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int J Mol Sci 2024; 25:2667. [PMID: 38473911 DOI: 10.3390/ijms25052667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure, thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids, leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the dynamics of membrane potential and are associated with heart failure development and progression. We will also provide an overview of the potential implication of mitochondria as an attractive therapeutic target in the management and recovery process in heart failure.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | | |
Collapse
|
2
|
Huang CR, Chu YT, Chang CL, Yip HK, Chen HH. ZNF746 plays cardinal roles on colorectal cancer (CRC) cell invasion and migration and regulates mitochondrial dynamics and morphological changes of CRC cells-Role of combined melatonin and 5-FU regimen. J Cell Biochem 2024; 125:e30507. [PMID: 38047497 DOI: 10.1002/jcb.30507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The underlying mechanism of colorectal cells developing into cancer cells has been extensively investigated, yet is still not fully delineated, resulting in the treatment of advanced colorectal cancer (CRC) remains regrettably an unmet need. Zinc Finger Protein 746/Parkin-interacting substrate (ZNF746/PARIS) has previously been identified to play a fundamental role on bladder cancer cell proliferation and metastasis that were effectively inhibited by melatonin (Mel). In this study, we utilized ex vivo/in vivo studies to verify whether the ZNF746 signaling was also crucial in CRC growth/invasion/migration. Tissue-bank specimens showed that the protein expression of ZNF746 was significantly increased in CRC than that of healthy colorectal tissues (p < 0.001). Additionally, in vitro study demonstrated that excessive expression of ZNF746 significantly inhibited mitochondrial activity via (1) interfering with the dynamic balance of mitochondrial fusion/fission and (2) inhibiting the protein expression of MFN1/MFN2/PGC1a (all p < 0.001). Furthermore, we identified that inhibition of ZNF746 protein expression significantly reduced the resistance of CRC cell lines to the anticancer drug of 5-FU (p < 0.001), whereas overexpression of ZNF746 significantly augmented resistance of CRC cells to 5-FU (all p < 0.001). Finally, using the cell culture method, we found that combined Mel and 5-FU was superior to merely one on promoting the CRC cell apoptosis (p < 0.001). Our results confirmed that ZNF746 signaling played a cardinal role of CRC cell proliferation/survival and combined Mel and 5-FU treatment attenuated the resistance of CRC cells to the drug mainly through suppressing this signaling.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
| | - Yu-Ting Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
- Department of Nursing, Asia University Taichung, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Şehirli AÖ, Aksoy U, Sibai A, Orhan K, Sayıner S. Effects of N-acetyl-L-cysteine against apical periodontitis in rats with adriamycin-induced cardiomyopathy and nephropathy. Int Endod J 2024; 57:195-207. [PMID: 38071432 DOI: 10.1111/iej.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
AIM This study aimed to investigate the potential protective effects of N-acetyl-L-cysteine (NAC) against apical periodontitis (AP) in rats with adriamycin (ADR)-induced kidney and heart diseases. METHODOLOGY Fourty-eight Wistar albino rats were divided into six groups: (1) Control group, (2) ADR group (1 mg/kg/day ip for 10 days), (3) AP Group (1st mandibular molar tooth), (4) AP + ADR Group, (5) AP + NAC group (150 mg/kg/day ip), and (6) AP + ADR + NAC group. After 3 weeks, the rats were decapitated and blood and tissue samples (heart, kidney, and jaw) were collected. Tissue samples were evaluated by biochemical (inflammatory cytokines and hemodynamic parameters) and radiological analyses. One-way anova with Tukey post hoc tests was used to compare data, considering p < .05 as statistically significant. RESULTS The serum levels of TNF-α, IL-1β, BUN, Creatinine, CK, and LDH were elevated in the test groups compared with the control group, and treatment with NAC reduced these levels (p < .05). Heart and kidney tissue analysis showed a higher heart-to-body weight ratio (HW/BW) and kidney-to-body weight ratio (KW/BW) in the test groups compared with the control group (p < .05). No significant differences in HW/BW and KW/BW were found between the control and AP + NAC groups. Volumetric apical bone resorption analysis showed an increase in periapical radiolucencies in AP-induced groups indicating apical periodontitis. NAC treatment reduced the total area and volume of resorption cavities (p < .05). CONCLUSIONS The results suggest that NAC's antioxidant and anti-inflammatory effects can reduce adriamycin-mediated heart and kidney damage and may have a positive effect on apical periodontitis in individuals with nephropathy and cardiomyopathy.
Collapse
Affiliation(s)
- Ahmet Özer Şehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, North Cyprus, Turkey
| | - Umut Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, North Cyprus, Turkey
| | - Abdullah Sibai
- Department of Endodontics, Faculty of Dentistry, Near East University, North Cyprus, Turkey
| | - Kaan Orhan
- Department of DentoMaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Serkan Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, North Cyprus, Turkey
| |
Collapse
|
4
|
Qian L, Xu H, Yuan R, Yun W, Ma Y. Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed Pharmacother 2024; 170:116000. [PMID: 38070245 DOI: 10.1016/j.biopha.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Formononetin, an isoflavone compound, has been extensively researched due to its various biological activities, including a potent protective effect on the cardiovascular system. However, the impact of formononetin on cardiac fibrosis has not been investigated. In this study, C57BL/6 mice were used to establish cardiac fibrosis animal models by subcutaneous injecting of isoproterenol (ISO) and formononetin was orally administrated. The results showed that formononetin reversed ISO-induced heart stiffness revealed by early-to-atrial wave ratio (E/A ratio). Masson staining, western blot, immunohistochemistry and real-time PCR exhibited that the cardiac fibrosis and fibrosis-related proteins (collage III, fibronectin, TGF-β1, α-SMA, and vimentin) and genes (Col1a1, Col3a1, Acta2 and Tgfb1) induced by ISO were significantly suppressed by formononetin. Furthermore, by combining metabolomics and network pharmacology, we found three important targets (ALDH2, HADH, and MAOB), which are associated with mitochondrial function, were involved in the beneficial effect of formononetin. Further validation revealed that these three genes were more abundance in cardiomyocyte than in cardiac fibroblast. The mRNA expression of ALDH2 and HADH were decreased, while MOAB was increased in cardiomyocyte upon ISO treatment and these phenomena were reversed by formononetin. In addition, we investigated mitochondrial membrane potential and ROS production in cardiomyocytes, the results showed that formononetin effectively improved mitochondrial dysfunction induced by ISO. In summary, we demonstrated that formononetin via regulating the expressions of ALDH2, HADH, and MAOB in cardiomyocyte to improve mitochondrial dysfunction and alleviate β-adrenergic activation cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Qian
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai 200241, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
5
|
Sex Differences of Radiation Damage in High-Fat-Diet-Fed Mice and the Regulatory Effect of Melatonin. Nutrients 2022; 15:nu15010064. [PMID: 36615722 PMCID: PMC9823527 DOI: 10.3390/nu15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The consumption of a high-fat diet (HFD) and exposure to ionizing radiation (IR) are closely associated with many diseases. To evaluate the interaction between HFDs and IR-induced injury, we gave mice whole abdominal irradiation (WAI) to examine the extent of intestinal injury under different dietary conditions. Melatonin (MLT) is a free radical scavenger that effectively prevents hematopoietic, immune, and gastrointestinal damage induced by IR. However, its effects on WAI-induced intestinal injury in HFD-fed mice remain unclear. We demonstrated that MLT can promote intestinal structural repair following WAI and enhance the regeneration capacity of Lgr5+ intestinal stem cells. In addition, we investigated the effects of radiation damage on sexual dimorphism in HFD-fed mice. The results showed that the degree of IR-induced intestinal injury was more severe in the HFD-fed female mice. MLT preserved the intestinal microbiota composition of HFD-fed mice and increased the abundance of Bacteroides and Proteobacteria in male and female mice, respectively. In conclusion, MLT may reduce the negative effects of HFD and IR, thereby providing assistance in preserving the structure and function of the intestine.
Collapse
|
6
|
Chen Z, Wang K, Guo J, Zhou J, Loor JJ, Yang Z, Yang Y. Melatonin Maintains Homeostasis and Potentiates the Anti-inflammatory Response in Staphylococcus aureus-Induced Mastitis through microRNA-16b/YAP1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15255-15270. [PMID: 36399659 DOI: 10.1021/acs.jafc.2c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus is a highly infectious pathogen and is a considerable threat to food hygiene and safety. Although melatonin is thought to exert an ameliorative effect on bovine mastitis, the regulatory mechanisms are unclear. In this study, we first verified the therapeutic effect of melatonin against S. aureus in vitro and in vivo, a screening of differentially expressed miRNAs and mRNAs among the blank, and S. aureus and melatonin + S. aureus groups by high-throughput sequencing identified miR-16b and YAP1, which exhibited 1.95-fold upregulated and 1.05-fold downregulated expression, respectively. Moreover, epigenetic studies showed that S. aureus inhibited miR-16b expression by methylation (increased DNMT1 expression). Additionally, the DNMT1 expression level was significantly decreased by melatonin treatment, which might indicate that the inhibition of DNMT1 by melatonin reduces the effect of S. aureus on miR-16b. The flow cytometry, scanning and transmission electron microscopy, EdU assay, and cell morphology results indicated that miR-16b in bovine mammary epithelial cells (in vitro) and in mice (in vivo) can modulate the maintenance of homeostasis and potentiate the anti-inflammatory response. In addition, YAP1 was demonstrated to be the target gene of miR-16b through quantitative real-time polymerase chain reaction, western blot, RNA immunoprecipitation, and functional assays. This study indicates that melatonin inhibits S. aureus-induced inflammation via microRNA-16b/YAP1-mediated regulation, and these findings might provide a new strategy for the prevention of bovine mastitis, facilitating further studies good of zoonotic diseases caused by S. aureus infection.
