1
|
Guo R, Zhang H, Jiang C, Niu C, Chen B, Yuan Z, Wei Y, Hua Y. The impact of Codonopsis Pilosulae and Astragalus Membranaceus extract on growth performance, immunity function, antioxidant capacity and intestinal development of weaned piglets. Front Vet Sci 2024; 11:1470158. [PMID: 39376910 PMCID: PMC11456569 DOI: 10.3389/fvets.2024.1470158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction The objective of this study was to examine the impact of Codonopsis pilosula and Astragalus membranaceus extract (CA) on the growth performance, diarrhea rate, immune function, antioxidant capacity, gut microbiota, and short-chain fatty acids (SCFAs) in weaned piglets. Methods A total of forty-eight 31-day-old weaned piglets, were divided into four groups randomly based on the treatment type: control group (CON), low dose group (LCA, 0.5% CA), medium dose group (MCA, 1.0% CA), and high dose group (HCA, 1.5% CA), and were fed for a duration of 28 days. On the morning of the 1st and 29th day, the piglets were assessed by weighing them on an empty stomach, recording their daily feed intake and diarrhea rate. Results CA increased the average daily weight gain and reduced F/G without significant differences, and the diarrhea rate was reduced in the LCA and MCA groups. Furthermore, the levels of T-AOC, SOD, GSH-Px, and MDA were increased. The levels of T-AOC in the LCA group and the MCA group, SOD in the MCA group, and GSH-Px in the HCA group were significantly higher compared with the CON group (p < 0.05). Additionally, CA significantly increased IgM, IgG, and IgA levels (p < 0.05). The results of gut microbiota analysis showed that the bacterial population and diversity of faeces were changed with the addition of CA to basal diets. CA increased the abundance of the beneficial bacterial Firmicutes and Lactobacillus. Additionally, Compared with the CON group, CA significantly increased the SCFAs content of weaned piglets (p < 0.05). Discussion CA can alleviate oxidative stress, improve immunity and antioxidant capacity, increase the abundance of beneficial bacteria, and the content of SCFAs for improving the intestinal barrier of piglets, thus promoting growth and reducing diarrhea rate in weaned piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Peng J, Zhang Y, Liu Q, Tang Y, Zhang W, Zheng S, Huang W, Yang M, He Y, Li Z, Xie L, Li J, Wang J, Zhou Y. Allicin in pregnancy diets modulates steroid metabolism in pregnant sows and placental sulphate metabolism promoting placental angiogenesis and foetal development. Animal 2024; 18:101224. [PMID: 39024999 DOI: 10.1016/j.animal.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The low-birth-weight of piglets is an important factor affecting pig enterprises. The placenta, as a key organ for material exchange between mother and foetus, directly influences the growth and development of the foetus. Allicin exhibits various biological activities, including anti-inflammatory and antioxidant properties. It may also play a crucial role in enhancing sow reproductive performance and placental angiogenesis. In this study, we used 70 lactating Landrace × Yorkshire binary heterozygous sows to explore the effect of allicin on the reproductive performance of sows and placental development. The sows were randomly assigned into the Allicin group (Allicin), which was fed with a diet containing 0.25% allicin, and the negative control group, which was fed with basal feed. The experimental period lasted for 114 d from the date of mating to the end of farrowing. The results showed that the addition of allicin to the gestation diets increased the number of total born piglets, born alive piglets, and high-birth-weight piglets, reduced peripartum oxidative stress, alleviated dysregulation of glucose-lipid metabolism in sows, and increased the levels of antioxidant markers in the placenta. Differential analysis of metabolites in maternal plasma and placenta samples by non-targeted metabolomics revealed that allicin improved cholesterol metabolism, steroid biosynthesis, and increased plasma progesterone levels in sows. Allicin promoted sulphur metabolism, cysteine and methionine metabolism in placental samples and increased the hydrogen sulphide (H2S) content in the placenta. In addition, Quantitative Real-time PCR, Western blot and immunofluorescence results showed that allicin upregulated the expression of angiogenesis-related genes, VEGF-A, FLK 1 and Ang 1, in the placenta, implying that it promoted placental angiogenesis. These results indicate that supplementing the diet of pregnant sows with allicin reduces oxidative stress, alleviates dysregulation of glucose-lipid metabolism during the periparturient period, and promotes placental angiogenesis and foetal development by increasing plasma progesterone level and placental H2S content.
