1
|
Li X, Li J, Yuan H, Chen Y, Li S, Jiang S, Zha Xi Y, Zhang G, Lu J. Effect of supplementation with Glycyrrhiza uralensis extract and Lactobacillus acidophilus on growth performance and intestinal health in broiler chickens. Front Vet Sci 2024; 11:1436807. [PMID: 39091388 PMCID: PMC11291472 DOI: 10.3389/fvets.2024.1436807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Intestinal microbiota community is an important factor affecting the nutritional and health status of poultry, and its balance is crucial for improving the overall health of poultry. The study aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination (GL) on growth performance and intestinal health in broilers in an 84-day feeding experiment. Supplementary 0.1% GUE and 4.5×107 CFU/g Lac significantly increased average daily gain (ADG), and GL (0.1% GUE and 4.5×107 CFU/g Lac) increased ADG and average daily feed intake (ADFI), and decreased feed conversion rate (FCR) in broilers aged 29 to 84 d and 1 to 84 d. Dietary GUE, Lac and GL increased the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and decreased Malondialdehyde (MDA) content in the jejunum mucosa of broilers, and increased secretory IgA (sIgA) content in broilers at 84 d. Moreover, GUE, Lac and GL increased cecal microbial richness and diversity, and modulated microbial community composition. Both GUE and Lac reduced the harmful bacteria Epsilonbacteraeota, Helicobacter, and H. pullorum at 28 d and Proteobacteria, Escherichia, and E. coli at 84 d, while Lac and GL increased beneficial bacteria Lactobacillus and L. gallinarum at 28 d. Compared with individual supplementation, GL markedly increased the SOD activity and the sIgA content, and reduced Helicobacter and Helicobacter pullorum. In conclusion, GUE and Lactobacillus acidophilus as feed additives benefit growth performance and intestinal health, and their combined use shows an even more positive effect in broilers.
Collapse
Affiliation(s)
- Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Haotian Yuan
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shuaibing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Department of Animal Science and Technology, Gansu Agriculture Technology College, Lanzhou, China
| | - Yingpai Zha Xi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
2
|
Omotoso AO, Reyer H, Oster M, Ponsuksili S, Wimmers K. Jejunal microbiota of broilers fed varying levels of mineral phosphorus. Poult Sci 2023; 102:103096. [PMID: 37797492 PMCID: PMC10562922 DOI: 10.1016/j.psj.2023.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Efforts to achieve sustainable phosphorus (P) inputs in broiler farming which meet the physiological demand of animals include nutritional intervention strategies that have the potential to modulate and utilize endogenous and microbiota-associated capacities. A temporal P conditioning strategy in broiler nutrition is promising as it induces endocrinal and transcriptional responses to maintain mineral homeostasis. In this context, the current study aims to evaluate the composition of the jejunal microbiota as a functional entity located at the main absorption site involved in nutrient metabolism. Starting from a medium or high P supply in the first weeks of life of broilers, a depletion strategy was applied at growth intervals from d 17 to 24 and d 25 to 37 to investigate the consequences on the composition of the jejunal microbiota. The results on fecal mineral P, calcium (Ca), and phytate contents showed that the diets applied to the depleted and non-depleted cohorts were effective. Microbial diversity in jejunum was represented by alpha diversity indices which appeared unaffected between dietary groups. However, chickens assigned to the dietary P depletion groups showed significantly higher abundances of Facklamia, Lachnospiraceae, and Ruminococcaceae compared to non-depleted control groups. Based on current knowledge of microbial function, these microorganisms make only a minor contribution to the birds' adaptive mechanism in the jejunum following P depletion. Microbial taxa such as Brevibacterium, Brachybacterium, and genera of the Staphylococcaceae family proliferated in a P-enriched environment and might be considered biomarkers for excessive P supply in commercial broiler chickens.
Collapse
Affiliation(s)
- Adewunmi O Omotoso
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6b, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
3
|
de Souza Vilela J, Kheravii SK, Sharma Bajagai Y, Kolakshyapati M, Zimazile Sibanda T, Wu SB, Andrew NR, Ruhnke I. Inclusion of up to 20% Black Soldier Fly larvae meal in broiler chicken diet has a minor effect on caecal microbiota. PeerJ 2023; 11:e15857. [PMID: 37744229 PMCID: PMC10516104 DOI: 10.7717/peerj.15857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 09/26/2023] Open
Abstract
Background The Black Soldier Fly larvae (BSFL) are a source of nutrients and bioactive compounds in broiler diets. Some components of the BSFL may serve as a prebiotic or may impact the intestinal microbiota of the broilers by other modes of action, which in turn can affect the health and performance of broilers. Here, we investigate the impact of up to 20% BSFL in broiler diets on the diversity and composition of the broiler's microbiota. Methods Four hundred broilers were fed five iso-nutritious experimental diets with increasing levels of BSFL meal reaching 0%, 5%, 10%, 15%, 20% in the finisher diets. Eight caecal content samples coming from each of the eight replicates per treatment were collected at two time points (day 21 and day 42) for DNA extraction and sequencing of the V3-V4 regions using Illumina MiSeq 2 × 300 bp pair-end sequencing with 341f and 805r primers. Analysis of variance and Spearman's correlation were performed, while QIIME2, DADA2, and Calypso were used for data analysis. Results When broilers were 21 days of age, the abundance of two groups of sequence variants representing Enterococcus and unclassified Christensenellaceae was significantly lower (p-value = 0.048 and p-value = 0.025, respectively) in the 20% BSFL group compared to the 0% BSFL group. There was no relevant alteration in the microbiota diversity at that stage. On day 42, the Spearman correlation analysis demonstrated that the sequence variants representing the genus Coprococcus showed a negative relationship with the BSFL inclusion levels (p-value = 0.043). The sequence variants representing the genus Roseburia and Dehalobacterium demonstrated a positive relationship with the BSFL dietary inclusion (p-value = 0.0069 and p-value = 0.0034, respectively). There was a reduction in the dissimilarity index (ANOSIM) caused by the 20% BSFL dietary inclusion. Conclusion The addition of up to 20% BSFL in broiler diets did not affect the overall caeca microbiota diversity or composition at day 21. On day 42, there was a reduction in the beta diversity caused by the 20% BSFL dietary inclusion. The abundance of the bacterial group Roseburia was increased by the BSFL dietary inclusion, and it may be beneficial to broiler immunity and performance.
Collapse
Affiliation(s)
- Jessica de Souza Vilela
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Yadav Sharma Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Manisha Kolakshyapati
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Nigel R. Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Isabelle Ruhnke
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
4
|
Souza MD, Eeckhaut V, Goossens E, Ducatelle R, Van Nieuwerburgh F, Poulsen K, Baptista AAS, Bracarense APFRL, Van Immerseel F. Guar gum as galactomannan source induces dysbiosis and reduces performance in broiler chickens and dietary β-mannanase restores the gut homeostasis. Poult Sci 2023; 102:102810. [PMID: 37343353 PMCID: PMC10404764 DOI: 10.1016/j.psj.2023.102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Galactomannans are abundant nonstarch polysaccharides in broiler feed ingredients. In broilers, diets with high levels of galactomannans have been associated with innate immune response stimulation, poor zootechnical performance, nutrient and lipid absorption, and excessive digesta viscosity. However, data about its effects on the gut microbiome are scarce. β-Mannanases are enzymes that can hydrolyze β-mannans, resulting in better nutrient utilization. In the current study, we have evaluated the effect of guar gum, a source of galactomannans, supplemented to broiler diets, either with or without β-mannanase supplementation, on the microbiota composition, in an attempt to describe the potential role of the intestinal microbiota in β-mannanase-induced gut health and performance improvements. One-day-old broiler chickens (n = 756) were randomly divided into 3 treatments: control diet, guar gum-supplemented diet (1.7%), or guar gum-supplemented diet + β-mannanase (Hemicell 330 g/ton). The zootechnical performance, gut morphometry, ileal and cecal microbiome, and short-chain fatty acid concentrations were evaluated at different time points. The guar gum supplementation decreased the zootechnical performance, and the β-mannanase supplementation restored performance to control levels. The mannan-rich diet-induced dysbiosis, with marked effects on the cecal microbiota composition. The guar gum-supplemented diet increased the cecal abundance of the genera Lactobacillus, Roseburia, Clostridium sensu stricto 1, and Escherichia-Shigella, and decreased Intestinimonas, Alistipes, Butyricicoccus, and Faecalibacterium. In general, dietary β-mannanase supplementation restored the main microbial shifts induced by guar gum to levels of the control group. In addition, the β-mannanase supplementation reduced cecal isobutyric, isovaleric, valeric acid, and branched-chain fatty acid concentrations as compared to the guar gum-supplemented diet group, suggesting improved protein digestion and reduced cecal protein fermentation. In conclusion, a galactomannan-rich diet impairs zootechnical performance in broilers and results in a diet-induced dysbiosis. β-Mannanase supplementation restored the gut microbiota composition and zootechnical performance to control levels.
Collapse
Affiliation(s)
- Marielen de Souza
- Laboratory of Animal Pathology (LAP), Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil; Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Venessa Eeckhaut
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University Next Generation Sequencing Facility (NXTGNT), Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | | | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Liu J, Robinson K, Lyu W, Yang Q, Wang J, Christensen KD, Zhang G. Anaerobutyricum and Subdoligranulum Are Differentially Enriched in Broilers with Disparate Weight Gains. Animals (Basel) 2023; 13:1834. [PMID: 37889711 PMCID: PMC10251939 DOI: 10.3390/ani13111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
The intestinal microbiota is critically important for animal health and productivity. However, the influence of the intestinal microbiota on animal growth efficiency remains elusive. This current study was aimed at identifying the intestinal bacteria that are associated with the growth rate of broilers in a commercial production setting. Ross 708 broilers with extremely high, medium, and extremely low body weight (BW) were separately selected for each sex from a house of approximately 18,000 chickens on day 42. The cecal content of each animal was subjected to 16S rRNA gene sequencing for microbiota profiling. Our results indicate that a number of bacteria were differentially enriched among different groups of broilers, with several showing a significant correlation (p < 0.05) with BW in both sexes or in a sex-specific manner. Subdoligranulum was drastically diminished in high-BW birds with a strong negative correlation with BW in both males and females. While one Anaerobutyricum strain showed a positive correlation with BW in both sexes, another strain of Anaerobutyricum was positively correlated with BW only in females. These sex-dependent and -independent bacteria could be targeted for improving the growth efficiency and may also be explored as potential biomarkers for the growth rate of broiler chickens.