Collapse
Affiliation(s)
- Zhi Chen
- Yangzhou University, Yangzhou 225009, PR China
| | - Kun Wang
- Yangzhou University, Yangzhou 225009, PR China
| | - Jiahe Guo
- Yangzhou University, Yangzhou 225009, PR China
| | | | - Juan J Loor
- University of Illinois, Urbana, Illinois 61801, United States
| | | | - Yi Yang
- Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
7
|
Furcea DM, Agrigoroaie L, Mihai CT, Gardikiotis I, Dodi G, Stanciu GD, Solcan C, Beschea Chiriac SI, Guțu MM, Ștefănescu C. 18F-FDG PET/MRI Imaging in a Preclinical Rat Model of Cardiorenal Syndrome-An Exploratory Study. Int J Mol Sci 2022; 23:ijms232315409. [PMID: 36499736 PMCID: PMC9738874 DOI: 10.3390/ijms232315409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiorenal syndrome (CRS) denotes the bidirectional interaction of chronic kidney disease and heart failure with an adverse prognosis but with a limited understanding of its pathogenesis. This study correlates biochemical blood markers, histopathological and immunohistochemistry features, and 2-deoxy-2-fluoro-D-glucose positron emission tomography (18F-FDG PET) metabolic data in low-dose doxorubicin-induced heart failure, cardiorenal syndrome, and renocardiac syndrome induced on Wistar male rats. To our knowledge, this is the first study that investigates the underlying mechanisms for CRS progression in rats using 18F-FDG PET. Clinical, metabolic cage monitoring, biochemistry, histopathology, and immunohistochemistry combined with PET/MRI (magnetic resonance imaging) data acquisition at distinct points in the disease progression were employed for this study in order to elucidate the available evidence of organ crosstalk between the heart and kidneys. In our CRS model, we found that chronic treatment with low-dose doxorubicin followed by acute 5/6 nephrectomy incurred the highest mortality among the study groups, while the model for renocardiac syndrome resulted in moderate-to-high mortality. 18F-FDG PET imaging evidenced the doxorubicin cardiotoxicity with vascular alterations, normal kidney development damage, and impaired function. Given the fact that standard clinical markers were insensitive to early renal injury, we believe that the decreasing values of the 18F-FDG PET-derived renal marker across the groups and, compared with their age-matched controls, along with the uniform distribution seen in healthy developing rats, could have a potential diagnostic and prognostic yield in cardiorenal syndrome.
Collapse
Affiliation(s)
- Dan Mihai Furcea
- Department of Nuclear Medicine, Sf. Spiridon University Emergency Hospital, 700111 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Laurențiu Agrigoroaie
- Department of Nuclear Medicine, Sf. Spiridon University Emergency Hospital, 700111 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Cosmin-T. Mihai
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
- Correspondence:
| | - Gabriela D. Stanciu
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Sorin I. Beschea Chiriac
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Mihai Marius Guțu
- Department of Biophysics and Medical Physics—Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Cipriana Ștefănescu
- Department of Biophysics and Medical Physics—Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
8
|
Ávila C, Vinay JI, Arese M, Saso L, Rodrigo R. Antioxidant Intervention against Male Infertility: Time to Design Novel Strategies. Biomedicines 2022; 10:biomedicines10123058. [PMID: 36551814 PMCID: PMC9775742 DOI: 10.3390/biomedicines10123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a highly prevalent condition, affecting 9-20% of couples worldwide. Among the identifiable causes, the male factor stands out in about half of infertile couples, representing a growing problem. Accordingly, there has been a decline in both global fertility rates and sperm counts in recent years. Remarkably, nearly 80% of cases of male infertility (MI) have no clinically identifiable aetiology. Among the mechanisms likely plausible to account for idiopathic cases, oxidative stress (OS) has currently been increasingly recognized as a key factor in MI, through phenomena such as mitochondrial dysfunction, lipid peroxidation, DNA damage and fragmentation and finally, sperm apoptosis. In addition, elevated reactive oxygen species (ROS) levels in semen are associated with worse reproductive outcomes. However, despite an increasing understanding on the role of OS in the pathophysiology of MI, therapeutic interventions based on antioxidants have not yet provided a consistent benefit for MI, and there is currently no clear consensus on the optimal antioxidant constituents or regimen. Therefore, there is currently no applicable antioxidant treatment against this problem. This review presents an approach aimed at designing an antioxidant strategy based on the particular biological properties of sperm and their relationships with OS.
Collapse
Affiliation(s)
- Cristóbal Ávila
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - José Ignacio Vinay
- Urology Department, University of Chile Clinical Hospital, Santiago 8380000, Chile
- Andrology Unit, Shady Grove Fertility, Santiago 7650672, Chile
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-229-786-126
| |
Collapse
|
9
|
Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy. Sci Rep 2022; 12:15030. [PMID: 36056063 PMCID: PMC9440113 DOI: 10.1038/s41598-022-19027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a condition of impaired ventricular remodeling and systolic diastole that is often complicated by arrhythmias and heart failure with a poor prognosis. This study attempted to identify autophagy-related genes (ARGs) with diagnostic biomarkers of DCM using machine learning and bioinformatics approaches. Differential analysis of whole gene microarray data of DCM from the Gene Expression Omnibus (GEO) database was performed using the NetworkAnalyst 3.0 platform. Differentially expressed genes (DEGs) matching (|log2FoldChange ≥ 0.8, p value < 0.05|) were obtained in the GSE4172 dataset by merging ARGs from the autophagy gene libraries, HADb and HAMdb, to obtain autophagy-related differentially expressed genes (AR-DEGs) in DCM. The correlation analysis of AR-DEGs and their visualization were performed using R language. Gene Ontology (GO) enrichment analysis and combined multi-database pathway analysis were served by the Enrichr online enrichment analysis platform. We used machine learning to screen the diagnostic biomarkers of DCM. The transcription factors gene regulatory network was constructed by the JASPAR database of the NetworkAnalyst 3.0 platform. We also used the drug Signatures database (DSigDB) drug database of the Enrichr platform to screen the gene target drugs for DCM. Finally, we used the DisGeNET database to analyze the comorbidities associated with DCM. In the present study, we identified 23 AR-DEGs of DCM. Eight (PLEKHF1, HSPG2, HSF1, TRIM65, DICER1, VDAC1, BAD, TFEB) molecular markers of DCM were obtained by two machine learning algorithms. Transcription factors gene regulatory network was established. Finally, 10 gene-targeted drugs and complications for DCM were identified.
Collapse
|
10
|
Gong C, Chang L, Sun X, Qi Y, Huang R, Chen K, Wang B, Kang L, Wang L, Xu B. Infusion of two-dose mesenchymal stem cells is more effective than a single dose in a dilated cardiomyopathy rat model by upregulating indoleamine 2,3-dioxygenase expression. Stem Cell Res Ther 2022; 13:409. [PMID: 35962420 PMCID: PMC9373305 DOI: 10.1186/s13287-022-03101-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background and aims The therapeutic efficacy of single-dose mesenchymal stromal cell (MSC) therapy for heart failure (HF) remains inconsistent. This study aimed to investigate whether infusion with two-dose human umbilical cord MSC (hUCMSCs) could be therapeutically superior to single-dose therapy in a rat model of dilated cardiomyopathy (DCM) and explored the underlying mechanisms. Methods Male Sprague–Dawley rats were intraperitoneally injected with doxorubicin (DOX) to establish a DCM model and randomized to intravenously receive single-dose or two-dose hUCMSCs at an interval of 14 days. Their left ventricular (LV) systolic and diastolic functions were analyzed by echocardiography. The percentages of Th1, Th2, Th17, and Treg cells in the heart, spleen, lymph nodes, and peripheral blood and the levels of serum cytokines in individual rats were analyzed by flow cytometry and cytometric bead assay, respectively. The degrees of cardiac fibrosis and cardiomyocyte apoptosis were examined by histology. The importance of indoleamine 2,3-dioxygenase (IDO), an activator of Treg differentiation, in the therapeutic effect of hUCMSCs on inflammation and heart function of rats was determined after induction of IDO over-expression (IDO-OE) using IFN-γ (1 ng/ml) and TNF-α (10 ng/ml) stimulation or silencing (IDO-KD) using small interfering RNA (siRNA) technology. Results Compared with the single dose, two-dose hUCMSCs were more effective in improving LV performance, attenuating cardiac dilation, reducing cardiomyocyte apoptosis and cardiac fibrosis. Two-dose hUCMSC therapy significantly increased Treg number in the heart and peripheral blood, accompanied by increased cardiac IDO expression. Compared with the control hUCMSCs, IDO-OE hUCMSCs significantly enhanced Treg and Th2 cell responses and decreased systemic Th17 cell responses and Th1 cell numbers in the mediastinal lymph nodes. Treatment with IDO-OE hUCMSCs significantly improved LV remodeling and dysfunction. However, treatment with IDO-KD hUCMSCs had opposite effects in rats. Conclusions Administration of two-dose hUCMSCs has better therapeutic effects than single-dose therapy for inhibiting myocardial inflammation to improve LV function in DCM rats. These effects are associated with upregulating IDO expression and its systemic anti-inflammatory activities. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03101-w.
Collapse
Affiliation(s)
- Chenyi Gong
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu Qi
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Rong Huang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Ke Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Bin Wang
- Clinical Stem Cell Centor, Nanjing Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China. .,Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China. .,Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
11
|
Chen W, Fan Z, Huang C, Liu J. Poricoic Acid A Inhibits the NF- κB/MAPK Pathway to Alleviate Renal Fibrosis in Rats with Cardiorenal Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8644353. [PMID: 35754696 PMCID: PMC9217574 DOI: 10.1155/2022/8644353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the potential and mechanism of action of poricoic acid A (PAA) in treatment of cardiorenal injury and fibrosis due to cardiorenal syndrome (CRS). Materials and Methods A CRS rat model was established by transabdominal subtotal nephrectomy (STNx). The experimental group was treated by gavage of PAA (10 mg/kg/day). After 8 weeks of treatment, echocardiography was utilized for detecting heart-related indexes in rats. HE and Masson staining were conducted to detect the degree of pathological damage and fibrosis in rat kidney tissue, respectively. In addition, serum blood urea nitrogen (BUN), serum creatinine (SCr), and 24-hour urine protein were measured biochemically. Also, the levels of inflammatory factors (IL-1β, IL-6, and IL-10) in rat kidneys were measured using ELISA. Western blot was used to examine the expression of NF-κB/MAPK pathway-related proteins. Results In this study, a CRS rat model was successfully established by STNx surgery. PAA treatment could significantly alleviate the damage of heart and kidney function in CRS rats and reduce the pathological damage of kidney tissue and renal fibrosis. Meanwhile, PAA could also inhibit the renal inflammatory response through downregulating IL-1β and IL-6 levels in the kidney tissue and upregulating IL-10 level. Further mechanism exploration showed that the NF-κB/MAPK signaling pathway was significantly activated in CRS rats, while PAA treatment could markedly inhibit the NF-κB/MAPK signaling pathway activity in CRS rats. Conclusion PAA can obviously improve the pathological damage and fibrosis of renal tissue in CRS rats and maintain the function of the heart and kidney. The above functions of PAA may be achieved by inhibiting the NF-κB/MAPK signaling pathway activity. Briefly speaking, PAA can serve as a potential drug for CRS treatment.