Collapse
Affiliation(s)
- J Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Q Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y Tang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - W Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - S Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - W Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuchang, Wuhan 430000, China
| | - M Yang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Y He
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Z Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - L Xie
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - J Li
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - J Wang
- Division of AOS & CDC, Faculty of Dentistry, and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
| | - Y Zhou
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuchang, Wuhan 430000, China.
| |
Collapse
|
3
|
Wang Q, Pan Y, Huang J, Li Y, Wu S, Zhao L, Sun T, Kang Y, Liu Z. Dietary supplementation of Chinese herbal medicines enhances the immune response and resistance of rainbow trout ( Oncorhynchus mykiss) to infectious hematopoietic necrosis virus. Front Vet Sci 2024; 11:1341920. [PMID: 38694480 PMCID: PMC11062137 DOI: 10.3389/fvets.2024.1341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
Rainbow trout is a widely farmed economical cold-water fish worldwide, but the prevalence of infectious hematopoietic necrosis virus (IHNV) presents a severe risk to the aquaculture industry, resulting in high mortality and huge economic losses. In this study, the impacts of different concentrations (0, 10, 20, and 30 g/kg) of Chinese herbal medicine mixture (CHMM) on the immune response and resistance of rainbow trout to IHNV infection were evaluated. The results show that CHMM noticeably increased (P < 0.05) T-SOD, CAT, AST, ALT, ACP, and AKP activities and decreased MDA content. NF-κB, TNF-α, IFN-β, IL-1β, JAK1, HSP70, and HSP90 expressions were significantly upregulated (P < 0.05) in all CHMMs, while SOCS2 expression was downregulated (P < 0.05). Following infection with IHNV, feeding rainbow trout with varying amounts of CHMM resulted in noticeably increased (P < 0.05) T-SOD, ACP, and AKP activities and significantly decreased (P < 0.05) MDA content and AST and ALT activities. TNF-α, IFN-β, IL-1β, HSP70, and HSP90 expressions were significantly upregulated (P < 0.05) in all CHMMs, while the expressions of JAK1 and SOCS2 were downregulated. The expression level of the IHNV G protein gene at a dosage of 20 g/kg was notably lower than that of the other CHMM feeding groups. This study provides a solid scientific basis for promoting CHMM as an immunostimulant for boosting antiviral immunity in rainbow trout.
Collapse
Affiliation(s)
- Qi Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yucai Pan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
5
|
Liu B, Ma R, Yang Q, Yang Y, Fang Y, Sun Z, Song D. Effects of Traditional Chinese Herbal Feed Additive on Production Performance, Egg Quality, Antioxidant Capacity, Immunity and Intestinal Health of Laying Hens. Animals (Basel) 2023; 13:2510. [PMID: 37570319 PMCID: PMC10417022 DOI: 10.3390/ani13152510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Chinese herbs have been used as feed additives in animal production. This study investigated the effects of a Chinese herbal feed-additive (TCM, which contained Elsholtzia ciliate, Atractylodes macrocephala, Punica granatum pericarpium, and Cyperus rotundus) on the production performance, egg quality, antioxidant capacity, immunity, and intestinal health of Roman laying hens. A total of 720 28-week-old hens were randomly allotted to three groups with six replicates of forty hens each. The groups were fed a basal diet (CON group), a basal diet with 50 mg/kg zinc bacitracin (ABX group), or a basal diet with 400 mg/kg TCM (TCM group) for 56 days. The results showed that the TCM group increased egg production, egg mass, albumen height, and Haugh unit compared with the CON group (p < 0.05). There were no significant differences in egg weight, feed intake, feed conversion rate, and eggshell strength among all three groups (p > 0.05). Compared with the CON group, the TCM group enhanced the activities of glutathione peroxidase, total antioxidant capacity, and superoxide dismutase in serum and liver, and reduced malondialdehyde content (p < 0.05). The TCM also increased the levels of interleukin-2, interferon-γ, immunoglobulin A, immunoglobulin M, and immunoglobulin G, and decreased the levels of interleukin-6 and interleukin-8 compared with the CON group (p < 0.05). Furthermore, the TCM group increased jejunal goblet cell density and decreased ileal crypt depth and lymphocyte density compared with the CON group (p < 0.05). The results of 16S rRNA demonstrated that the TCM can change the diversity and composition of intestinal microbiota. At the phylum level, the abundance of Bacteroides increased while that of Firmicutes decreased in the TCM group (p > 0.05). At the genus level, the abundance of Lactobacillus, Rikenellaceae_RC9_gut_group, and Phascolarctobacterium increased while that of Bacteroides and unclassified_o__Bacteroidales decreased in the TCM group (p > 0.05). The effects of ABX were weaker than those of the TCM. In conclusion, the TCM has positive effects on production performance and the intestinal health of hens.