Collapse
Affiliation(s)
- Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
| | - Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- Poultry Research Unit, USDA–Agricultural Research Service, Starkville, MS 39759, USA
| | - Wentao Lyu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (K.R.); (W.L.); (Q.Y.); (J.W.)
| |
Collapse
|
6
|
Ouyang J, Li Y, Wu Y, Tang H, Zheng S, Xiong Y, Wang L, Wang C, Luo K, Gao Y, Yan X, Chen H. Microbial diversity and community composition of fecal microbiota in dual-purpose and egg type ducks. Front Microbiol 2023; 14:1092100. [PMID: 37065156 PMCID: PMC10102352 DOI: 10.3389/fmicb.2023.1092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionDucks are important agricultural animals, which can be divided into egg and dual-purpose type ducks according to economic use. The gut microbiota of ducks plays an important role in their metabolism, immune regulation, and health maintenance.MethodsHere, we use 16S rDNA V4 hypervariable amplicon sequencing to investigate the compositions and community structures of fecal microbiota between egg (five breeds, 96 individuals) and dual-purpose type ducks (four breeds, 73 individuals) that were reared under the same conditions.ResultsThe alpha diversity of fecal microflora in egg type ducks was significantly higher than that in dual-type ducks. In contrast, there is no significant difference in the fecal microbial community richness between the two groups. MetaStat analysis showed that the abundance of Peptostreptococcaceae, Streptococcaceae, Lactobacillus, Romboutsia, and Campylobacter were significantly different between the two groups. The biomarkers associated with the egg and dual-purpose type ducks were identified using LEfSe analysis and IndVal index. Function prediction of the gut microbiota indicated significant differences between the two groups. The functions of environmental information processing, carbohydrate metabolism, lipid metabolism, xenobiotic biodegradation and metabolism, and metabolism of terpenoids and polyketides were more abundant in egg type ducks. Conversely, the genetic information processing, nucleotide metabolism, biosynthesis of amino acids and secondary metabolites, glycan biosynthesis and metabolism, fatty acid elongation, and insulin resistance were significantly enriched in dual-purpose type ducks.DiscussionThis study explored the structure and diversity of the gut microbiota of ducks from different economic-use groups, and provides a reference for improving duck performance by using related probiotics in production.
Collapse
|
7
|
Allium-Derived Compound Propyl Propane Thiosulfonate (PTSO) Reduces Vibrio Populations and Increases Body Weight of European Seabass ( Dicentrarchus labrax) Juveniles. Antibiotics (Basel) 2023; 12:antibiotics12010134. [PMID: 36671335 PMCID: PMC9854545 DOI: 10.3390/antibiotics12010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The global demand for fish products is continuously increasing as the population grows, and aquaculture plays an important role in supplying this demand. However, industrial antibiotic misuse has contributed to the spread of antimicrobial resistance among pathogenic bacteria, therefore, several antibiotic alternatives have been proposed. In this study, we have analyzed the effects of Allium-derived propyl propane thiosulfonate (PTSO) in European seabass juveniles' growth and performance. These effects were tested by measuring the body weight and analyzing the gut microbiome of fish after 89 days of feeding trial. The relative abundance of potentially pathogenic Vibrio in the foregut and hindgut of supplemented fish decreased, while Pseudomonas and Kocuria increased significantly. Alpha diversity indices significantly decreased in both gut regions of fish fed with Allium-derived PTSO supplemented diet, as well as between bacterial community composition. These results may indicate a positive effect of the supplementation in the diet with Allium-derived PTSO, reducing potentially pathogenic Vibrio and increasing body weight at the end of the experiment (89 days). However, this supplementation with Allium-derived PTSO produces changes in the diversity and composition of microbial communities, so further experiments would be necessary to explore bacterial community composition and health relationship.
Collapse
|
8
|
Van TTH, Lee Nen That LFM, Perera R, Anwar A, Wilson TB, Scott PC, Stanley D, Moore RJ. Spotty liver disease adversely affect the gut microbiota of layers hen. Front Vet Sci 2022; 9:1039774. [PMID: 36387407 PMCID: PMC9650437 DOI: 10.3389/fvets.2022.1039774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Spotty Liver Disease (SLD) is a serious infectious disease which occurs mainly in laying chickens in free range production systems. SLD outbreaks can increase mortality and decrease egg production of chickens, adversely impact welfare and cause economic hardship for poultry producers. The bacterium Campylobacter hepaticus is the primary cause of the disease. This study aimed to identify the effects of C. hepaticus on chicken gut microbiota and gut structure. Three C. hepaticus strains (HV10T, NSW44L and QLD19L), isolated from different states of Australia, were used in the study. Chickens at 26-weeks post-hatch were orally dosed with one of the C. hepaticus strains (challenged groups) or Brucella broth (unchallenged or control group). Six days after the challenge, birds were necropsied to assess liver damage, and caecal content and tissue samples were collected for histology, microbiology, and 16S rRNA gene amplicon sequencing to characterize the composition of the bacterial microbiota. Strain C. hepaticus NSW44L produced significantly more disease compared to the other C. hepaticus strains and this coincided with more adverse changes observed in the caecal microbiota of the birds challenged with this strain compared to the control group. Microbial diversity determined by Shannon and Simpson alpha diversity indices was lower in the NSW44L challenged groups compared to the control group (p = 0.009 and 0.0233 respectively, at genus level). Short-chain fatty acids (SCFAs) producing bacteria Faecalibacterium, Bifidobacterium and Megamonas were significantly reduced in the challenged groups compared to the unchallenged control group. Although SLD-induction affected the gut microbiota of chickens, their small intestine morphology was not noticeably affected as there were no significant differences in the villus height or ratio of villus height and crypt depth. As gut health plays a pivotal role in the overall health and productivity of chickens, approaches to improve the gut health of the birds during SLD outbreaks such as through diet and keeping the causes of stress to a minimum, may represent significant ways to alleviate the impact of SLD.
Collapse
Affiliation(s)
- Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
- *Correspondence: Thi Thu Hao Van
| | | | - Rachelle Perera
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Arif Anwar
- Scolexia Pty Ltd., Moonee Ponds, VIC, Australia
| | | | | | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
9
|
Yang X, Tai Y, Ma Y, Xu Z, Hao J, Han D, Li J, Deng X. Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Front Microbiol 2022; 13:984654. [PMID: 36338096 PMCID: PMC9633115 DOI: 10.3389/fmicb.2022.984654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Cecal microflora plays a key role in the production performance and immune function of chickens. White Leghorn (WL) is a well-known commercial layer line chicken with high egg production rate. In contrast, Silky Fowl (SF), a Chinese native chicken variety, has a low egg production rate, but good immune performance. This study analyzed the composition of cecal microbiota, metabolism, and gene expression in intestinal tissue of these varieties and the correlations among them. Significant differences were observed in the cecal microbes: Bacteroides was significantly enriched in WL, whereas Veillonellaceae and Parabacteroides were significantly enriched in SF. Carbohydrate biosynthesis and metabolism pathways were significantly upregulated in WL cecum, which might provide more energy to the host, leading to persistently high levels of egg production. The higher Parabacteroides abundance in SF increased volicitin content, enhanced α-linolenic acid metabolism, and significantly negatively correlated with metabolites of propanoate metabolism and carbohydrate metabolism. Genes related to lipid metabolism, immunity, and melanogenesis were significantly upregulated in the SF cecum, regulating lipid metabolism, and participating in the immune response, while genes related to glucose metabolism and bile acid metabolism were expressed at higher levels in WL, benefiting energy support. This study provided a mechanism for intestinal microorganisms and metabolic pathways to regulate chicken egg-laying performance and immunity.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yurong Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhao Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihan Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaqi Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junying Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
A new monocomponent xylanase improves performance, ileal digestibility of energy and nutrients, intestinal morphology, and intestinal microbiota in young broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Lu Z, Li S, Wang M, Wang C, Meng D, Liu J. Comparative Analysis of the Gut Microbiota of Three Sympatric Terrestrial Wild Bird Species Overwintering in Farmland Habitats. Front Microbiol 2022; 13:905668. [PMID: 35928156 PMCID: PMC9343720 DOI: 10.3389/fmicb.2022.905668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota of wild birds are affected by complex factors, and cross-species transmission may pose challenges for the host to maintain stable gut symbionts. Farmland habitats are environments strongly manipulated by humans, and the environmental characteristics within a large area are highly consistent. These features provide the ideal natural conditions for conducting cross-species comparative studies on gut microbiota among wild birds. This study aimed to investigate and compare the gut microbiota of three common farmland-dependent bird species, Great Bustard (Otis tarda dybowskii), Common Crane (Grus grus), and Common Coot (Fulica atra), in a homogeneous habitat during the wintering period. The results indicated that under the combined action of similar influencing factors, the gut microbiota of different host species did not undergo adaptive convergence, maintained relatively independent structures, and exhibited host-driven signals. In addition, we also detected various pathogenic genera that may cause outbreaks of periodic infections among sympatric migratory birds. We conclude that phylosymbiosis may occur between some wild birds and their gut microbiota. Usage of non-invasive methods to monitor the changes in the gut microbiota of wild bird fecal samples has important implications for the conservation of endangered species.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Sisi Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Derong Meng
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Jingze Liu,
| |
Collapse
|
12
|
Varriale L, Coretti L, Dipineto L, Green BD, Pace A, Lembo F, Menna LF, Fioretti A, Borrelli L. An Outdoor Access Period Improves Chicken Cecal Microbiota and Potentially Increases Micronutrient Biosynthesis. Front Vet Sci 2022; 9:904522. [PMID: 35909674 PMCID: PMC9330014 DOI: 10.3389/fvets.2022.904522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Characterizing the gut microbiota of free-range and alternative poultry production systems provides information, which can be used to improve poultry welfare, performance, and environmental sustainability. Gut microbiota influence not only the health and metabolism of the host but also the presence of zoonotic agents contaminating food of animal origin. In this study, the composition and diversity of the cecal microbiota community of free-range grown chickens were characterized by 16S rDNA high-throughput Illumina sequencing. Significant differences were observed in the composition of chicken cecal microbiota at the time points of 28 days of age (Indoor group) and 56 days of age (Outdoor group), i.e., before and after the outdoor access period of chicken groups. The Outdoor group showed a richer and more complex microbial community, characterized by the onset of new phyla such as Deferribacterota and Synergistota, while the Indoor group showed an increase in Campylobacterota. At the species level, it is noteworthy that the occurrence of Mucispirillum schaedleri in Outdoor group is known to potentially stimulate mucus layer formation in the distal intestinal tract, thus being associated with a healthy gut. We also report a significant decrease in the Outdoor group of Helicobacter pullorum, highlighting that the lower abundance at the age of slaughter reduced the possibility to contaminate chickens' carcasses and, consequently, its zoonotic potential. As revealed by a mutual exclusion study in network analysis, H. pullorum was present only if Bacteroides barnesiae, an uncultured organism of the genus Synergistes, and Bacteroides gallinaceum were absent. Finally, microbiome predictive analysis revealed an increase of vitamins and micronutrient biosyntheses such as queuosine (Q) and its precursor pre Q0, in the Outdoor group, suggesting that the outdoor evolved microbiota of chickens do contribute to the vitamin pool of the gut and the biosynthesis of micronutrients involved in vital cell processes.