Collapse
Affiliation(s)
- Wenzhong Chen
- Department of Cardiovascular Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zhiwen Fan
- Department of Cardiology, The PLA 74th Group Army Hospital, Guangzhou, Guangdong 510300, China
| | - Canhui Huang
- Department of Cardiovascular Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Junying Liu
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| |
Collapse
|
12
|
Gabbin B, Meraviglia V, Mummery CL, Rabelink TJ, van Meer BJ, van den Berg CW, Bellin M. Toward Human Models of Cardiorenal Syndrome in vitro. Front Cardiovasc Med 2022; 9:889553. [PMID: 35694669 PMCID: PMC9177996 DOI: 10.3389/fcvm.2022.889553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney diseases cause high morbidity and mortality. Heart and kidneys have vital functions in the human body and, interestingly, reciprocally influence each other’s behavior: pathological changes in one organ can damage the other. Cardiorenal syndrome (CRS) is a group of disorders in which there is combined dysfunction of both heart and kidney, but its underlying biological mechanisms are not fully understood. This is because complex, multifactorial, and dynamic mechanisms are likely involved. Effective treatments are currently unavailable, but this may be resolved if more was known about how the disease develops and progresses. To date, CRS has actually only been modeled in mice and rats in vivo. Even though these models can capture cardiorenal interaction, they are difficult to manipulate and control. Moreover, interspecies differences may limit extrapolation to patients. The questions we address here are what would it take to model CRS in vitro and how far are we? There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic organ-organ crosstalk. Advanced in vitro human models can provide an insight in disease mechanisms and offer a platform for therapy development. CRS represents an exemplary disease illustrating the need to develop more complex models to study organ-organ interaction in-a-dish. Human induced pluripotent stem cells in combination with microfluidic chips are one powerful tool with potential to recapitulate the characteristics of CRS in vitro. In this review, we provide an overview of the existing in vivo and in vitro models to study CRS, their limitations and new perspectives on how heart-kidney physiological and pathological interaction could be investigated in vitro for future applications.
Collapse
Affiliation(s)
- Beatrice Gabbin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- *Correspondence: Milena Bellin, ,
| |
Collapse
|
13
|
Sung PH, Chai HT, Yang CC, Chiang JY, Chen CH, Chen YL, Yip HK. Combined levosimendan and Sacubitril/Valsartan markedly protected the heart and kidney against cardiorenal syndrome in rat. Biomed Pharmacother 2022; 148:112745. [DOI: 10.1016/j.biopha.2022.112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
|
14
|
Yeh JN, Yue Y, Chu YC, Huang CR, Yang CC, Chiang JY, Yip HK, Guo J. Entresto protected the cardiomyocytes and preserved heart function in cardiorenal syndrome rat fed with high-protein diet through regulating the oxidative stress and Mfn2-mediated mitochondrial functional integrity. Biomed Pharmacother 2021; 144:112244. [PMID: 34601193 DOI: 10.1016/j.biopha.2021.112244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
This study tested the hypothesis that Entresto (En) therapy protected the cardiomyocytes and heart function in cardiorenal syndrome (CRS) rats fed with high-protein diet (HPD) through regulating the oxidative-stress and Mfn2-mediated mitochondrial functional integrity. En (12.5 μM for the in-vitro study) protected the H9C2-cells against H2O2-induced cell apoptosis, whereas stepwise-increased H2O2 concentrations induced a significant increase in protein expressions of Mfn2/phosphorylated (p)-DRP1/mitochondrial-Bax in H9C2-cells. En downregulated H2O2-induced mitochondrial fission/upregulated mitochondrial fusion and deletion of Mfn2 gene (i.e., shMfn2) to significantly reduce H2O2-induced ROS production. En significantly suppressed and shMfn2 further significantly suppressed both H2O2-reduced mitochondrial-membrane potential and H2O2-induced ROS production/cell apoptosis/mitochondrial damage/mitochondrial-Bax released from mitochondria in H9C2 cells. En significantly reduced protein expressions of Mfn2 and p-DRP1. Additionally, En significantly suppressed and shMfn2 further significantly suppressed the protein expressions of mitochondrial-damaged (DRP1)/oxidative-stress (NOX-1/NOX-2)/apoptosis (mitochondrial-Bax/caspase-3/PARP)/autophagic (LC3B-II/LC3B-I) biomarkers (all p < 0.01). Rats were categorized into group 1 [sham-control + high-protein-diet (HPD)], group 2 (CRS + HPD) and group 3 (CRS+ HPD + En/100 mg/kg/day). By day 63 after CRS induction, the LVEF was significantly lower in group 3 and more significantly lower in group 2 than in group 1, whereas the protein expressions of oxidative-stress (NOX-1/NOX-2/p22phox/oxidized protein)/apoptotic (mitochondrial-Bax/caspase-3/PARP), fibrotic (Smad-3/TGF-ß), autophagic (Beclin-1/Atg5/ratio of LC3B-II/LC3B-I) and mitochondrial-damaged (DRP1/cyclophilin-D/cytosolic-cytochrome-C) biomarkers exhibited an opposite pattern of LVEF among the groups. Downregulation of Mfn2 by En or shMfn2 in cardiomyocytes avoided H2O2 damage and En improved the cardiac function in HPD-feeding CRS rat via adjusting Mfn2-mediated mitochondrial functional integrity.
Collapse
Affiliation(s)
- Jui-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, 613W. Huangpu Avenue, Guangzhou 510630, China
| | - Ya Yue
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi-Ching Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan; Department of Nursing, Asia University Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, 613W. Huangpu Avenue, Guangzhou 510630, China.
| |
Collapse
|
15
|
Chen C, Xie C, Wu H, Wu L, Zhu J, Mao H, Xing C. Uraemic Cardiomyopathy in Different Mouse Models. Front Med (Lausanne) 2021; 8:690517. [PMID: 34336893 PMCID: PMC8316724 DOI: 10.3389/fmed.2021.690517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
Uraemic cardiomyopathy (UCM) is one of the most common complications in chronic kidney disease (CKD). Our aim was to compare characteristics of various UCM mouse models. Mice were assigned to the following groups: the pole ligation group, 5/6 nephrectomy group (5/6Nx), uninephrectomy plus contralateral ischemia followed by reperfusion group (IR), adenine group, and sham group. Mice were sacrificed at 4, 8, and 16 weeks after surgery in the pole ligation, 5/6Nx, and IR groups, respectively. In the adenine group, mice were sacrificed at 16 weeks after the adenine diet. The structure and function of the heart and the expression of fibroblast growth factor 23 (FGF-23) and growth differentiation factor 15 (GDF-15) in hearts were assessed. The mortality in the 5/6 Nx group was significantly higher than that in the pole ligation, IR, and adenine groups. Echocardiogram and histological examination showed cardiac hypertrophy in the adenine,5/6Nx, ligation group, and IR group. In addition, cardiac fibrosis occurred in all CKD modeling groups. Interestingly, cardiac fibrosis was more serious in the IR and adenine groups. FGF-23 expression in sham mice was similar to that in modeling groups; however, the GDF-15 level was decreased in modeling groups. Our results suggest that the four models of UCM show different phenotypical features, molding time and mortality. GDF-15 expression in the hearts of UCM mice was downregulated compared with sham group mice.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, China
| | - Caidie Xie
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzhang Wu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingfeng Zhu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Sheu JJ, Chai HT, Sung PH, Chiang JY, Huang TH, Shao PL, Wu SC, Yip HK. Double overexpression of miR-19a and miR-20a in induced pluripotent stem cell-derived mesenchymal stem cells effectively preserves the left ventricular function in dilated cardiomyopathic rat. Stem Cell Res Ther 2021; 12:371. [PMID: 34187571 PMCID: PMC8243466 DOI: 10.1186/s13287-021-02440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND This study tested the hypothesis that double overexpression of miR-19a and miR-20a (dOex-mIRs) in human induced pluripotent stem cell (iPS)-derived mesenchymal stem cells (MSCs) effectively preserved left ventricular ejection fraction (LVEF) in dilated cardiomyopathy (DCM) (i.e., induced by doxorubicin) rat. METHODS AND RESULTS In vitro study was categorized into groups G1 (iPS-MSC), G2 (iPS-MSCdOex-mIRs), G3 (iPS-MSC + H2O2/100uM), and G4 (iPS-MSCdOex-mIRs + H2O2/100uM). The in vitro results showed the cell viability was significantly lower in G3 than in G1 and G2, and that was reversed in G4 but it showed no difference between G1/G2 at time points of 6 h/24 h/48 h, whereas the flow cytometry of intra-cellular/mitochondrial oxidative stress (DCFA/mitoSOX) and protein expressions of mitochondrial-damaged (cytosolic-cytochrome-C/DRP1/Cyclophilin-D), oxidative-stress (NOX-1/NOX2), apoptotic (cleaved-caspase-3/PARP), fibrotic (p-Smad3/TGF-ß), and autophagic (ratio of LC3B-II/LC3BI) biomarkers exhibited an opposite pattern of cell-proliferation rate (all p< 0.001). Adult-male SD rats (n=32) were equally divided into groups 1 (sham-operated control), 2 (DCM), 3 (DCM + iPS-MSCs/1.2 × 106 cells/administered by post-28 day's DCM induction), and 4 (DCM + iPS-MSCdOex-mIRs/1.2 × 106 cells/administered by post-28 day's DCM induction) and euthanized by day 60 after DCM induction. LV myocardium protein expressions of oxidative-stress signaling (p22-phox/NOX-1/NOX-2/ASK1/p-MMK4,7/p-JNK1,2/p-cJUN), upstream (TLR-4/MAL/MyD88/TRIF/TRAM/ TFRA6/IKKα/ß/NF-κB) and downstream (TNF-α/IL-1ß/MMP-9) inflammatory signalings, apoptotic (cleaved-PARP/mitochondrial-Bax), fibrotic (Smad3/TGF-ß), mitochondrial-damaged (cytosolic-cytochrome-C/DRP1/cyclophilin-D), and autophagic (beclin1/Atg5) biomarkers were highest in group 2, lowest in group 1 and significantly lower in group 4 than in group 3, whereas the LVEF exhibited an opposite pattern of oxidative stress (all p< 0.0001). CONCLUSION iPS-MSCdOex-mIRs therapy was superior to iPS-MSC therapy for preserving LV function in DCM rat.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123, Dapi Road, Niaosung Dist, Kaohsiung, 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123, Dapi Road, Niaosung Dist, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123, Dapi Road, Niaosung Dist, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan. .,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Post-Baccalaureate Program in Nursing, Asia University, Taichung, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123, Dapi Road, Niaosung Dist, Kaohsiung, 83301, Taiwan. .,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Department of Nursing, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| |
Collapse
|
17
|
Lee MS, Yip HK, Yang CC, Chiang JY, Huang TH, Li YC, Chen KH, Sung PH. Overexpression of miR-19a and miR-20a in iPS-MSCs preserves renal function of chronic kidney disease with acute ischaemia-reperfusion injury in rat. J Cell Mol Med 2021; 25:7675-7689. [PMID: 34161651 PMCID: PMC8358869 DOI: 10.1111/jcmm.16613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
This study tested the hypothesis that therapy with double overexpression of miR‐19a‐3p and miR‐20a‐5p (miRDOE) to human inducible pluripotent stem cell–derived mesenchymal stem cells (iPS‐MSCs) was superior to iPS‐MSCs alone for preserving renal function in rat with pre‐existing chronic kidney disease (CKD), followed by ischaemia‐reperfusion (IR) injury. In vitro study demonstrated that the protein expressions of oxidative stress (NOX‐1/NOX‐2/NOX4/oxidized protein/p22phox), inflammatory downstream signalling (TLR2&4/MyD88/TRAF6/IKK‐ß/p‐NFκB/IL‐1ß/IL‐6/MMP‐9) and cell apoptosis/death signalling (cleaved caspase‐3/mitochondrial Bax/p‐ERKs/p‐JNK/p‐p38) at time‐points of 24‐hour/48‐hour cell cultures were significantly increased in p‐Cresol‐treated NRK‐52E cells than in the control that was significantly reversed by miR‐19a‐3p‐transfected iPS‐MSC (all P < .001). Animals were categorized into group 1 (sham‐operated control), group 2 (CKD‐IR), group 3 (CKD‐IR + oligo‐miRDOE of iPS‐MSCs/6.0 ×105/intra‐renal artery transfusion/3 hours after IR procedure), group 4 (CKD‐IR + iPS‐MSCs) and group 5 (CKD‐IR + miRDOE of iPS‐MSCs/6.0 ×105/intra‐renal artery transfusion/3 hour after IR procedure). By day 35, the creatinine/BUN levels were lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3 and 4 (all P < .0001) but they showed no difference between the latter two groups. The protein expressions of oxidative stress, inflammatory downstream signalling and cell apoptosis/death signalling exhibited an identical pattern of creatinine level among the five groups (all P < .00001). Also, the microscopic findings demonstrated that the kidney injury score/fibrotic area/number of inflammatory cells (CD14+/CD68+) exhibited an identical pattern of creatine level (all P < .0001). The miRDOE of iPS‐MSCs was superior to iPS‐MSCs for preserving the residual kidney function and architecture in CKD‐IR rat.
Collapse
Affiliation(s)
- Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Wesseling M, Mulder E, Brans MAD, Kapteijn DMC, Bulthuis M, Pasterkamp G, Verhaar MC, Danser AHJ, van Goor H, Joles JA, de Jager SCA. Mildly Increased Renin Expression in the Absence of Kidney Injury in the Murine Transverse Aortic Constriction Model. Front Pharmacol 2021; 12:614656. [PMID: 34211391 PMCID: PMC8239225 DOI: 10.3389/fphar.2021.614656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Cardiorenal syndrome type 2 is characterized by kidney failure as a consequence of heart failure that affects >50% of heart failure patients. Murine transverse aortic constriction (TAC) is a heart failure model, where pressure overload is induced on the heart without any systemic hypertension or its consequences. Whether renal function is altered in this model is debated, and if so, at which time post-TAC renal dysfunction starts to contribute to worsening of cardiac function. We therefore studied the effects of progressive heart failure development on kidney function in the absence of chronically elevated systemic blood pressure and renal perfusion pressure. C57BL/6J mice (N = 129) were exposed to TAC using a minimally invasive technique and followed from 3 to 70 days post-TAC. Cardiac function was determined with 3D ultrasound and showed a gradual decrease in stroke volume over time. Renal renin expression and plasma renin concentration increased with progressive heart failure, suggesting hypoperfusion of the kidney. In addition, plasma urea concentration, a surrogate marker for renal dysfunction, was increased post-TAC. However, no structural abnormalities in the kidney, nor albuminuria were present at any time-point post-TAC. Progressive heart failure is associated with increased renin expression, but only mildly affected renal function without inducing structural injury. In combination, these data suggest that heart failure alone does not contribute to kidney dysfunction in mice.
Collapse
Affiliation(s)
- Marian Wesseling
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory for Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva Mulder
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maike A D Brans
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniek M C Kapteijn
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marian Bulthuis
- Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Pasterkamp
- Laboratory for Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marianne C Verhaar
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - A H Jan Danser
- Department of Pharmacology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Harry van Goor
- Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Jaap A Joles
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
Wang S, Wei M, Zhu W. WITHDRAWN: Melatonin increases doxorubicin-induced apoptosis via oxidative DNA damage in oral squamous cell carcinoma. DNA Repair (Amst) 2021. [DOI: 10.1016/j.dnarep.2021.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Synergic effect of combined cyclosporin and melatonin protects the brain against acute ischemic reperfusion injury. Biomed Pharmacother 2021; 136:111266. [PMID: 33465677 DOI: 10.1016/j.biopha.2021.111266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND This study tested whether combined cyclosporin-A (CsA) and melatonin (Mel) was superior to either one on protecting the brain against ischemia (occluded left-middle-cerebral-artery for 90-min)-reperfusion (for 14 days) injury. METHODS AND RESULTS Neuro-2a cells (N2a) were categorized into groups 1 (N2a), 2 (N2a-IR), 3 (N2a-IR-Mel), 4 (N2a-IR-CsA) and 5 (N2a-IR-CsA-Mel). in vitro results showed the protein expressions of cytosolic-cytochrome-C/mitochondrial-Bax/cleaved-capase-3/NOX-1/NOX-2 and flow-cytometric results of ROS (DCFDA/Mito-SOX) were highest in group 2, lowest in group 1, significantly lower in group 5 than in groups 3/4, but they showed no difference in groups 3/4 (all p < 0.001). Male-adult-SD rats (50) were equally categorized into groups 1 (sham-operated-control), 2 (IR), 3 (IR-CsA/20.0 mg/kg at 0.5/24/48 h intraperitoneally after IR), 4 (IR-Mel/50.0 mg/kg intraperitoneally at 30 min and 30 mg/kg at 6/24/48 h after IR) and 5 (IR-CsA-Mel). The brain-infarct-area (BIA) (at day-3 by TTC-stain) was lowest in group 1, highest in group 2, significantly lower in group 5 than groups 3/4, but it showed no difference between groups 3/4 whereas the brain-infarct-volume (at day 14 by MRI) was similar as BIA except for significantly lower in group 4 than in group 3 (all p < 0.0001). By day 14, microscopic finding showed the numbers of glial+/GFAP+/AQP + cells expressed an identical trend whereas the number of NeuN + cells exhibited an opposite pattern of BIA among the groups (all p < 0.0001). The protein expressions of oxidative-stress (NOX-1/NOX-2/p22phox/oxidized-protein), inflammatory (TNF-α/p-NF-κB/MMP-9), apoptotic (mitochondrial-Bax/caspase-3/PARP) and mitochondrial-damaged (Cyclophilin-D/DRP1/cytosolic-cytochrome-C) biomarkers displayed an identical pattern of BIA among the five groups (all p < 0.0001). CONCLUSION Combined CsA-Mel was superior to either CsA or Mel on protecting the brain against IR injury.
Collapse
|
21
|
Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties. Cardiovasc Drugs Ther 2020; 36:131-155. [PMID: 32926271 DOI: 10.1007/s10557-020-07052-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of mortality and disability, tending to happen in younger individuals in developed countries. Despite improvements in medical treatments, the therapy and long-term prognosis of CVDs such as myocardial ischemia-reperfusion, atherosclerosis, heart failure, cardiac hypertrophy and remodeling, cardiomyopathy, coronary artery disease, myocardial infarction, and other CVDs threatening human life are not satisfactory enough. Therefore, many researchers are attempting to identify novel potential therapeutic methods for the treatment of CVDs. Melatonin is an anti-inflammatory and antioxidant agent with a wide range of therapeutic properties. Recently, several investigations have been carried out to evaluate its effectiveness and efficiency in CVDs therapy, focusing on mechanistic pathways. Herein, this review aims to summarize current findings of melatonin treatment for CVDs.
Collapse
|
22
|
Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L, Zhuang Q. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov 2020; 6:80. [PMID: 32963808 PMCID: PMC7474731 DOI: 10.1038/s41420-020-00316-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Although fibrosis is a common pathological feature of most end-stage organ diseases, its pathogenesis remains unclear. There is growing evidence that mitochondrial dysfunction contributes to the development and progression of fibrosis. The heart, liver, kidney and lung are highly oxygen-consuming organs that are sensitive to mitochondrial dysfunction. Moreover, the fibrotic process of skin and islet is closely related to mitochondrial dysfunction as well. This review summarized emerging mechanisms related to mitochondrial dysfunction in different fibrotic organs and tissues above. First, it highlighted the important elucidation of mitochondria morphological changes, mitochondrial membrane potential and structural damage, mitochondrial DNA (mtDNA) damage and reactive oxidative species (ROS) production, etc. Second, it introduced the abnormality of mitophagy and mitochondrial transfer also contributed to the fibrotic process. Therefore, with gaining the increasing knowledge of mitochondrial structure, function, and origin, we could kindle a new era for the diagnostic and therapeutic strategies of many fibrotic diseases based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Wei Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, 410013 Changsha, Hunan China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Mingyi Zhao
- Pediatric Department of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
| | - Linyong Xu
- School of Life Science, Central South University, 410013 Changsha, Hunan China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Research Center of National Health Ministry on Transplantation Medicine, 410013 Changsha, Hunan China
| |
Collapse
|
23
|
Kong L, Zhang C. LncRNA DLX6-AS1 aggravates the development of ovarian cancer via modulating FHL2 by sponging miR-195-5p. Cancer Cell Int 2020; 20:370. [PMID: 32774164 PMCID: PMC7405350 DOI: 10.1186/s12935-020-01452-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Ovarian cancer (OC) is a huge burden on women’s lives. Recently, the implication of long non-coding RNAs (lncRNAs) in cancers, including OC, has aroused much attention. The objective of this study was to explore the role and functional mechanism of lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) in OC. Methods The expression of DLX6-AS1, miR-195-5p, and four and a half LIM domains protein 2 (FHL2) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell proliferation, apoptosis, migration, and invasion were assessed by cell count kit 8 (CCK-8), flow cytometry and transwell assays, respectively. The protein levels of proliferating cell nuclear antigen (PCNA), cleaved-caspase-3 (C-caspase 3), N-cadherin, Vimentin, E-cadherin and FHL2 were quantified by western blot. The relationship between miR-195-5p and DLX6-AS1 or FHL2 was predicted by bioinformatics tool starBase and verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor model was established to observe the role of DLX6-AS1 in vivo. Results DLX6-AS1 and FHL2 were up-regulated in OC tissues and cells, while miR-195-5p was down-regulated. DLX6-AS1 knockdown inhibited proliferation, migration, and invasion but induced apoptosis of OC cells. However, miR-195-5p inhibition reversed these effects. Overexpression of miR-195-5p also depleted proliferation, migration, and invasion but promoted apoptosis of OC cells, while FHL2 overexpression overturned these influences. DLX6-AS1 knockdown blocked tumor growth in vivo. Conclusion DLX6-AS1, as an oncogene in OC, accelerated tumor progression by up-regulating FHL2 via mediating miR-195-5p, suggesting that DLX6-AS1 was a hopeful target for the lncRNA-targeted therapy in OC.