Collapse
Affiliation(s)
- Lorena Varriale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- *Correspondence: Lorena Varriale
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Lorena Coretti
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Brian D. Green
- The Institute for Global Food Security, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Antonino Pace
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lucia Francesca Menna
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- TaskForce on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Luca Borrelli
| |
Collapse
|
13
|
Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations. Animals (Basel) 2022; 12:ani12141767. [PMID: 35883313 PMCID: PMC9311778 DOI: 10.3390/ani12141767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine the effect of partial replacement of SBM protein with CPR-derived protein in the broiler rearing period from 22 to 42 days of age on the intestinal histomorphology and the composition of the intestinal microbial population. Male broiler chicks aged 1 day were assigned to two groups with different nutrition schemes (n = 100 in each, 5 cages of 20 chicks in each). The chickens were reared for 42 days. All birds were fed isonitrogenous and isoenergetic diets: starter (1 to 21 d), grower (22 to 35 d), and finisher (36 to 42 d). From rearing day 22, different diets were provided to the birds: the SBM group received feed with 100% soybean meal protein, and the diet of the CPR group the protein originated from soybean meal was replaced by 50% chickpea protein. The study results indicated a significant impact of the inclusion of CPR in the diet on the basic intestinal structures (thickness of myenteron: submucosa, jejunum and duodenum mucosa, and jejunum transversal lamina). The addition of CPR led to shortening of intestinal villi, an increase in villus thickness, and reduced intestine absorptive surface in the duodenum and jejunum. The CPR group exhibited a significantly lower villus length-to-crypt depth ratio in the jejunum (p < 0.001). The inclusion of chickpeas in the diet increased the total count of mesophilic bacteria and coliforms in the intestinal contents (p < 0.05). In summary, it has been demonstrated that the inclusion of CPR in the diet induced considerable disturbances in metabolism and intestinal structure. Although CPR is a cheap protein source, its use in poultry diet does not ensure development of the intestinal structure comparable to that in the case of an SBM-only diet.
Collapse
|
14
|
McMurray RL, Ball MEE, Linton M, Pinkerton L, Kelly C, Lester J, Donaldson C, Balta I, Tunney MM, Corcionivoschi N, Situ C. The Effects of Agrimonia pilosa Ledeb, Anemone chinensis Bunge, and Smilax glabra Roxb on Broiler Performance, Nutrient Digestibility, and Gastrointestinal Tract Microorganisms. Animals (Basel) 2022; 12:1110. [PMID: 35565537 PMCID: PMC9105906 DOI: 10.3390/ani12091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Poultry farming is growing globally, particularly in developing countries, to meet the demands of growing populations for poultry meat and eggs. This is likely to lead to an increase in the use of antibiotics in poultry feed, thus contributing to the development and spread of antibiotic resistance which, poses a serious threat to human and animal health worldwide. One way of reducing this threat is to reduce the use of antibiotics in poultry production by finding effective and sustainable antibiotic alternatives that can be used to support poultry health and productivity. Therefore, this study evaluates the incorporation of three medicinal plants, Anemone chinensis Bunge, Smilax glabra Roxb, and Agrimonia pilosa Ledeb, in poultry feed on production performance, nutrient digestibility, and bacteria in the chicken caecum in a 35-day performance trial with 420-day-old male Ross 308 broilers. Groups of randomly selected chicks received one of six dietary treatments. These included five experimental diets of reduced nutrient specifications as a negative control (NC); with amoxicillin as a positive antibiotic control (PC1); with A. pilosa Ledeb (NC1); with A. chinensis Bunge (NC2); and with S. glabra Roxb (NC3). One other positive control diet contained the recommended nutrient specification (PC2). Weight gain and feed intake were measured weekly and used to calculate the feed conversion ratio as performance parameters. Bacteria were enumerated from chicken caecum using a traditional plating method and selective agar. S. glabra Roxb and A. chinensis Bunge showed comparable effects to amoxicillin with significantly increased weight gain in birds offered these diets, compared to those offered the negative control from days 0 to 35 (p < 0.001). S. glabra Roxb exhibited effects similar to the amoxicillin control group with an improved feed conversion ratio (p < 0.001). In addition, S. glabra Roxb decreased numbers of E. coli and Campylobacter spp. on days 21 (p < 0.05) and 35 (p < 0.01) and increased numbers of lactic acid bacteria comparable to the antibiotic group on days 14 (p < 0.001) and 35 (p < 0.01). The findings of this in vivo trial highlight the potential of S. glabra Roxb and A. chinensis Bunge as beneficial feed material to promote poultry health and productivity in the absence of antibiotics.
Collapse
Affiliation(s)
- Rebekah L. McMurray
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - M. Elizabeth E. Ball
- Livestock Production Sciences Branch, Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
| | - Mark Linton
- Bacteriology Branch Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK; (M.L.); (L.P.); (C.K.); (I.B.); (N.C.)
| | - Laurette Pinkerton
- Bacteriology Branch Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK; (M.L.); (L.P.); (C.K.); (I.B.); (N.C.)
| | - Carmel Kelly
- Bacteriology Branch Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK; (M.L.); (L.P.); (C.K.); (I.B.); (N.C.)
| | | | | | - Igori Balta
- Bacteriology Branch Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK; (M.L.); (L.P.); (C.K.); (I.B.); (N.C.)
| | - Michael M. Tunney
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicolae Corcionivoschi
- Bacteriology Branch Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK; (M.L.); (L.P.); (C.K.); (I.B.); (N.C.)
| | - Chen Situ
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
15
|
Li JP, Wu QF, Ma SC, Wang JM, Wei B, Xi Y, Han CC, Li L, He H, Liu HH. Effect of feed restriction on the intestinal microbial community structure of growing ducks. Arch Microbiol 2021; 204:85. [PMID: 34958398 DOI: 10.1007/s00203-021-02636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
In poultry, feed restriction is common feeding management to limit poultry nutrients intake so that poultry only intake the essential energy, meeting the basic need of growth and development. Our study investigated whether feeding restriction affects the diversity of the intestinal microbiota of growing breeding ducks. In this research, the 60-120-day-old ducks were raised in restricted and free-feeding groups. After slaughtering, the carcass traits and the cecal contents were collected for 16S rRNA sequencing analysis. After feeding restriction, the growth rate of ducks was limited, the weight and rate of abdominal fat decreased, and the rate of chest and leg muscles increased. In addition, feeding restriction can also change the diversity of intestinal microorganisms in breeding ducks, such as the increase of Firmicutes abundance and the decrease of Bacteroidetes abundance. After analyzing of correlation, significant correlations between gut microbiota and carcass phenotypes were found. The results indicated that gut microbiota might be involved in the life activities associated with phenotypic changes. This study proved the effect of feeding methods on the intestinal microbiota of ducks, providing a theoretical basis of the microbial angle for raising ducks in a feeding-restricted period.