Collapse
Affiliation(s)
- Lijun Kong
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026 China
| | - Chengyan Zhang
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026 China
| |
Collapse
|
24
|
Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging (Albany NY) 2020; 12:8241-8260. [PMID: 32384281 PMCID: PMC7244027 DOI: 10.18632/aging.103136] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
The clinical application of doxorubicin (Dox) is limited due to its undesirable cardiotoxicity side effects. Cellular senescence plays an important role in Dox-induced cardiotoxicity. Exosomes derived from stem cells showed a therapeutic effect in Dox-induced cardiomyopathy (DIC). Hypoxia-preconditioned exosomes (exosomeHypoxia) display pro-metabolism and pro-survival abilities. Several long-noncoding RNAs/microRNAs act as competing endogenous RNAs (ceRNAs) modulating DIC. No study investigated whether exosomeHypoxia could attenuate DIC through modulating ceRNAs.Treatment of the human adipose-derived mesenchymal stem cells with hypoxia induced lncRNA-MALAT1 accumulation in the secreted exosomes. In addition, the lncRNA-MALAT1 was identified as an exosomal transfer RNA to repress miR-92a-3p expression. Silencing the lncRNA-MALAT1 in MSCs or miR-92a-3p overexpression in cardiomyocytes significantly impaired the rejuvenation induced by exosomeHypoxia. TargetScan and luciferase assay showed that miR-92a-3p targeted the ATG4a 3' untranslated region. Silencing ATG4a blocked the anti-senescent effect of exosomeHypoxia.This study identified the lncRNA-MALAT1 that functioned as ceRNA binding to miR-92a-3p, leading to ATG4a activation, thus improving mitochondrial metabolism. LncRNA-MALAT1/miR-92a-3p/ATG4a partially mediates the cardioprotective roles of exosomeHypoxia in Dox-induced cardiac damage. ExosomeHypoxia may serve as a potential therapeutic target against DIC.
Collapse
|
25
|
Yang Y, Zhou Y, Wang Y, Wei X, Wang T, Ma A. Exendin-4 regulates endoplasmic reticulum stress to protect endothelial progenitor cells from high-glucose damage. Mol Cell Probes 2020; 51:101527. [PMID: 31996309 DOI: 10.1016/j.mcp.2020.101527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND High glucose affects the function of endothelial cells by increasing oxidative stress. Studies have found that exendin-4 can improve wound healing in diabetic mice and mice with normal blood glucose. However, the mechanism of exendin-4 in endothelial progenitor cells under high-glucose condition has not been fully elucidated. METHODS Diabetic mouse models were established to investigate the effects of exendin-4 on endothelial progenitor cells in diabetic mice. Serum superoxide dismutase (SOD) and malondialdehyde (MDA) were determined by WST-8 and thiobarbituric acid (TBA) colorimetry, respectively. Cell viability, apoptosis and reactive oxygen species (ROS) were detected by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry. Gene and protein expressions were determined by Quantitative reverse transcription PCR (qRT-PCR) assay and Western blot (WB). RESULTS The results showed that in diabetic mice, exendin-4 did not affect blood glucose or body weight, moreover, it improved aortic diastolic function, increased SOD activity and down-regulated malondialdehyde (MDA) level in the mice. In addition, exendin-4 also increased endothelial progenitor cell (EPCs) viability and reduced cell apoptosis through inhibiting p38 MAPK pathway and reducing endoplasmic reticulum stress and ROS. CONCLUSION Exndin-4 can alleviate diabetes-caused damage to mice, moreover, it reduced endoplasmic reticulum stress and ROS through inhibiting p38 MAPK pathway in MPCs cells under high-glucose condition, thus increasing cell viability and reducing cell apoptosis.
Collapse
Affiliation(s)
- Yong Yang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yong Zhou
- Department of Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xianglong Wei
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Tingzhong Wang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiqun Ma
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
28
|
Abstract
The B cell lymphoma 2-associated anthanogene (BAG3) is an anti-apoptotic co-chaperone protein. Previous reports suggest that mutations in BAG3 are associated with dilated cardiomyopathy. This review aims to summarize the current understanding of the relationship between BAG3 mutations and dilated cardiomyopathy, primarily focusing on the role and protective mechanism of BAG3 in cardiomyocytes from individuals with dilated cardiomyopathy. The results of published studies show that BAG3 is critically important for reducing cardiomyocyte apoptosis, maintaining protein homeostasis, regulating mitochondrial stability, modulating myocardial contraction, and reducing cardiac arrhythmia, which suggests an indispensable protective mechanism of BAG3 in dilated cardiomyopathy. The significant role of BAG3 in protecting cardiomyocytes provides a new direction for the diagnosis and treatment of dilated cardiomyopathy. However, further research is required to explore the molecular mechanisms that regulate BAG3 expression, to identify a novel therapy for patients with dilated cardiomyopathy.
Collapse
|
29
|
Lee FY, Luo CW, Wallace CG, Chen KH, Sheu JJ, Yin TC, Chai HT, Yip HK. Direct implantations of erythropoietin and autologous EPCs in critical limb ischemia (CLI) area restored CLI area blood flow and rescued remote AMI-induced LV dysfunction. Biomed Pharmacother 2019; 118:109296. [PMID: 31545254 DOI: 10.1016/j.biopha.2019.109296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This study tested the hypothesis that intramuscular injections of erythropoietin (EPO) and endothelial progenitor cells (EPC) to critical limb ischemia (CLI; primary treatment site) could also improve heart function in rat after acute myocardial infarction (AMI; remote ischemic organ). METHOD Adult-male SD rats (n = 40) were equally categorized into group 1 (sham-operated control), group 2 (CLI-AMI), group 3 [CLI-AMI + EPO (10 mg/kg)], group 4 [CLI-AMI + EPCs (1.2 × 106)] and group 5 (CLI-AMI + EPCs + EPO). RESULTS By day 21 (end of study period), 2-D echo and Laser doppler showed that left-ventricular injection fraction (LVEF) and the ratio of ischemic to normal blood flow were highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but not different in the latter two groups (all p < 0.0001). Flow cytometry and ELISA demonstrated that circulating angiogenesis factors were significantly progressively increased from groups 1 to 5 (all p < 0.001). The number of small vessels and protein (CD31/eNOS)/cellular (vWF) expressions reflecting integrity of endothelium exhibited an identical pattern to LVEF whereas protein (VEGF/SDF-1α)/cellular (VEGF) expressions were significantly progressively increased from groups 1 to 5 in quadriceps and heart tissues (all p < 0.0001). Protein expressions of apoptotic (Bax/caspase-3/PARP)/inflammatory (MMP-9) and microscopic findings of ischemic/fibrotic/collagen-deposition areas and DNA-damage marker (γ-H2AX+) were lowest in group 1 and significantly progressively decreased from groups 2 to 5 in quadriceps and heart tissues (all p < 0.0001). CONCLUSIONS Direct injection of EPO-EPC into CLI effectively restored blood flow in the CLI area and also preserved remote heart function.
Collapse
Affiliation(s)
- Fan-Yen Lee
- Division of thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | | | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Nursing, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
30
|
Zhang L, Yang X, Jiang G, Yu Y, Wu J, Su Y, Sun A, Zou Y, Jiang H, Ge J. HMGB1 enhances mechanical stress-induced cardiomyocyte hypertrophy in vitro via the RAGE/ERK1/2 signaling pathway. Int J Mol Med 2019; 44:885-892. [PMID: 31524228 PMCID: PMC6657962 DOI: 10.3892/ijmm.2019.4276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023] Open
Abstract
Pressure overload-induced cardiac hypertrophy is associated with a complex spectrum of pathophysiological mechanisms, including the inflammation response. High mobility group box-1 (HMGB1), a pro-inflammatory cytokine, is not only increased in myocardium under pressure overload, but also exacerbates pressure overload-induced cardiac hypertrophy and dysfunction; however, the underlying mechanisms have remained elusive. In the present study, cultured cardiomyocytes were stimulated by mechanical stress and/or HMGB1 for various durations to examine the role of HMGB1 in cardiomyocyte hypertrophy, and to detect the expression of receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR-4) and the activation status of mitogen-activated protein kinases (MAPKs) and Janus kinase 2 (JAK2)/STAT3. The results indicated that HMGB1 aggravated mechanical stress-induced cardiomyocyte hypertrophy. Furthermore, mechanical stress and HMGB1 stimulation activated extracellular signal-regulated kinase 1/2 (ERK1/2), P38 and JAK2/STAT3 signaling in cardiomyocytes, but an additive effect of the combined stimuli was only observed on the activation of ERK1/2. In addition, mechanical stress caused a prompt upregulation of the expression of RAGE and TLR-4 in cardiomyocytes, while the activation of ERK1/2 by HMGB1 was inhibited by blockage of RAGE, but not by blockage of TLR-4. In summary, the present results indicated that extracellular HMGB1 enhanced mechanical stress-induced cardiomyocyte hypertrophy in vitro, at least partially via the RAGE/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Xue Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Guoliang Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Jian Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Yangang Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Yang CC, Chen YT, Chen CH, Li YC, Shao PL, Huang TH, Chen YL, Sun CK, Yip HK. The therapeutic impact of entresto on protecting against cardiorenal syndrome-associated renal damage in rats on high protein diet. Biomed Pharmacother 2019; 116:108954. [PMID: 31108352 DOI: 10.1016/j.biopha.2019.108954] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This study tested the hypothesis that Entresto could safely and effectively preserve heart and kidney function in rats with cardiorenal syndrome (CRS) induced by 5/6 nephrectomy and intra-peritoneal doxorubicin administration (accumulated dosage up to 7.5 mg/kg) together with daily high-protein-diet (HPD). METHODS AND RESULTS Adult male Sprague-Dawley rats (n = 24) were equally categorized into Group 1 (sham-operated control + HPD), Group 2 (CRS + HPD) and Group 3 [CRS + HPD + Entresto (100 mg/kg/day orally) since Day 14 after CRS induction] and euthanized by Day 63 after CRS induction. By Day 63, circulatory BUN and creatinine levels and ratios of urine protein to creatinine were significantly higher in Group 2 than those in Groups 1 and 3, and significantly higher in Group 3 than in Group 1, whereas left-ventricular ejection fraction and kidney weight showed an opposite pattern among all groups (all p < 0.001). Microscopically, fibrosis area and intensity of oxidative stress (i.e., DCFDA stain) in kidney/heart tissues exhibited a pattern identical to that of creatinine level among all groups (all p < 0.0001). Kidney injury score and protein expressions of autophagy (i.e., beclin-1/Atg-5/protein ratio of LC3-BII/LC3-BI), fibrosis (Smad3/TGF-ß), apoptosis (mitochondrial-Bax/capase2/3/9), oxidative-stress (NOX-4/oxidized protein/xanthine-oxidase/catalase), membranous p47phox phosphorylation and mitochondrial-damage biomarker (cytosolic-cytochrome-C) were higher in Group 2 than those in Groups 1 and 3, and significantly higher in Group 3 than in Group 1, while protein expressions of anti-apoptosis (Bcl-2/Bcl-XL) and mitochondrial integrity (mitochondrial-cytochrome-C) markers displayed an opposite pattern among all groups in kidney tissues (all p < 0.0001). CONCLUSION Oral administration of entresto was safe and could offer protection against CRS-induced heart and kidney damage.
Collapse
Affiliation(s)
- Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Then-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, 82445 Taiwan, ROC
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Department of Nursing, Asia University, Taichung, 41354, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC.
| |
Collapse
|
32
|
Lee FY, Lee MS, Wallace CG, Huang CR, Chu CH, Wen ZH, Huang JH, Chen XS, Wang CC, Yip HK. Short-interval exposure to ambient fine particulate matter (PM2.5) exacerbates the susceptibility of pulmonary damage in setting of lung ischemia-reperfusion injury in rodent: Pharmacomodulation of melatonin. Biomed Pharmacother 2019; 113:108737. [DOI: 10.1016/j.biopha.2019.108737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/11/2022] Open
|
33
|
Salazar-Coria L, Rocha-Gómez MA, Matadamas-Martínez F, Yépez-Mulia L, Vega-López A. Proteomic analysis of oxidized proteins in the brain and liver of the Nile tilapia (Oreochromis niloticus) exposed to a water-accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:609-620. [PMID: 30658296 DOI: 10.1016/j.ecoenv.2019.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Crude oil (CO) is a super mixture of chemical compounds whose toxic effects are reported in fish species according to international guidelines. In the current study a proteomic analysis of oxidized proteins (ox) was performed on the brain and liver of Nile tilapia exposed to WAF obtained from relevant environmental loads (0.01, 0.1 and 1.0 g/L) of Maya CO. Results have shown that oxidation of specific proteins was a newly discovered organ-dependent process able to disrupt key functions in Nile tilapia. In control fish, enzymes involved on aerobic metabolism (liver aldehyde dehydrogenase and brain dihydrofolate reductase) and liver tryptophan--tRNA ligase were oxidized. In WAF-treated liver specimens, fructose-bisphosphate aldolase (FBA), β-galactosidase (β-GAL) and dipeptidyl peptidase 9 (DPP-9) were detected in oxidized form. oxDPP-9 could be favorable by reducing the risk associated with altered glucose metabolism, the opposite effects elicited by oxFBA and oxβ-GAL. oxTrypsin showed a clear adverse effect by reducing probably the hepatocyte capacity to achieve proteolysis of oxidized proteins as well as for performing the proper digestive function. Additionally, enzyme implicated in purine metabolism adenosine (deaminase) was oxidized. Cerebral enzymes of mitochondrial respiratory chain complex (COX IV, COX5B), of glycosphingolipid biosynthesis (β-N-acetylhexosaminidase), involved in catecholamines degradation (catechol O-methyltransferase), and microtubule cytoskeleton (stathmin) were oxidized in WAF-treated specimens. This response suggests, in the brain, an adverse scenario for the mitochondrial respiration process and for ATP provision as for ischemia/reoxygenation challenges. Proteomic analysis of oxidized proteins is a promising tool for monitoring environmental quality influenced by hydrocarbons dissolved in water.
Collapse
Affiliation(s)
- Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico
| | - María Alejandra Rocha-Gómez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico
| | - Félix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico.
| |
Collapse
|
34
|
Liu S. Heart-kidney interactions: mechanistic insights from animal models. Am J Physiol Renal Physiol 2019; 316:F974-F985. [PMID: 30838876 DOI: 10.1152/ajprenal.00624.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological changes in the heart or kidney can instigate the release of a cascade of cardiorenal mediators that promote injury in the other organ. Combined dysfunction of heart and kidney is referred to as cardiorenal syndrome (CRS) and has gained considerable attention. CRS has been classified into five distinct entities, each with different major pathophysiological changes. Despite the magnitude of the public health problem of CRS, the underlying mechanisms are incompletely understood, and effective intervention is unavailable. Animal models have allowed us to discover pathogenic molecular changes to clarify the pathophysiological mechanisms responsible for heart-kidney interactions and to enable more accurate risk stratification and effective intervention. Here, this article focuses on the use of currently available animal models to elucidate mechanistic insights in the clinical cardiorenal phenotype arising from primary cardiac injury, primary renal disease with special emphasis of chronic kidney disease-specific risk factors, and simultaneous cardiorenal/renocardiac dysfunction. The development of novel animal models that recapitulate more closely the cardiorenal phenotype in a clinical scenario and discover the molecular basis of this condition will be of great benefit.
Collapse
Affiliation(s)
- Shan Liu
- School of Medicine, South China University of Technology , Guangzhou , China
| |
Collapse
|
35
|
Chen YT, Yang CC, Shao PL, Huang CR, Yip HK. Melatonin-mediated downregulation of ZNF746 suppresses bladder tumorigenesis mainly through inhibiting the AKT-MMP-9 signaling pathway. J Pineal Res 2019; 66:e12536. [PMID: 30372570 DOI: 10.1111/jpi.12536] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/20/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There still lacking effective treatment for bladder cancer. This study investigated whether melatonin (Mel) can suppress the growth and invasion of bladder cancer cells. Male C57B/L6 mice were categorized into control group (ie, subcutaneous injection of HT1197 bladder cancer cell line at the back] and treatment group [subcutaneous HT1197 cells + intraperitoneal Mel (100 mg/kg/d) from day 8 to day 21 after tumor cell injection]. In vitro Mel suppressed cell growth of four bladder cancer cell lines (ie, T24, RT4, HT1197, HT1376), cell migration in HT1197/HT1376, mitochondrial membrane potential (MMP) in T24 and colony formation in RT4 cells as well as arrested the cell cycle at G0 phase and inhibited the mitotic phase of T24 cells (all P < 0.0001). Protein expression of ZNF746 in RT4/T24 cells and protein expression phosphorylated (p)-AKT/MMP-2/MMP-9 in HT1197/HT1376 cells were reduced following Mel treatment (all P < 0.001). Transfection of T24 cells with plasmid-based shRNA (ie, ZNF746-silencing) downregulated the protein expression of MMP-9, cell growth, and invasion and attachment to endothelial cells but upregulated the colony formation (all P < 0.001). Mel suppressed oxidative stress and MMP but upregulated mitochondria mass in ZNF746-silenced T24 cells, whereas these parameters exhibited a similar patter to Mel treatment in ZNF746-silenced T24 cells (all P < 0.0001). In vivo study demonstrated that Mel treatment significantly suppressed cellular expressions of MMP-9/MMP-2, protein expressions of ZNF746/p-AKT, and tumor size (all P < 0.001). Mel treatment suppressed the growth, migration, and invasion of bladder carcinoma cells through downregulating ZNF746-regulated MMP-9/MMP-2 signaling.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Department of Nursing, Asia University, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Yin TC, Sung PH, Chen KH, Li YC, Luo CW, Huang CR, Sheu JJ, Chiang JY, Lee MS, Yip HK. Extracorporeal shock wave-assisted adipose-derived fresh stromal vascular fraction restores the blood flow of critical limb ischemia in rat. Vascul Pharmacol 2018; 113:57-69. [PMID: 30597218 DOI: 10.1016/j.vph.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/22/2018] [Accepted: 12/22/2018] [Indexed: 11/17/2022]
Abstract
We tested the hypothesis that extracorporeal-shock-wave (ECSW)-assisted adipose-derived stromal vascular fraction (SVF) therapy was better than either one for restoring the blood flow in critical limb ischemia (CLI). Adult male-SD rats were categorized into group 1 (sham-operated-control), group 2 (CLI), group 3 [CLI + ECSW (280 impulses/0.10 mJ/mm2) applied to left inguinal area at 3 h after CLI], group 4 [CLI + SVF (1.2 × 106) implanted into CLI area at 3 h after CLI], group 5 (CLI + ECSW-SVF). In vitro studies showed that ECSW significantly enhanced angiogenesis in human umbilical-vein endothelial cells and carotid-artery ring, and SVF significantly suppressed inflammation (TNF-α/NF-Κb/IL-1ß/MMP-9) in smooth-muscle cells treated by LPS (all p < .001). By day 14 after CLI, the ratio of ischemic/normal blood flow (INBF) was highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but no difference was shown between the latter two groups (all p < .001). The fibrotic area in CLI region exhibited an opposite pattern of INBF ratio (all p < .0001). Protein (CD31/vWF/eNOS) and cellular (CD31/vWF) expressions and number of small vessels in CLI area exhibited an identical pattern, whilst protein expressions of apoptotic (caspase3/PARP/mitochondrial-Bax) fibrotic/DNA-damaged (Samd3/TFG-ß/γ-H2AX) biomarkers exhibited an opposite pattern to INBF among five groups (all p < .0001). The numbers of angiogenetic cells in CLI region (SDF-1α/VEGF/CXCR4) and endothelial-progenitor cells (C-kit/CD31+//Sca-1/CD31+//CD34/KDR+/VE-cadherin/CD34+) in circulation significantly and progressively increased from groups 2 to 5 (all p < .0001). In conclusion, ECSW-SVF therapy effectively enhanced angiogenesis and restoration of blood flow in CLI area.
Collapse
Affiliation(s)
- Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Nursing, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
37
|
Sang Y, Gu X, Pan L, Zhang C, Rong X, Wu T, Xia T, Li Y, Ge L, Zhang Y, Chu M. Melatonin Ameliorates Coxsackievirus B3-Induced Myocarditis by Regulating Apoptosis and Autophagy. Front Pharmacol 2018; 9:1384. [PMID: 30564119 PMCID: PMC6288359 DOI: 10.3389/fphar.2018.01384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/12/2018] [Indexed: 01/29/2023] Open
Abstract
Current therapeutics options for viral myocarditis are unsatisfactory. Melatonin (MLT), a hormone secreted by the pineal gland and other organs, has protective effects on ischemic heart injury. However, the potential therapeutic effect of MLT on viral myocarditis is unknown. In this study, we investigated the protective effect of MLT on viral myocarditis in a mouse model of myocarditis infected with coxsackievirus B3 (CVB3) and explored the probable mechanisms. Mice with CVB3-induced myocarditis displayed inflammatory cell infiltration and interstitial edema. MLT treatment significantly ameliorated the myocardial injuries. In addition, the rate of autophagy changed, although apoptosis was inhibited in mouse hearts following treatment with MLT. These results suggest that MLT has a strong therapeutic effect on acute viral myocarditis, which is associated with changes in autophagy and apoptosis in the heart. Thus, MLT could be a promising novel therapeutic approach against viral myocarditis.