Collapse
Affiliation(s)
- Jun-Peng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Qi-Fan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Sheng-Chao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jian-Mei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Chun-Chun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - He-He Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China.
| |
Collapse
|
16
|
Wu Y, Li Q, Liu J, Liu Y, Xu Y, Zhang R, Yu Y, Wang Y, Yang C. Integrating Serum Metabolome and Gut Microbiome to Evaluate the Benefits of Lauric Acid on Lipopolysaccharide- Challenged Broilers. Front Immunol 2021; 12:759323. [PMID: 34721434 PMCID: PMC8554146 DOI: 10.3389/fimmu.2021.759323] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Lauric acid (LA) is a crucial medium-chain fatty acid (MCFA) that has many beneficial effects on humans and animals. This study aimed to investigate the effects of LA on the intestinal barrier, immune functions, serum metabolism, and gut microbiota of broilers under lipopolysaccharide (LPS) challenge. A total of 384 one-day-old broilers were randomly divided into four groups, and fed with a basal diet, or a basal diet supplemented with 75 mg/kg antibiotic (ANT), or a basal diet supplemented with 1000 mg/kg LA. After 42 days of feeding, three groups were intraperitoneally injected with 0.5 mg/kg Escherichia coli- derived LPS (LPS, ANT+LPS and LA+LPS groups) for three consecutive days, and the control (CON) group was injected with the same volume of saline. Then, the birds were sacrificed. Results showed that LA pretreatment significantly alleviated the weight loss and intestinal mucosal injuries caused by LPS challenge. LA enhanced immune functions and inhibited inflammatory responses by upregulating the concentrations of immunoglobulins (IgA, IgM, and IgY), decreasing IL-6 and increasing IL-4 and IL-10. Metabolomics analysis revealed a significant difference of serum metabolites by LA pretreatment. Twenty-seven serum metabolic biomarkers were identified and mostly belong to lipids. LA also markedly modulated the pathway for sphingolipid metabolism, suggesting its ability to regulate lipid metabolism. Moreover,16S rRNA analysis showed that LA inhibited LPS-induced gut dysbiosis by altering cecal microbial composition (reducing Escherichia-Shigella, Barnesiella and Alistipes, and increasing Lactobacillus and Bacteroides), and modulating the production of volatile fatty acids (VFAs). Pearson’s correlation assays showed that alterations in serum metabolism and gut microbiota were strongly correlated to the immune factors; there were also strong correlations between serum metabolites and microbiota composition. The results highlight the potential of LA as a dietary supplement to combat bacterial LPS challenge in animal production and to promote food safety.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Qing Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yulan Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yang Yu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yongxia Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
17
|
Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides. Antibiotics (Basel) 2021; 10:antibiotics10080905. [PMID: 34438955 PMCID: PMC8388811 DOI: 10.3390/antibiotics10080905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
This present study aimed to investigate the effects of rhamnolipids (RLS) on the growth performance, intestinal morphology, immune function, short-chain fatty acid content, and microflora community in broiler chickens challenged with lipopolysaccharides (LPS). A total of 450 broiler chickens were randomly allocated into three groups: basal diet with no supplement (NCO), basal diet with bacitracin (ANT), and basal diet with rhamnolipids (RLS). After 56 d of feeding, 20 healthy broilers were selected from each group, with half being intraperitoneally injected with lipopolysaccharides (LPS) and the other half with normal saline. Treatments with LPS were labelled LPS-NCO, LPS-ANT, and LPS-RLS, whereas treatments with normal saline were labelled NS-NCO, NS-ANT, and NS-RLS. LPS-challenged birds had lower jejunal villus height and higher crypt depth than unchallenged birds. LPS-RLS broilers had increased jejunal villus height and villus height/crypt depth ratio (V/C) but lower crypt depth than LPS-NCO. Dietary supplementation with RLS reduced the LPS-induced immunological stress. Compared with LPS-NCO, birds in LPS-RLS had lower concentrations of IL-1β, IL-6, and TNF-α. In LPS-challenged broilers, RLS and ANT increased the concentrations of IgA, IgM, and IgY compared with LPS-NCO. In LPS treatments, RLS enhanced the contents of acetic acid, butyrate, isobutyric acid, isovalerate, and valerate more than LPS-NCO birds. High-throughput sequencing indicated that RLS supplementation led to changes in the cecal microbial community of broilers. At the species level, Clostridium-sp-Marseille-p3244 was more abundant in NS-RLS than in NS-NCO broilers. In summary, RLS improved the growth performance and relative abundance of cecal microbiota and reduced the LPS-induced immunological stress in broiler chickens.
Collapse
|
18
|
Guillamón E, Andreo-Martínez P, Mut-Salud N, Fonollá J, Baños A. Beneficial Effects of Organosulfur Compounds from Allium cepa on Gut Health: A Systematic Review. Foods 2021; 10:foods10081680. [PMID: 34441457 PMCID: PMC8392556 DOI: 10.3390/foods10081680] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary changes affect the composition and structure of gut microbiota (GM) in animals and humans. One of the beneficial effects of consuming products derived from plants is the positive influence on immunity and gastrointestinal health. Species belonging to the genus Allium contain many organosulfur compounds (OSCs) that have been widely studied showing their biological properties and beneficial effects on intestinal health and GM. This is the first systematic review of OSCs from Allium performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and it is based on the evidence that we found in literature about the benefits on the GM and intestinal health demonstrated by OSCs from Allium, and specifically from onion. OSCs from Allium cepa have shown a significant antibacterial activity against a broad spectrum of antibiotic-resistant Gram-positive and Gram-negative bacteria. In addition, the intake of OSCs from onion was able to modulate the composition of GM, increasing the beneficial bacterial populations in animal models. Moreover, the beneficial effects observed in murine models of colitis suggest that these compounds could be suitable candidates for the treatment of inflammatory bowel disease (IBD) or reverse the dysbiosis caused by a high-fat diet (HFD). Despite the evidence found both in vitro and in vivo, we have not found any article that tested OSCs different from allicin in clinical trials or dietary intervention studies in humans. In this sense, it would be interesting to conduct new research that tests the benefits of these compounds in human GM.
Collapse
Affiliation(s)
- Enrique Guillamón
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Nuria Mut-Salud
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Juristo Fonollá
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Department of Nutrition and Bromatology, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Correspondence: ; Tel.: +34-958-576-486
| |
Collapse
|
19
|
Feng J, Lu M, Wang J, Zhang H, Qiu K, Qi G, Wu S. Dietary oregano essential oil supplementation improves intestinal functions and alters gut microbiota in late-phase laying hens. J Anim Sci Biotechnol 2021; 12:72. [PMID: 34225796 PMCID: PMC8259136 DOI: 10.1186/s40104-021-00600-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dietary essential oil (EO) supplementation can exert favorable effects on gut health in broilers. However, it is unknown whether EO could improve intestinal functions, consequently beneficial for egg performance and quality in late-phase laying hens. This study was aimed to investigate the potential effects of EO on production performance, egg quality, intestinal health and ileal microbiota of hens in the late phase of production. A total of 288 60-week-old Hy-line Brown laying hens were randomly divided into 4 groups and fed a basal diet (control) or basal diets supplemented with oregano EO at 100, 200 and 400 mg/kg (EO100, EO200 and EO400). RESULTS Dietary EO supplementation resulted in a quadratic decrease (P < 0.05) in feed conversion ratio with lower (P < 0.05) feed conversion ratio in EO200 group than the control during weeks 9-12 and 1-12 of the trial. Compared to the control, EO addition resulted in higher (P < 0.05) eggshell thickness at the end of week. 4, 8 and 12 and higher (P < 0.05) chymotrypsin activity. There was a quadratic elevation (P < 0.05) in ileal chymotrypsin and lipase activity, along with a linear increase in villus height to crypt depth ratio. Quadratic declines (P < 0.05) in mRNA expression of IL-1β, TNF-α, IFN-γ and TLR-4, concurrent with a linear and quadratic increase (P < 0.05) in ZO-1 expression were identified in the ileum with EO addition. These favorable effects were maximized at medium dosage (200 mg/kg) of EO addition and intestinal microbial composition in the control and EO200 groups were assessed. Dietary EO addition increased (P < 0.05) the abundances of Burkholderiales, Actinobacteria, Bifidobacteriales, Enterococcaceae and Bacillaceae, whereas decreased Shigella abundance in the ileum. CONCLUSIONS Dietary EO addition could enhance digestive enzyme activity, improve gut morphology, epithelial barrier functions and modulate mucosal immune status by altering microbial composition, thus favoring feed efficiency and eggshell quality of late-phase laying hens.
Collapse
Affiliation(s)
- Jia Feng
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China
| | - Mingyuan Lu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China
| | - Haijun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China
| | - Guanghai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China.
| | - Shugeng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 10081, China.
| |
Collapse
|
20
|
Han H, Zhou Y, Liu Q, Wang G, Feng J, Zhang M. Effects of Ammonia on Gut Microbiota and Growth Performance of Broiler Chickens. Animals (Basel) 2021; 11:ani11061716. [PMID: 34201291 PMCID: PMC8228959 DOI: 10.3390/ani11061716] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The composition and function of gut microbiota is crucial for the health of the host and closely related to animal growth performance. Factors that impact microbiota composition can also impact its productivity. Ammonia (NH3), one of the major contaminants in poultry houses, negatively affects poultry performance. However, the influence of ammonia on broiler intestinal microflora, and whether this influence is related to growth performance, has not been reported. Our results indicated that ammonia caused changes to cecal microflora of broilers, and these changes related to growth performance. Understanding the effects of ammonia on the intestinal microflora of broilers will be beneficial in making targeted decisions to minimize the negative effects of ammonia on broilers. Abstract In order to investigate the influence of ammonia on broiler intestinal microflora and growth performance of broiler chickens, 288 21-day-old male Arbor Acres broilers with a similar weight were randomly divided into four groups with different NH3 levels: 0 ppm, 15 ppm, 25 ppm, and 35 ppm. The growth performance of each group was recorded and analyzed. Additionally, 16s rRNA sequencing was performed on the cecal contents of the 0 ppm group and the 35 ppm group broilers. The results showed the following: a decrease in growth performance in broilers was observed after 35 ppm ammonia exposure for 7 days and 25 ppm ammonia exposure for 14 days. At phylum level, the relative abundance of Proteobacteria phylum was increased after 35 ppm ammonia exposure. At genus level, ammonia increased the relative abundance of Escherichia–Shigella and decreased the relative abundance of Butyricicoccus, Parasutterella, Lachnospiraceae_UCG-010, Ruminococcaceae_UCG-013 and Ruminococcaceae_UCG-004. Negative correlation between Escherichia–Shigella and growth performance, and positive correlation between bacteria genera (including Butyricicoccus, Parasutterella, Lachnospiraceae_UCG-010, Ruminococcaceae_UCG-013 and Ruminococcaceae_UCG-004) and growth performance was observed. In conclusion, ammonia exposure caused changes in the structure of cecal microflora, and several species were either positively or negatively correlated with growth performance. These findings will help enhance our understanding of the possible mechanism by which ammonia affect the growth of broilers.