Collapse
Affiliation(s)
- Yimiao Sang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Pediatrics, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaohong Gu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lulu Pan
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China.,Child Health Manage Department, Maternal and Child Health Care Institution, Wenzhou, China
| | - Chunxiang Zhang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xing Rong
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianhe Xia
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuechun Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lisha Ge
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanhai Zhang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Maoping Chu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Abdelsalam HM, Samak MA, Alsemeh AE. Synergistic therapeutic effects of Vitis vinifera extract and Silymarin on experimentally induced cardiorenal injury: The pertinent role of Nrf2. Biomed Pharmacother 2018; 110:37-46. [PMID: 30458346 DOI: 10.1016/j.biopha.2018.11.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiorenal crosstalk has gained growing scientific curiosity recently. Clinical observations have approved that heart and kidney performances are intimately interrelated; acute or chronic dysfunction of either is inevitably mirrored on the other. This coexistence usually has the poor prognosis and worsened outcome. METHODS We designed this study to explore therapeutic potentials of combined Vitis vinifera and Silymarin extracts on histopathological alterations of experimentally induced cardiorenal injury model. Moreover, to examine the pertinent role of Nrf2 in their bio-molecular actions. Sixty adult male Wistar albino rats were utilized, further subdivided into control, doxorubicin (DXR), DXR + Silymarin, DXR + Aqueous Vitis, DXR + Ethanolic Vitis, DXR + Ethanolic Vitis + Silymarin. Left ventricle and renal cortex sections from all groups were processed for histopathological examination, biochemical estimation of serum Urea, Creatinine, BUN, lipid profile and hs-CRP and real-time PCR of Nrf2 expression in cardiac and renal tissue homogenate were performed. RESULTS Our results proved that combined ethanolic extract of Vitis vinifera and Silymarin restored normal renal and cardiac histomorphology. Significant improvement of Creatinine, BUN, lipid profile and hs-CRP cardiac and renal biochemical indicators confirmed our results. Moreover, significant elevation of mRNA expression levels of Nrf2 proved that combined Vitis vinifera and Silymarin action was directly related to the redox-sensitive regulator pathway. CONCLUSIONS We concluded that synergistic therapeutic effect of Vitis vinifera extract and Silymarin on experimental cardiorenal injury model owes principally to promoting activation of the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hani M Abdelsalam
- Department of Zoology, Faculty of Science, Zagazig University, Egypt.
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| | - Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
39
|
Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat. Biomed Pharmacother 2018; 109:658-670. [PMID: 30404073 DOI: 10.1016/j.biopha.2018.10.095] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
This study tested the hypothesis that early administration of empagliflozin (Empa), an inhibitor of glucose recycling in renal tubules, could preserve heart function in cardiorenal syndrome (CRS) in rat. Chronic kidney disease (CKD) was caused by 5/6 subtotal nephrectomy and dilated cardiomyopathy (DCM) by doxorubicin (DOX) treatment. In vitro results showed that protein expressions of cleaved-caspase3 and autophagy activity at 24 h/48 h in NRK-52P cells were significantly upregulated by para-Creso treatment; these were significantly downregulated by Empa treatment. Flow cytometric analysis showed that annexin-V (i.e., early/late apoptosis) in NRK-52P cells expressed an identical pattern to cleaved-caspase3 between the two groups (all p < 0.001). Adult-male-SD rats (n = 18) were equally categorized into group 1 (sham-control), group 2 (CRS) and group 3 [CRS + Empa; 20 mg/kg/day]. By day-42 after CRS induction, left-ventricular ejection fraction (LVEF) level exhibited an opposite pattern, whereas LV end-diastolic dimension and creatinine level displayed the same pattern, to cleaved-caspase3 among the three groups (all p < 0.0001). In LV tissues, protein expressions of inflammatory (tumor-necrosis factor-α/nuclear-factor-κB/interleukin-1ß/matrix-metalloprotianse-9), oxidative stress (NOX-1/NOX-2/oxidized protein), apoptotic (mitochondrial-Bax/cleaved-caspase-3/cleaved-PARP), fibrotic (transforming-growth factor-ß/Smad3), DNA/mitochondrial-damage (γ-H2AX/cytosolic-cytochrome-C) and heart failure (brain natriuretic peptide (BNP) levels displayed an opposite pattern to LVEF among the three groups (all p < 0.0001). Additionally, cellular expressions of DNA-damage/heart-failure (γ-H2AX+//XRCC1+CD90+//BNP+) biomarkers and histopathological findings of fibrotic/condensed collagen-deposition areas and apoptotic nuclei showed an identical pattern, whereas connexin43 and small-vessel number exhibited an opposite pattern, to inflammation among the three groups (all p < 0.0001). In conclusion, Empa therapy protected heart and kidney against CRS injury.
Collapse
|
40
|
Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, García IM, Cuello-Carrión FD, Fornés MW, Ferder L, Diez ER, Manucha W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT 1 reduction and Hsp70-VDR increase. J Pineal Res 2018; 65:e12513. [PMID: 29851143 DOI: 10.1111/jpi.12513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
Lethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT1 ). Melatonin has renal and cardiac protective actions. One potential mechanism is the increase in the heat shock protein 70 (Hsp70)-an antioxidant factor. We aim to determine the mechanisms involved in melatonin (Mel) prevention of kidney damage and arrhythmogenic heart remodeling. Unilateral ureteral-obstruction (UUO) and sham-operated rats were treated with either melatonin (4 mg/kg/day) or vehicle for 15 days. Hearts and kidneys from obstructed rats showed a reduction in VDR and Hsp70. Associated with AT1 up-regulation in the kidneys and the heart of UUO rats also increased oxidative stress, fibrosis, apoptosis, mitochondrial edema, and dilated crests. Melatonin prevented these changes and ventricular fibrillation during reperfusion. The action potential lengthened and hyperpolarized in melatonin-treated rats throughout the experiment. We conclude that melatonin prevents renal damage and arrhythmogenic myocardial remodeling during unilateral ureteral obstruction due to a decrease in oxidative stress/fibrosis/apoptosis associated with AT1 reduction and Hsp70-VDR increase.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis/drug effects
- Fibrosis/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Male
- Melatonin/therapeutic use
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Myocardium/metabolism
- NADPH Oxidases/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Tachycardia, Ventricular/drug therapy
- Tachycardia, Ventricular/metabolism
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Mariana Casarotto
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Juan Pablo Calvo
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Luciana Mazzei
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Amira Zulma Ponce Zumino
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Isabel Mercedes García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Miguel Walter Fornés
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
41
|
Extracorporeal Shock Wave-Supported Adipose-Derived Fresh Stromal Vascular Fraction Preserved Left Ventricular (LV) Function and Inhibited LV Remodeling in Acute Myocardial Infarction in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7518920. [PMID: 30416645 PMCID: PMC6207868 DOI: 10.1155/2018/7518920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
This study tested the hypothesis that extracorporeal shock wave- (ECSW-) assisted adipose-derived stromal vascular fraction (SVF) therapy could preserve left ventricular ejection fraction (LVEF) and inhibit LV remodeling in a rat after acute myocardial infarction (AMI). Adult male SD rats were categorized into group 1 (sham control), group 2 (AMI induced by left coronary artery ligation), group 3 [AMI + ECSW (280 impulses at 0.1 mJ/mm2, applied to the chest wall at 3 h, days 3 and 7 after AMI), group 4 [AMI + SVF (1.2 × 106) implanted into the infarct area at 3 h after AMI], and group 5 (AMI + ECSW-SVF). In vitro, SVF protected H9C2 cells against menadione-induced mitochondrial damage and increased fluorescent intensity of mitochondria in nuclei (p < 0.01). By day 42 after AMI, LVEF was highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, and similar between the latter two groups (all p < 0.0001). LV remodeling and infarcted, fibrotic, and collagen deposition areas as well as apoptotic nuclei exhibited an opposite pattern to LVEF among the groups (all p < 0.0001). Protein expressions of CD31/vWF/eNOS/PGC-1α/α-MHC/mitochondrial cytochrome C exhibited an identical pattern, whilst protein expressions of MMP-9/TNF-α/IL-1β/NF-κB/caspase-3/PARP/Samd3/TGF-β/NOX-1/NOX-2/oxidized protein/β-MHC/BNP exhibited an opposite pattern to LVEF among five groups (all p < 0.0001). Cellular expressions of CXCR4/SDF-1α/Sca-1/c-Kit significantly and progressively increased from groups 1 to 5 (all p < 0.0001). Cellular expression of γ-H2AX/CD68 displayed an opposite pattern to LVEF among the five groups (all p < 0.0001). In conclusion, ECSW-SVF therapy effectively preserved LVEF and inhibited LV remodeling in rat AMI.
Collapse
|
42
|
Combined Therapy with SS31 and Mitochondria Mitigates Myocardial Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2018; 19:ijms19092782. [PMID: 30223594 PMCID: PMC6164143 DOI: 10.3390/ijms19092782] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 02/04/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury contributes to adverse cardiac outcomes after myocardial ischemia, cardiac surgery, or circulatory arrest. In this study, we evaluated the ability of combined SS31-mitochondria (Mito) therapy to protect heart cells from myocardial IR injury. Adult male SD rats (n = 8/each group) were randomized: group 1 (sham-operated control), group 2 (IR, 30-min ischemia/72 h reperfusion), group 3 (IR-SS31 (2 mg intra-peritoneal injection at 30 min/24 h/48 h after IR)), group 4 (IR-mitochondria (2 mg/derived from donor liver/intra-venous administration/30 min after IR procedure)), and group 5 (IR-SS31-mitochondria). In H9C2 cells, SS31 suppressed menadione-induced oxidative-stress markers (NOX-1, NOX-2, oxidized protein) while it increased SIRT1/SIRT3 expression and ATP levels. In adult male rats 72 h after IR, left ventricular ejection fraction (LVEF) was highest in sham-operated control animals and lowest in the IR group. LVEF was also higher in IR rats treated with SS31-Mito than untreated IR rats or those treated with Mito or SS31 alone. Areas of fibrosis/collagen-deposition showed the opposite pattern. Likewise, levels of oxidative-stress markers (NOX-1, NOX-2, oxidized protein), inflammatory markers (MMP-9, CD11, IL-1β, TNF-α), apoptotic markers (mitochondrial-Bax, cleaved-caspase-3, PARP), fibrosis markers (p-Smad3, TGF-β), DNA-damage (γ-H2AX), sarcomere-length, and pressure/volume overload markers (BNP, β-MHC) all showed a pattern opposite that of LVEF. Conversely, anti-apoptotic (BMP-2, Smad1/5) and energy integrity (PGC-1α/mitochondrial cytochrome-C) markers exhibited a pattern identical to that of LVEF. This study demonstrates that the combined SS31-Mito therapy is superior to either therapy alone for protecting myocardium from IR injury and indicates that the responsible mechanisms involved increased SIRT1/SIRT3 expression, which suppresses inflammation and oxidative stress and protects mitochondrial integrity.