Collapse
|
21
|
Zając M, Kiczorowska B, Samolińska W, Kowalczyk-Pecka D, Andrejko D, Kiczorowski P. Effect of inclusion of micronized camelina, sunflower, and flax seeds in the broiler chicken diet on performance productivity, nutrient utilization, and intestinal microbial populations. Poult Sci 2021; 100:101118. [PMID: 34077850 PMCID: PMC8173300 DOI: 10.1016/j.psj.2021.101118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 11/12/2022] Open
Abstract
The aim of the study was to evaluate the effect of inclusion of micronized full-fat camelina, flax, or sunflower seeds in the diet for broiler chickens on the performance productivity, nutrient utilization, and composition of intestinal microbial populations and to assess the possibility of modification of the resistance of isolated bacteria to chemotherapeutic agents with different mechanisms of action. The use of micronized oilseeds improved the broiler chicken body weight (P = 0.035) and the FCR value (P = 0.045) in the final rearing stage by enhancement of the utilization of total protein and organic matter. Lactobacillus-Enterococcus spp., Bifidobacterium spp., Escherichia coli, and Salmonella spp. were isolated from small intestinal contents, and Enterobacteriaceae taxa were detected in the cecum and cloaca of the broiler chickens. The addition of micronized camelina seeds (CAM.IR) contributed to an increase in the Bifidobacterium counts in the small intestine, compared with the control treatment (P < 0.050). Escherichia coli bacteria were not isolated only in the CAM.IR treatment. Nitrofurantoin and chloramphenicol were the most effective agents against the isolates from the cecum and cloaca in all oilseed treatments, whereas streptomycin exhibited the lowest efficacy. In the CAM.IR and micronized sunflower seed (SUN.IR) treatments, there were higher counts of trimethoprim/sulfamethoxazole-resistant Enterobacteriaceae strains than in the control and micronized flax seed (FLA.IR) treatments (P < 0.05). There was a difference between strains isolated from the cecum and cloaca only in the FLA.IR treatment, i.e., increased tetracycline sensitivity was exhibited by strains isolated from the cloaca (13% vs. 50%), also in comparison with the control treatments (P = 0.054). In comparison with the CAM.IR and control treatments, reduced numbers of multi-resistant strains were found in the cloaca isolates from the for FLA.IR and SUN.IR variants. Micronized camelina, flax, and sunflower seeds can be used as part of an effective nutritional strategy focused on optimization of the efficiency of rearing broiler chickens, as they positively modify intestinal microbial populations and increase bacterial sensitivity to the analyzed chemotherapeutic agents.
Collapse
Affiliation(s)
- Malwina Zając
- Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland
| | - Bożena Kiczorowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland.
| | - Wioletta Samolińska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland
| | - Danuta Kowalczyk-Pecka
- Department of Zoology and Animal Ecology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka Street 28, 20-612 Lublin, Poland
| | - Piotr Kiczorowski
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka Street 28, 20-612 Lublin, Poland
| |
Collapse
|
22
|
Giacobbo FCN, Eyng C, Nunes RV, de Souza C, Teixeira LV, Pilla R, Suchodolski JS, Bortoluzzi C. Different enzymatic associations in diets of broiler chickens formulated with corn dried at various temperatures. Poult Sci 2021; 100:101013. [PMID: 33752073 PMCID: PMC8005832 DOI: 10.1016/j.psj.2021.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
The effect of supplementation of different enzymatic associations in the feed of broiler chickens formulated with corn dried at 80°C or 110°C on growth performance and carcass yield was evaluated. In addition, the influence of the different enzymatic associations on the cecal microbiota was studied. One-day-old male broiler chicks (1,320) were distributed in a completely randomized design in a 2 × 5 factorial arrangement (6 replicates; 22 birds/replicate). The treatments were 2 corn drying temperatures (80°C and 110°C) and 5 diets. The diets consisted of a positive control (PC), a negative control (NC) with a reduction of 100 kcal/kg of apparent metabolizable energy, and 3 enzyme combinations added to the NC diet: amylase, amylase + xylanase, and amylase + xylanase + protease. The feed conversion ratio (FCR) from 1 to 7 d of chickens fed diets formulated with corn dried at 80°C was better (P = 0.045) than that of chickens fed diets dried at 110°C. Regardless of the enzymatic association, the supplementation improved body weight gain (P = 0.01) of the NC group to the same level as the PC group. The FCR of the NC was similar to that of the PC only when the 3 enzymes were included from 1 to 21 d (P = 0.001) and regardless of the enzymatic association for the period from 1 to 42 d (P = 0.007). Regarding cecal microbiota, the alpha diversity was similar among the groups (P > 0.05). The beta-diversity analysis showed that the microbiota of the birds receiving the combination of the 3 enzymes was similar to that of birds fed the PC diet (P = 0.18; R = 0.074), with a similar effect observed for the predicted metabolic functions (Linear discriminant analysis effect size). In conclusion, chickens fed diets formulated with corn dried at 80°C had better FCR during the prestarter phase. The enzymatic supplementation improved the FCR of the birds, which may partially be explained by the modulation of the cecal microbiota.
Collapse
Affiliation(s)
| | - Cinthia Eyng
- Animal Science Department, Western State Paraná University, Paraná, Brazil
| | - Ricardo V Nunes
- Animal Science Department, Western State Paraná University, Paraná, Brazil
| | - Cleison de Souza
- Animal Science Department, Western State Paraná University, Paraná, Brazil
| | | | - Rachel Pilla
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
23
|
Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Liu YS, Li S, Wang XF, Xing T, Li JL, Zhu XD, Zhang L, Gao F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult Sci 2020; 100:273-282. [PMID: 33357691 PMCID: PMC7772697 DOI: 10.1016/j.psj.2020.09.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study was designed to evaluate the effects of γ-irradiated Astragalus polysaccharides (IAPS) on growth performance, cecal microbiota populations, and concentrations of cecal short-chain fatty acids of immunosuppressed broilers. A total of 144 one-day-old broiler chicks were randomly assigned into 3 groups: nontreated group (control), cyclophosphamide (CPM)-treated groups fed either a basal diet or the diets containing 900 mg/kg IAPS, respectively. On day 16, 18, and 20, broilers in the control group were intramuscularly injected with 0.5 mL sterilized saline (0.75%, wt/vol), and those in the CPM and IAPS groups were intramuscularly injected with 0.5 mL CPM (40 mg/kg of BW). The trial lasted 21 d. Compared with the control group, CPM treatment decreased the broiler average daily gain (ADG) and feed intake (P < 0.05) but did not affect the overall microbial diversity and compositions, as well as the concentrations of cecal acetate, propionate, and butyrate in cecum of broilers (P > 0.05). Dietary IAPS supplementation increased broiler ADG, Shannon index, and decreased Simpson index (P < 0.05). Specifically, broilers fed diets containing IAPS showed lower abundances of Faecalibacterium, Bacteroides, and Butyricicoccus and higher proportions of Ruminococcaceae UCG-014, Negativibacillus, Shuttleworthia, Sellimonas, and Mollicutes RF39_norank, respectively (P < 0.05). The IAPS treatment also increased butyrate concentration (P < 0.05) and tended to elevate acetate concentration (P = 0.052) in cecal digesta. The results indicated that IAPS are effective in increasing the cecal beneficial bacteria and short-chain fatty acids production, contributing to improvement in the growth performance of immunosuppressive broilers. These findings may expand our knowledge about the function of modified Astragalus polysaccharides in broiler chickens.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - S Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Sánchez CJ, Martínez-Miró S, Ariza JJ, Madrid J, Orengo J, Aguinaga MA, Baños A, Hernández F. Effect of Alliaceae Extract Supplementation on Performance and Intestinal Microbiota of Growing-Finishing Pig. Animals (Basel) 2020; 10:ani10091557. [PMID: 32887323 PMCID: PMC7552321 DOI: 10.3390/ani10091557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The increasing interest in phytogenics for use with livestock, especially swine and poultry, is mainly due to their antimicrobial, antioxidant, growth-promoting, and gut microbiome modulation properties, which makes them ideal candidates to mitigate the negative effects of the ban on antibiotic growth promoters in the European Union. We tested the ability of Allium spp. extract (containing garlic and onion), one of the best-known phytogenics, used in pig feed, to improve growth performance through modulation of the microbiome and changes in the metabolism of short-chain fatty acids in the gut tract. The promising results obtained in the present study suggested that Allium spp. extracts had the potential to be used in feeding pigs to improve growth performances by modulating the microbiota and metabolism of short-chain fatty acids. Abstract The aim of the present study was to ascertain whether an Allium spp. extract rich in organosulfur compounds, such as propyl thiosulfonate (PTSO), added to the feed of growing-finishing pigs at 5 g/kg enhances growth performance or affects the fecal microbiome, the levels of short-chain fatty acids, or the antioxidant capacity of the animals. Fifty male growing pigs (large white) of 23.07 ± 2.87 kg average body weight were randomly allotted to two treatments in a 103-day trial. The trial was divided into two periods, an initial growing phase (56-days) and a finishing phase (47-days). Two dietary treatments for each phase (growing and finishing) were used: a control diet (CON) and an experimental diet consisting of the control diet to which 5 g/kg of Allium spp. extract was added to substitute sepiolite (GAR). Throughout the study, body weight, average daily gain (kg/day, ADG), feed intake (kg/day), and feed conversion ratio (kg/kg) were measured, while the backfat thickness and muscle depth were determined at the end of the study. Besides, feces samples were taken for bacterial counts by means of real-time PCR and short-chain fatty acid (SCFA) profile determination, and the antioxidant capacity was assessed in serum and saliva. In the animals receiving Allium spp. extract (5 g/kg) in the feed, ADG increased (p < 0.05) throughout the trial, Salmonella spp. and Clostridium spp. counts in feces had decreased (p < 0.05) when measured on day 56, and, by day 103, Salmonella spp., Clostridium spp., and Enterobacteriaceae counts had decreased (p < 0.05) and Lactobacillus spp. counts had increased (p < 0.01) in feces. Regarding the SCFA profile in feces and antioxidant capacity measured in serum and saliva, supplementation with Allium spp. extract significantly increased the levels of propionic, isobutyric, and isovaleric acids and the percentage of total branched fatty acids, while the c2/c3 and (c2 + c4)/c3 ratios were lower (p < 0.05) in feces; the Trolox equivalent antioxidant capacity and the cupric reducing antioxidant capacity levels in serum were significantly higher in the same pigs on day 103 than on day 0. Consequently, based on the current results, Allium spp. extract rich in organosulfur compounds, added to the diet at 5 g/kg, had a beneficial effect on the microbiota and would seem to be a possible alternative for increasing the growth performance of growing-finishing pigs. However, further studies on the effects of Allium spp. supplementation on carcass quality are necessary.