Collapse
|
43
|
Nduhirabandi F, Maarman GJ. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018; 23:molecules23071819. [PMID: 30037127 PMCID: PMC6099639 DOI: 10.3390/molecules23071819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a multifactorial clinical syndrome characterized by the inability of the heart to pump sufficient blood to the body. Despite recent advances in medical management, poor outcomes in patients with heart failure remain very high. This highlights a need for novel paradigms for effective, preventive and curative strategies. Substantial evidence supports the importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in various cardiac pathologies and cardiometabolic disorders. Melatonin plays a crucial role in major pathological processes associated with heart failure including ischemic injury, oxidative stress, apoptosis, and cardiac remodeling. In this review, available evidence for the role of melatonin in heart failure is discussed. Current challenges and possible limitations of using melatonin in heart failure are also addressed. While few clinical studies have investigated the role of melatonin in the context of heart failure, current findings from experimental studies support the potential use of melatonin as preventive and adjunctive curative therapy in heart failure.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| | - Gerald J Maarman
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
44
|
Yun SP, Han YS, Lee JH, Kim SM, Lee SH. Melatonin Rescues Mesenchymal Stem Cells from Senescence Induced by the Uremic Toxin p-Cresol via Inhibiting mTOR-Dependent Autophagy. Biomol Ther (Seoul) 2018; 26:389-398. [PMID: 28655071 PMCID: PMC6029684 DOI: 10.4062/biomolther.2017.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
p-Cresol, found at high concentrations in the serum of chronic kidney failure patients, is known to cause cell senescence and other complications in different parts of the body. p-Cresol is thought to mediate cytotoxic effects through the induction of autophagy response. However, toxic effects of p-cresol on mesenchymal stem cells have not been elucidated. Thus, we aimed to investigate whether p-cresol induces senescence of mesenchymal stem cells, and whether melatonin can ameliorate abnormal autophagy response caused by p-cresol. We found that p-cresol concentration-dependently reduced proliferation of mesenchymal stem cells. Pretreatment with melatonin prevented pro-senescence effects of p-cresol on mesenchymal stem cells. We found that by inducing phosphorylation of Akt and activating the Akt signaling pathway, melatonin enhanced catalase activity and thereby inhibited the accumulation of reactive oxygen species induced by p-cresol in mesenchymal stem cells, ultimately preventing abnormal activation of autophagy. Furthermore, preincubation with melatonin counteracted other pro-senescence changes caused by p-cresol, such as the increase in total 5′-AMP-activated protein kinase expression and decrease in the level of phosphorylated mechanistic target of rapamycin. Ultimately, we discovered that melatonin restored the expression of senescence marker protein 30, which is normally suppressed because of the induction of the autophagy pathway in chronic kidney failure patients by p-cresol. Our findings suggest that stem cell senescence in patients with chronic kidney failure could be potentially rescued by the administration of melatonin, which grants this hormone a novel therapeutic role.
Collapse
Affiliation(s)
- Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Sang Min Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| |
Collapse
|
45
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
46
|
Govender J, Loos B, Marais E, Engelbrecht AM. Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol Appl Pharmacol 2018; 358:86-101. [PMID: 29966675 DOI: 10.1016/j.taap.2018.06.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction is a central element in the development of doxorubicin (DXR)-induced cardiotoxicity. In this context, melatonin is known to influence mitochondrial homeostasis and function. This study aimed to investigate the effects of melatonin on cardiac function, tumor growth, mitochondrial fission and fusion, PGC1-α and sirtuin activity in an acute model of DXR-induced cardiotoxicity. During the in vitro study, H9c2 rat cardiomyoblasts were pre-treated with melatonin (10 μM, 24 h) followed by DXR exposure (3 μM, 24 h). Following treatment, cellular ATP levels and mitochondrial morphology were assessed. In the in vivo study, female Sprague Dawley rats (16 weeks old), were inoculated with a LA7 rat mammary tumor cell line and tumors were measure daily. Animals were injected with DXR (3 × 4 mg/kg) and/or received melatonin (6 mg/kg) for 14 days in their drinking water. Rat hearts were used to conduct isolated heart perfusions to assess cardiac function and thereafter, heart tissue was used for immunoblot analysis. DXR treatment increased cell death and mitochondrial fission which were reduced with melatonin treatment. Cardiac output increased in rats treated with DXR + melatonin compared to DXR-treated rats. Tumor volumes was significantly reduced in DXR + melatonin-treated rats on Day 8 in comparison to DXR-treated rats. Furthermore, DXR + melatonin treatment increased cellular ATP levels, PGC1-α and SIRT1 expression which was attenuated by DXR treatment. These results indicate that melatonin treatment confers a dual cardio-protective and oncostatic effect by improving mitochondrial function and cardiac function whilst simultaneously retarding tumor growth during DXR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jenelle Govender
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Erna Marais
- Department of Medical Physiology, Faculty of Medicine, Stellenbosch University, Tygerberg Campus, 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
47
|
Wang H, Zhao X, Ni C, Dai Y, Guo Y. Zearalenone regulates endometrial stromal cell apoptosis and migration via the promotion of mitochondrial fission by activation of the JNK/Drp1 pathway. Mol Med Rep 2018; 17:7797-7806. [PMID: 29620184 DOI: 10.3892/mmr.2018.8823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 11/05/2022] Open
Abstract
Increased endometrial stromal cell (ESC) survival and migration is responsible for the development and progression of endometriosis. However, little is known about the mechanisms underlying ESC survival and migration, and limited therapeutic strategies that are able to reverse these abnormalities are available. The present study investigated the effects of zearalenone (ZEA) on ESC survival and migration, particularly focusing on mitochondrial fission and the c‑Jun N‑terminal kinase (JNK)/dynamin‑related protein 1 (Drp1) pathway. The results revealed that ZEA induced ESC apoptosis in a dose‑dependent manner. Furthermore, ZEA treatment triggered excessive mitochondrial fission resulting in structural and functional mitochondrial damage, leading to the collapse of the mitochondrial membrane potential and subsequent leakage of cytochrome c into the cytoplasm. This triggered the mitochondrial pathway of apoptosis. Additionally, ZEA‑induced mitochondrial fission decreased ESC migration through F‑actin/G‑actin homeostasis dysregulation. ZEA also increased JNK phosphorylation and subsequently Drp1 phosphorylation at the serine 616 position, resulting in Drp1 activation. JNK/Drp1 pathway inhibition abolished the inhibitory effects of ZEA on ESC survival and migration. In summary, the present study demonstrated that ZEA reduced ESC survival and migration through the stimulation of mitochondrial fission by activation of the JNK/Drp1 pathway.
Collapse
Affiliation(s)
- Huixiang Wang
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xiaoli Zhao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chengxiang Ni
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yuyang Dai
- Department of National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yan Guo
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
48
|
Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol 2018; 9:528. [PMID: 29867569 PMCID: PMC5967231 DOI: 10.3389/fphys.2018.00528] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.
Collapse
Affiliation(s)
- Zukiswa Jiki
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Chen L, Xia W, Hou M. Mesenchymal stem cells attenuate doxorubicin‑induced cellular senescence through the VEGF/Notch/TGF‑β signaling pathway in H9c2 cardiomyocytes. Int J Mol Med 2018; 42:674-684. [PMID: 29693137 DOI: 10.3892/ijmm.2018.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
The clinical use of doxorubicin (Dox) is limited by its cardiotoxicity. The fundamental changes it induces include interstitial myocardial fibrosis and the appearance of senescent cardiomyocytes. Mesenchymal stem cell (MSC)‑based therapies have also been reported to modulate cellular senescence, and have been used effectively to treat age‑related cardiovascular diseases. In the present study, the Transwell system was used to coculture H9c2 cells with MSCs, and their proliferation and viability were assessed. The expression of senescence‑related genes p53 and p16, and telomere length were measured using reverse transcription‑quantitative polymerase chain reaction analysis, and the Jagged‑1/Notch‑1 signaling pathway was detected using western blot analysis. The results revealed that Dox induced the senescence of H9c2 cells, characterized by a low proliferation rate, poor viability, reduced telomere length and impaired telomerase activity, and by marked increases in the expression of p53 and p16. By contrast, when cocultured with MSCs in the presence of Dox, H9c2 cell proliferation and viability increased, whereas the expression levels of p53 and p16 decreased, and telomere length and telomerase activity increased. The mechanism underlying the antisenescence function of MSCs was clarified, which involved the vascular endothelial growth factor (VEGF)/Jagged‑1/Notch‑1/transforming growth factor‑β1 (TGF‑β1) signaling pathway. It was confirmed that inhibiting VEGF, or silencing Jagged‑1 or Notch‑1 with small interfering RNA, or using recombinant TGF‑β1 eliminated the antisenescence effects of MSCs on the Dox‑treated H9c2 cells. The results revealed that MSCs rescued H9c2 cells from Dox‑induced senescence through the release of VEGF, which activated the Jagged‑1/Notch‑1 signaling pathway, leading to the inhibition of TGF‑β1 release. Therefore, treatment with MSCs may have important therapeutic implications on the attenuation of cardiotoxicity in patients with cancer treated with Dox.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
50
|
Fu Y, Jiang W, Zhao Y, Huang Y, Zhang H, Wang H, Pu J. A Simple and Efficient Method for In Vivo Cardiac-specific Gene Manipulation by Intramyocardial Injection in Mice. J Vis Exp 2018. [PMID: 29708533 DOI: 10.3791/57074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Gene manipulation specifically in the heart significantly potentiate the investigation of cardiac disease pathomechanisms and their therapeutic potential. In vivo cardiac-specific gene delivery is commonly achieved by either systemic or local delivery. Systemic injection via tail vein is easy and efficient in manipulating cardiac gene expression by using recombinant adeno-associated virus 9 (AAV9). However, this method requires a relatively high amount of vector for efficient transduction, and may result in nontarget organ gene transduction. Here, we describe a simple, efficient, and time-saving method of intramyocardial injection for in vivo cardiac-specific gene manipulation in mice. Under anesthesia (without ventilation), the pectoral major and minor muscles were bluntly dissected, and the mouse heart was quickly exposed by manual externalization through a small incision at the fourth intercostal space. Subsequently, adenovirus encoding luciferase (Luc) and vitamin D receptor (VDR), or short hairpin RNA (shRNA) targeting VDR, was injected with a Hamilton syringe into the myocardium. Subsequent in vivo imaging demonstrated that luciferase was successfully overexpressed specifically in the heart. Moreover, Western blot analysis confirmed the successful overexpression or silencing of VDR in the mouse heart. Once mastered, this technique can be used for gene manipulation, as well as injection of cells or other materials such as nanogels in the mouse heart.
Collapse
Affiliation(s)
- Yanan Fu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College; Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Wenlong Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yuli Huang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College
| | - Heng Zhang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College;
| | - Hongju Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College
| | - Jun Pu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College; Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University;
| |
Collapse
|