Collapse
Affiliation(s)
- Cristian Jesús Sánchez
- Department of Animal Production, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; (C.J.S.); (J.M.); (J.O.); (F.H.)
| | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; (C.J.S.); (J.M.); (J.O.); (F.H.)
- Correspondence:
| | - Juan José Ariza
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Granada, Spain; (J.J.A.); (M.A.A.); (A.B.)
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; (C.J.S.); (J.M.); (J.O.); (F.H.)
| | - Juan Orengo
- Department of Animal Production, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; (C.J.S.); (J.M.); (J.O.); (F.H.)
| | - María Arántzazu Aguinaga
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Granada, Spain; (J.J.A.); (M.A.A.); (A.B.)
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Granada, Spain; (J.J.A.); (M.A.A.); (A.B.)
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; (C.J.S.); (J.M.); (J.O.); (F.H.)
| |
Collapse
|
26
|
Adewole D. Effect of Dietary Supplementation with Coarse or Extruded Oat Hulls on Growth Performance, Blood Biochemical Parameters, Ceca Microbiota and Short Chain Fatty Acids in Broiler Chickens. Animals (Basel) 2020; 10:E1429. [PMID: 32824171 PMCID: PMC7459877 DOI: 10.3390/ani10081429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to determine the effect of dietary supplementation with coarse or extruded oat hulls on growth performance, blood biochemistry, cecal microbiota, and short chain fatty acids (SCFA) in broiler chickens. Chickens were randomly allotted to four dietary treatments consisting of a corn-wheat-soybean meal-based diet (Basal), Basal + Bacitracin methylenedisalicylate (BMD), Basal +3% coarse OH (COH), and basal +3% extruded OH (EOH). Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were recorded weekly. On day 36, eight chickens/treatment were euthanized, blood samples were collected, and organ weights were determined. Cecal digesta samples were collected for the determination of SCFA concentration and microbial DNA sequence. Data were subjected to ANOVA using the mixed procedure of SAS. Alpha diversity was estimated with the Shannon index, and the significance of diversity differences was tested with ANOVA. Birds fed COH and EOH had reduced (p < 0.05) BWG, but there was no effect of treatment on FCR. There was a significant increase (p = 0.0050) in relative gizzard empty weight among birds that were fed COH, compared to the other treatments. Dietary treatments had no effect on blood biochemical parameters and SCFA concentration. Cecal microbial composition of chickens was mostly comprised of Firmicutes and Tenericutes. Seven OTUs that were differentially abundant among treatments were identified. In conclusion, supplementation of broiler chickens' diets with 3% COH or EOH did not affect the FCR, blood biochemical parameters and SCFA concentration, but modified few cecal microbiota at the species level. Dietary supplementation with COH but not EOH significantly increased the relative gizzard weight.
Collapse
Affiliation(s)
- Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
27
|
Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals (Basel) 2020; 10:E1391. [PMID: 32796556 PMCID: PMC7460082 DOI: 10.3390/ani10081391] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.
Collapse
Affiliation(s)
- Yasir Iqbal
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
28
|
Vollmar S, Wellmann R, Borda-Molina D, Rodehutscord M, Camarinha-Silva A, Bennewitz J. The Gut Microbial Architecture of Efficiency Traits in the Domestic Poultry Model Species Japanese Quail ( Coturnix japonica) Assessed by Mixed Linear Models. G3 (BETHESDA, MD.) 2020; 10:2553-2562. [PMID: 32471941 PMCID: PMC7341145 DOI: 10.1534/g3.120.401424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
It is well known that mammals and avian gut microbiota compositions are shaped by the host genomes and affect quantitative traits. The microbial architecture describes the impact of the microbiota composition on quantitative trait variation and the number and effect distribution of microbiota features. In the present study the gut microbial architecture of feed-related traits phosphorus and calcium utilization, daily gain, feed intake and feed per gain ratio in the domestic poultry model species Japanese quail were assessed by mixed linear models. The ileum microbiota composition was characterized by 16S rRNA amplicon sequencing techniques of growing individuals. The microbiability of the traits was on a similar level as the narrow sense heritability and was highly significant except for calcium utilization. The animal microbial correlation of the traits was substantial. Microbiome-wide association analyses revealed several traits associated and highly significant microbiota features, both on the bacteria genera as well as on the operational taxonomic unit level. Most features were significant for more than one trait, which explained the high microbial correlations. It can be concluded that the traits are polymicrobial determined with some microbiota features with larger effects and many with small effects. The results are important for the development of hologenomic selection schemes for feed-related traits in avian breeding programs that are targeting the host genome and the metagenome simultaneously.
Collapse
Affiliation(s)
- Solveig Vollmar
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
29
|
Pastor-Belda M, Arroyo-Manzanares N, Yavir K, Abad P, Campillo N, Hernández-Córdoba M, Viñas P. A rapid dispersive liquid-liquid microextraction of antimicrobial onion organosulfur compounds in animal feed coupled to gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2668-2673. [PMID: 32930297 DOI: 10.1039/d0ay00632g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A rapid analytical procedure is proposed for determining two antimicrobial onion organosulfur compounds, propyl disulfide (PDS) and propyl propane thiosulfonate (PTSO), in animal feed. The use of PTSO as a natural ingredient in animal feed is allowed due to its antimicrobial activity against pathogenic organisms. Two analytical methodologies using gas chromatography coupled to mass spectrometry (GC-MS) are compared. After the extraction of the compounds from animal feed with acetonitrile, dispersive solid phase extraction (DSPE) as a cleaning stage with C18, or dispersive liquid-liquid microextraction (DLLME), using 100 μL of CHCl3, was tried. Both the methods were validated using a pig feed sample and the best results were achieved by DLLME. This technique provided cleaner extracts, five-times greater linear ranges and lower detection limits than simple cleaning due to the enrichment factor achieved. The relative standard deviation decreased from 22% with DSPE to 13% with DLLME. The usefulness of the DLLME-GC-MS methodology was tested by analysing 10 different samples of chicken, calf, hen, cow and fish feed. The concentrations of PDS were in the 0.1-1.7 μg g-1 range and those of PTSO were between 0.09 and 2.1 μg g-1.
Collapse
Affiliation(s)
- Marta Pastor-Belda
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Kateryna Yavir
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., Gdańsk 80-233, Poland
| | - Paloma Abad
- DMC Research Center S.L.U., Camino de Jayena No. 82, E-18620 Alhendín, Granada, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Manuel Hernández-Córdoba
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
30
|
Kothari D, Lee WD, Niu KM, Kim SK. The Genus Allium as Poultry Feed Additive: A Review. Animals (Basel) 2019; 9:E1032. [PMID: 31779230 PMCID: PMC6940947 DOI: 10.3390/ani9121032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
The genus Allium, belonging to the family Amaryllidaceae has been known since ancient times for their therapeutic potentials. As the number of multi-drug resistant infections has increased due to in-feed antibiotic usage in poultry, the relevance of alliums as feed additives has been critically assessed. Garlic and the other Allium species, such as onions, leek, shallot, scallion, and chives, have been characterized to contain a plethora of bioactive compounds such as organosulfur compounds, polyphenols, saponins, fructans, and fructo-oligosaccharides. Consequently, alliums have been validated to confer antioxidant, antibacterial, antiviral, immunostimulatory, gut homeostasis, and lipid- as well as cholesterol-lowering properties in poultry. This review intends to summarize recent progress on the use of edible alliums as poultry feed additives, their beneficial effects, and the underlying mechanisms of their involvement in poultry nutrition. Perspectives for future research and limitations are also briefly discussed.
Collapse
Affiliation(s)
- Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Woo-Do Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Kai-Min Niu
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
31
|
Diaz Carrasco JM, Casanova NA, Fernández Miyakawa ME. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019; 7:microorganisms7100374. [PMID: 31547108 PMCID: PMC6843312 DOI: 10.3390/microorganisms7100374] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023] Open
Abstract
Gut microbiota and its relationship to animal health and productivity in commercial broiler chickens has been difficult to establish due to high variability between flocks, which derives from plenty of environmental, nutritional, and host factors that influence the load of commensal and pathogenic microbes surrounding birds during their growth cycle in the farms. Chicken gut microbiota plays a key role in the maintenance of intestinal health through its ability to modulate host physiological functions required to maintain intestinal homeostasis, mainly through competitive exclusion of detrimental microorganisms and pathogens, preventing colonization and therefore decreasing the expense of energy that birds normally invest in keeping the immune system active against these pathogens. Therefore, a “healthy” intestinal microbiota implies energy saving for the host which translates into an improvement in productive performance of the birds. This review compiles information about the main factors that shape the process of gut microbiota acquisition and maturation, their interactions with chicken immune homeostasis, and the outcome of these interactions on intestinal health and productivity.
Collapse
Affiliation(s)
- Juan M Diaz Carrasco
- Instituto de Patobiología Veterinaria, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.
| | - Natalia A Casanova
- Instituto de Patobiología Veterinaria, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina.
| | - Mariano E Fernández Miyakawa
- Instituto de Patobiología Veterinaria, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
32
|
Lunedo R, Furlan LR, Fernandez-Alarcon MF, Squassoni GH, Campos DMB, Perondi D, Macari M. Intestinal microbiota of broilers submitted to feeding restriction and its relationship to hepatic metabolism and fat mass: Fast-growing strain. J Anim Physiol Anim Nutr (Berl) 2019; 103:1070-1080. [PMID: 30934145 DOI: 10.1111/jpn.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
The present study was conducted to verify how feed restriction affects gut microbiota and gene hepatic expression in broiler chickens and how these variables are related to body weight gain. For the experiment, 21-d-old Cobb500TM birds were distributed in a completely randomized experimental design with three treatments: T1. Control (ad libitum-3.176 Mcal/kg ME-metabolizable energy-and 19% CP-crude protein); T2. Energetic restriction (2.224 Mcal/kg ME and 19% CP) from 22 to 42 days with consumption equivalent to control; T3. Quantitative restriction (70% restriction, i.e., restricted broilers ingested only 30% of the quantity consumed by the control group-3.176 Mcal/kg ME and 19% CP) for 7 days, followed by refeeding ad libitum from 28 to 42 days. Ileum and caecum microbiota collections were made at 21, 28 and 42 days of age. Hepatic tissue was collected at 28 and 42 days old for relative gene expression analyses. At 43-d-old, body composition was quantified by DXA (Dual-energy X-ray Absorptiometry). Both feed restriction programmes decreased Lactobacillus and increased Enterococcus and Enterobacteriaceae counts. No differences were found in the refeeding period. Energetic restriction induced the expression of CPT1-A (Carnitine palmitoyltransferase 1A) gene, and decreased body fat mass. Quantitative feed restriction increased lipogenic and decreased lipolytic gene expression. In the refeeding period, CPT1-A gene expression was induced, without changing the broilers body composition. Positive associations were found between BWG (Body Weight Gain) and Lactobacillus and Clostridium cluster IV groups, and negatively associations with Enterobacteriaceae and Enterococcus bacterial groups. In conclusion, differences found in microbiota were similar between the two feed restriction programmes, however, hepatic gene expression differences were only found in quantitative restriction. Higher counts of Lactobacillus and Clostridium cluster IV groups in ileum are likely to be related to better broiler performance and low expression of lipogenic genes.
Collapse
Affiliation(s)
- Raquel Lunedo
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Luiz R Furlan
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | - Miguel F Fernandez-Alarcon
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Gustavo H Squassoni
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | - Daniel M B Campos
- Federal University of São Carlos (UFSCar), Campus Lagoa do Sino, São Paulo, Brazil
| | - Dani Perondi
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcos Macari
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
33
|
Rubio LA. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult Sci 2019; 98:695-706. [PMID: 30247675 DOI: 10.3382/ps/pey416] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
The strong selection in search for a higher growth rate in broilers has resulted in adverse effects such as metabolic disorders, low responsiveness of the immune system, and decreased resistance to pathogens. On the other hand, newly hatched chicks rely mostly on innate immune responses until their gut gets colonized with microbiota. In consequence, early access to active substances or bacteria (pre- and post-hatch) is particularly relevant here because in broilers much of the immune system development occurs early in life. Therefore, early stimulation of beneficial microflora is critical, as it affects, to a great extent, the entire life-span of an individual, and also because the nutritional manipulations of the gastrointestinal tract (GIT) microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the chicken´s gut. Early life or developmental programming is based on the assumption that the development of diseases later in life can be modulated by perturbations or environmental exposures during critical pre- or early post-natal life. Substances such as plant derivatives, Na butyrate, pre- and probiotics, and β-glucans have been shown to induce beneficial microbiological and immunological changes within the GIT, and therefore are potential candidates to be used as tools to manipulate GIT functionality in the young chicken. Accordingly, substances as these might represent promising candidates to study intestinal microbiota/immune system modulation in broilers´ early stages of breeding. In ovo-delivered prebiotics and synbiotics have been shown to have no adverse effect on the development of the immune system in exposed chickens, while being able to affect lymphoid-organs' morphology in chickens. In ovo procedures have also been proposed as means of promoting a healthy microflora in embryonic guts and stimulating maturation of the cellular and humoral immune responses in central and peripheral immune organs, including those in the GIT. The purpose of this presentation is to discuss the potential usefulness of the instruments currently available to induce early life programming in broilers.
Collapse
Affiliation(s)
- Luis A Rubio
- Physiology and Biochemistry of Animal Nutrition (EEZ, CSIC), Granada 18008, Spain
| |
Collapse
|
34
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
35
|
Cuperus T, Kraaij MD, Zomer AL, van Dijk A, Haagsman HP. Immunomodulation and effects on microbiota after in ovo administration of chicken cathelicidin-2. PLoS One 2018; 13:e0198188. [PMID: 29870564 PMCID: PMC5988267 DOI: 10.1371/journal.pone.0198188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Host Defense Peptides (HDPs) such as cathelicidins are multifunctional effectors of the innate immune system with both antimicrobial and pleiotropic immunomodulatory functions. Chicken cathelicidin-2 (CATH-2) has multiple immunomodulatory effects in vitro and the D-amino acid analog of this peptide has been shown to partially protect young chicks from a bacterial infection. However, the mechanisms responsible for CATH-2 mediated in vivo protection have not been investigated so far. In this study, D-CATH-2 was administered in ovo and the immune status and microbiota of the chicks were investigated at 7 days posthatch to elucidate the in vivo mechanisms of the peptide. In three consecutive studies, no effects on numbers and functions of immune cells were found and only small changes were seen in gene expression of Peripheral Blood Mononuclear Cells (PBMCs). In two studies, intestinal microbiota composition was determined which was highly variable, suggesting that it was strongly influenced by environmental factors. In both studies, in ovo D-CATH-2 treatment caused significant reduction of Ruminococcaceae and Butyricicoccus in the cecum and Escherichia/Shigella in both ileum and cecum. In conclusion, this study shows that, in the absence of an infectious stimulus, in ovo administration of a CATH-2 analog alters the microbiota composition but does not affect the chicks' immune system posthatch.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marina D. Kraaij
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aldert L. Zomer
- Division Clinical Infectiology, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Liu HY, Hou R, Yang GQ, Zhao F, Dong WG. In vitro effects of inulin and soya bean oligosaccharide on skatole production and the intestinal microbiota in broilers. J Anim Physiol Anim Nutr (Berl) 2018; 102:706-716. [PMID: 29105163 DOI: 10.1111/jpn.12830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
The experiment was conducted to investigate the in vitro effects of inulin and soya bean oligosaccharide (SBO) on the metabolism of L-tryptophan (L-try) to skatole production, and the intestinal microbiota in broilers. Treatments were as follows: caecal microbiota control (Cc), Cc + inulin, Cc + SBO, rectal microbiota control (Rc), Rc + inulin and Rc + SBO. Microbial suspensions were anaerobically incubated at 38°C for 24 hr. The results showed that concentrations of skatole and acetic acid were significantly lower in caecal microbiota fermentation broth (MFB) than those in rectal MFB (p < .05). Addition of inulin or SBO significantly decreased the concentrations of indole and skatole and rate of L-try degradation (p < .05). Inulin groups had lower indole than SBO groups (p < .05). PCR-DGGE analysis revealed that addition of inulin or SBO decreased the microbiota richness (p < .05), but no significant differences in Shannon index (p > .05). Four distinct bands were detected in inulin and SBO groups, which were related to two of Bacteroides, one of Firmicutes and Bifidobacteria. Six bands were detected only in control groups, which represented uncultured Rikenellaceae, Roseburia, Escherichia/Shigella dysenteriae, Bacteroides uniformis (T), Parabacteroides distasonis and Enterobacter aerogenes. Populations of Lactobacilli, Bifidobacteria and total bacteria in inulin groups were higher than those in control groups (p < .05). For SBO groups, only population of total bacteria increased (p < .05). However, there were no significant differences in Escherichia coli population among treatments (p > .05). These results suggest that reduced concentrations of skatole and indole in the presence of inulin and SBO may be caused by decrease in L-try degradation rate, which were caused by change in microbial ecosystem and pH value. Uncultured B. uniformis (T) and E. aerogenes may be responsible for degradation of L-try to skatole.
Collapse
Affiliation(s)
- H Y Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - R Hou
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - G Q Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - F Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - W G Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
37
|
Ortiz Cerda IE, Thammavong P, Caqueret V, Porte C, Mabille I, Garcia Fernandez JM, Moscosa Santillan M, Havet JL. Synthesis of Prebiotic Caramels Catalyzed by Ion-Exchange Resin Particles: Kinetic Model for the Formation of Di-d-fructose Dianhydrides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1693-1700. [PMID: 29376346 DOI: 10.1021/acs.jafc.7b04868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Caramel enriched in di-d-fructose dianhydrides (DFAs, a family of prebiotic cyclic fructodisaccharides) is a functional food with beneficial properties for health. The aim of this work was to study the conversion of fructose into DFAs catalyzed by acid ion-exchange resin, in order to establish a simplified mechanism of the caramelization reaction and a kinetic model for DFA formation. Batch reactor experiments were carried out in a 250 mL spherical glass flask and afforded up to 50% DFA yields. The mechanism proposed entails order 2 reactions that describe fructose conversion on DFAs or formation of byproducts such as HMF or melanoidines. A third order 1 reaction defines DFA transformation into fructosyl-DFAs or fructo-oligosaccharides. The influence of fructose concentration, resin loading and temperature was studied to calculate the kinetic parameters necessary to scale up the process.
Collapse
Affiliation(s)
- Imelda-Elizabeth Ortiz Cerda
- Laboratoire de Chimie Moléculaire et Génie des Procédés Chimiques et Energétiques (EA7341), Equipe Génie des procédés, Conservatoire national des arts et métiers, 2 rue Conté, 75003 Paris, France
| | - Phahath Thammavong
- Laboratoire de Chimie Moléculaire et Génie des Procédés Chimiques et Energétiques (EA7341), Equipe Génie des procédés, Conservatoire national des arts et métiers, 2 rue Conté, 75003 Paris, France
| | - Vincent Caqueret
- Laboratoire de Chimie Moléculaire et Génie des Procédés Chimiques et Energétiques (EA7341), Equipe Génie des procédés, Conservatoire national des arts et métiers, 2 rue Conté, 75003 Paris, France
| | - Catherine Porte
- Laboratoire de Chimie Moléculaire et Génie des Procédés Chimiques et Energétiques (EA7341), Equipe Génie des procédés, Conservatoire national des arts et métiers, 2 rue Conté, 75003 Paris, France
| | - Isabelle Mabille
- Chimie ParisTech, PSL, Université CNRS, Institut de Recherche de Chimie Paris (UMR 8247), Sorbonne Université , 11 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Mario Moscosa Santillan
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí , Av. Dr Manuel Nava 6, 78210 San Luis Potosí, Mexico
| | - Jean-Louis Havet
- Laboratoire de Chimie Moléculaire et Génie des Procédés Chimiques et Energétiques (EA7341), Equipe Génie des procédés, Conservatoire national des arts et métiers, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
38
|
Cao GT, Zhan XA, Zhang LL, Zeng XF, Chen AG, Yang CM. Modulation of broilers' caecal microflora and metabolites in response to a potential probiotic Bacillus amyloliquefaciens. J Anim Physiol Anim Nutr (Berl) 2018; 102:e909-e917. [PMID: 29314285 DOI: 10.1111/jpn.12856] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
Studies have found that a dietary supplement of Bacillus amyloliquefaciens improved the growth performance, increased the nutrient digestibility of hosts and modulated the intestinal microflora. A total of 360 1-day-old Ross broilers were randomly divided into three treatments: a control group with a basal diet, an antibiotic group with a basal diet and added colistin sulphate, and a probiotics group with a basal diet and added Bacillus amyloliquefaciens. The HiSeq high-throughput sequencing analysis of 16S rRNA was used to investigate the differences in birds' caecal microflora, and metabolomics was used to analyse changes in caecal metabolites. Results showed that the supplementation of Bacillus amyloliquefaciens significantly improved the BW and ADG compared with the control birds. Results of sequencing indicated that (i) 645, 670, 596 unique operational taxonomic units (OTUs) were found in birds supplemented with Bacillus amyloliquefaciens on day 7, 21 and 42, separately, (ii) due to the diversity and relative abundance of the birds' caecal microflora, the OTUs of the caecal microflora clustered according to age and treatment, except on day 42, (iii) among the six predominate families (Ruminococcaceae, Lachnospiraceae, Enterobacteriaceae, Erysipelotrichaceae, Lactobacillaceae and Rikenellaceae), the supplementation of Bacillus amyloliquefaciens significantly increased Enterobacteriaceae on day 42, (iv) Bacillus amyloliquefaciens increased the relative abundance of Faecalibacterium and Ruminococcus on day 21, increased the Faecalibacterium and Blautia and decreased the Ruminococcus on day 42. The metabolomics of caecal metabolites showed that the dietary Bacillus amyloliquefaciens changed the caecal metabolites involved of amino acid metabolism and glyceride metabolism, and the antibiotics changed the caecal metabolites that were related to carbohydrates and amino acid metabolism on day 21.
Collapse
Affiliation(s)
- G T Cao
- College of Animal Science and Technology, Zhejiang A & F University, Lin'an, China.,College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - X A Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - L L Zhang
- College of Animal Science and Technology, Zhejiang A & F University, Lin'an, China
| | - X F Zeng
- Zhejiang Huijia Biological Technology Ltd., Anji, China
| | - A G Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - C M Yang
- College of Animal Science and Technology, Zhejiang A & F University, Lin'an, China
| |
Collapse
|
39
|
Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS One 2017; 12:e0187766. [PMID: 29141016 PMCID: PMC5687768 DOI: 10.1371/journal.pone.0187766] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023] Open
Abstract
Intestinal microbe-host interactions can affect the feed efficiency (FE) of chickens. As inconsistent findings for FE-associated bacterial taxa were reported across studies, the present objective was to identify whether bacterial profiles and predicted metabolic functions that were associated with residual feed intake (RFI) and performance traits in female and male chickens were consistent across two different geographical locations. At six weeks of life, the microbiota in ileal, cecal and fecal samples of low (n = 34) and high (n = 35) RFI chickens were investigated by sequencing the V3-5 region of the 16S rRNA gene. Location-associated differences in α-diversity and relative abundances of several phyla and genera were detected. RFI-associated bacterial abundances were found at the phylum and genus level, but differed among the three intestinal sites and between males and females. Correlation analysis confirmed that, of the taxonomically classifiable bacteria, Lactobacillus (5% relative abundance) and two Lactobacillus crispatus-OTUs in feces were indicative for high RFI in females (P < 0.05). In males, Ruminococcus in cecal digesta (3.1% relative abundance) and Dorea in feces (<0.1% relative abundance) were best indicative for low RFI, whereas Acinetobacter in feces (<1.5% relative abundance) related to high RFI (P < 0.05). Predicted metabolic functions in feces of males confirmed compositional relationships as functions related to amino acid, fatty acid and vitamin metabolism correlated with low RFI, whereas an increasing abundance of bacterial signaling and interaction (i.e. cellular antigens) genes correlated with high RFI (P < 0.05). In conclusion, RFI-associated bacterial profiles could be identified across different geographical locations. Results indicated that consortia of low-abundance taxa in the ileum, ceca and feces may play a role for FE in chickens, whereby only bacterial FE-associations found in ileal and cecal digesta may serve as useful targets for dietary strategies.
Collapse
|
40
|
Macdonald SE, Nolan MJ, Harman K, Boulton K, Hume DA, Tomley FM, Stabler RA, Blake DP. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS One 2017; 12:e0184890. [PMID: 28934262 PMCID: PMC5608234 DOI: 10.1371/journal.pone.0184890] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eimeria species cause the intestinal disease coccidiosis, most notably in poultry. While the direct impact of coccidiosis on animal health and welfare is clear, its influence on the enteric microbiota and by-stander effects on chicken health and production remains largely unknown, with the possible exception of Clostridium perfringens (necrotic enteritis). This study evaluated the composition and structure of the caecal microbiome in the presence or absence of a defined Eimeria tenella challenge infection in Cobb500 broiler chickens using 16S rRNA amplicon sequencing. The severity of clinical coccidiosis in individual chickens was quantified by caecal lesion scoring and microbial changes associated with different lesion scores identified. Following E. tenella infection the diversity of taxa within the caecal microbiome remained largely stable. However, infection induced significant changes in the abundance of some microbial taxa. The greatest changes were detected in birds displaying severe caecal pathology; taxa belonging to the order Enterobacteriaceae were increased, while taxa from Bacillales and Lactobacillales were decreased with the changes correlated with lesion severity. Significantly different profiles were also detected in infected birds which remained asymptomatic (lesion score 0), with taxa belonging to the genera Bacteroides decreased and Lactobacillus increased. Many differential taxa from the order Clostridiales were identified, with some increasing and others decreasing in abundance in Eimeria-infected animals. The results support the view that caecal microbiome dysbiosis associated with Eimeria infection contributes to disease pathology, and could be a target for intervention to mitigate the impact of coccidiosis on poultry productivity and welfare. This work highlights that E. tenella infection has a significant impact on the abundance of some caecal bacteria with notable differences detected between lesion score categories emphasising the importance of accounting for differences in caecal lesions when investigating the relationship between E. tenella and the poultry intestinal microbiome.
Collapse
Affiliation(s)
- Sarah E. Macdonald
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| | - Matthew J. Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Richard A. Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| |
Collapse
|
41
|
Lee KW, Lillehoj HS. An update on direct-fed microbials in broiler chickens in post-antibiotic era. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a post-antibiotic era, applying dietary alternatives to antibiotics into diets of chickens has become a common practice to improve the productivity and health status of chickens. It is generally accepted that direct-fed microbials (DFMs), defined as a source of viable, naturally occurring microorganisms, as an alternative to antibiotics, have a long history for their safe use and health benefit and are generally regarded for therapeutic, prophylactic and growth-promotion uses in poultry industry. It has been suggested that two primary modes of action by DFMs are balancing gut microbiota and modulating host immunity. Recent findings have suggested that gut microbiota plays an important role in developing immune system and maintaining the homeostasis of mature immune system in mammals and chickens. With the help of molecular and bioinformatics tools, it is now scientifically proven that gut microbiota is diverse, dynamic, and varies according to age, breed, diet composition, environment and feed additives. Broiler chickens are commonly raised on the floor with bedding materials, which facilitates the acquisition of microorganisms present in the bedding materials. Thus, it is expected that environmental factors, including the type of litter, influence host immunity in a positive or negative way. In this regard, adding DFMs into diets of chickens will affect host–microbe interaction, shaping host immunity towards increasing resistance of chickens to enteric diseases.
Collapse
|
42
|
Ruiz R, Peinado MJ, Aranda-Olmedo I, Abecia L, Suárez-Pereira E, Ortiz Mellet C, García Fernández JM, Rubio LA. Effects of feed additives on ileal mucosa–associated microbiota composition of broiler chickens1. J Anim Sci 2015; 93:3410-20. [DOI: 10.2527/jas.2015-8905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- R. Ruiz
- Depto. de Fisiología y Bioquímica de la Nutrición Animal (INAN, EEZ, CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - M. J. Peinado
- Depto. de Fisiología y Bioquímica de la Nutrición Animal (INAN, EEZ, CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - I. Aranda-Olmedo
- Depto. de Fisiología y Bioquímica de la Nutrición Animal (INAN, EEZ, CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - L. Abecia
- Depto. de Fisiología y Bioquímica de la Nutrición Animal (INAN, EEZ, CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - E. Suárez-Pereira
- Depto. de Química Orgánica, Facultad de Química, Univ. de Sevilla, Apdo. 1203, E-41071 Sevilla, Spain
| | - C. Ortiz Mellet
- Depto. de Química Orgánica, Facultad de Química, Univ. de Sevilla, Apdo. 1203, E-41071 Sevilla, Spain
| | - J. M. García Fernández
- Instituto de Investigaciones Químicas (IIQ, CSIC and Univ. de Sevilla), Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - L. A. Rubio
- Depto. de Fisiología y Bioquímica de la Nutrición Animal (INAN, EEZ, CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|