Collapse
Affiliation(s)
- Baiheng Liu
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Ruyue Ma
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Qinlin Yang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - You Yang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Yuanjing Fang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Daijun Song
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| |
Collapse
|
6
|
Dar AA, Abrol V, Singh N, Gashash EA, Dar SA. Recent bioanalytical methods for the isolation of bioactive natural products from genus Codonopsis. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37316180 DOI: 10.1002/pca.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Chromatography and spectroscopy are nowadays well-validated techniques allowing to isolate and purify different class of natural products from the genus Codonopsis. Several categories of phytochemicals with drug like properties have been selectively extracted, isolated, characterised by this methodology. OBJECTIVES The present review aims to provide up-to-date and comprehensive information on the chromatography, phytochemistry and pharmacology of natural products of Codonopsis with an emphasis on the search for natural products having various biological activities and the semi-synthetic derivatives of bioactive ones and to highlight current gaps in knowledge. MATERIALS AND METHODS A literature search was performed in the SciFinder Scholar, PubMed, Medline, and Scopus databases. RESULTS During the period covered in this review, several classes of compounds have been reported from genus Codonopsis. Codonopsis pilosula and Codonopsis lanceolata are the most popular in the genus especially as per phytochemical and bioactive studies. Phytochemical investigation demonstrates that Codonopsis species contain mainly xanthones, flavonoids, alkaloids, polyacetylenes, phenylpropanoids, triterpenoids and polysaccharides, which contribute to numerous bioactivities. The major bioactive compounds isolated were used for semi-synthetic modification to increase the chance to discover lead compound. CONCLUSIONS It can be concluded that genus Codonopsis has been used as traditional medicines and food materials around the world over years due to chemical constituents with diverse structural types, exhibiting extensive pharmacological activities in immune system, blood system, cardiovascular system, central nervous system, digestive system, and so forth, with almost no obvious toxicity and side effect. Therefore, Codonopsis can be used as a promising ethnopharmacological plant source.
Collapse
Affiliation(s)
- Alamgir A Dar
- Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, India
| | - Vidushi Abrol
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nasseb Singh
- Synthetic Organic Chemistry Laboratory, Faculty of Sciences, Shri Mata Vaishno Devi University, Katra, India
| | - Ebtesam A Gashash
- Department of Chemistry, Faculty of Arts and Science in Balijurashi, Al-Baha University, Baha, Saudi Arabia
| | - Showket A Dar
- Division of Social and Basic Science, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Ganderbal, India
| |
Collapse
|
7
|
Luo W, Huang Y, Qiu X, Zhuo W, Tao Y, Wang S, Li H, Shen J, Zhao L, Zhang L, Li S, Liu J, Huang Q, Zhou R. Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs. Animals (Basel) 2022; 12:3521. [PMID: 36552440 PMCID: PMC9774107 DOI: 10.3390/ani12243521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Developing nonantibiotic livestock growth promoters attracts intensive interest in the post-antibiotic era. In this study, we investigated the growth-promoting efficacy of Zhenqi granules (ZQ) in pigs and further explored the possible mechanisms by transcriptomics analysis. Weaned piglets (52 days old with an average body weight of 17.92 kg) were fed with diets supplemented with different doses of ZQ (0 g/kg, 1 g/kg, and 2 g/kg) for 30 days and continued observations for an additional 32 days after removing ZQ from the diets. Compared with the control group, the average daily gain, carcass weight, average back fat thickness, and fat meat percentage of the group supplemented with 1 g/kg of ZQ showed a significant increase, and the feed/gain ratio was lower. The group supplemented with 2 g/kg of ZQ also showed a significant increase in average daily gain and average backfat thickness. A transcriptomics analysis revealed that the supplementation of ZQ at 1 g/kg upregulated the expression of genes related to collagen biosynthesis and lipid biosynthesis in skeletal muscle and liver. This effect was primarily through upregulating the mRNA levels of structural proteins and lipid-related enzymes. This study demonstrates the growth-promoting efficacy of ZQ and provides some insights of the mechanism of growth promotion.
Collapse
Affiliation(s)
- Wentao Luo
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Wenxiao Zhuo
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Yujun Tao
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Shuaiyang Wang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Huaixia Li
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Jing Shen
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Lelin Zhao
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Shuo Li
- Hubei Provincial Veterinary Drug Research Center, HVSEN Biotech, Wuhan 430042, China
| | - Jie Liu
- Hubei Provincial Veterinary Drug Research Center, HVSEN Biotech, Wuhan 430042, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| |
Collapse
|
8
|
Liu S, Wang Q, Ma J, Wang J, Wang H, Liu L, Long S, Piao X. Dietary Forsythia suspensa extracts supplementation improves antioxidant status, anti-inflammatory functions, meat fatty acid deposition, and intestinal microbial community in finishing pigs. Front Vet Sci 2022; 9:960242. [PMID: 36311660 PMCID: PMC9614228 DOI: 10.3389/fvets.2022.960242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study aimed to determine the effects of Forsythia suspensa extracts (FSE) on performance, antioxidant status, inflammatory cytokines, meat quality, meat fatty acid composition, and gut microbial community in finishing pigs. Sixty-four pigs [Duroc × (Landrace × Yorkshire)] with an average initial body weight of 88.68 kg were randomly allotted to two dietary treatments, with eight replicate pens per treatment (four pens were barrows and four pens were gilts), four pigs per pen. The dietary treatments included a corn-soybean meal basal diet (CON) and an FS diet (basal diet + 100 mg/kg FSE; FS). Compared with CON, pigs fed FSE showed enhanced (P < 0.05) saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio, reduced (P < 0.05) lightness, and n-6/n-3 PUFA ratio, as well as tended to increase C20:5n3 content in the longissimus dorsi muscle. Moreover, pigs fed FSE showed decreased (P < 0.05) serum cortisol and tumor nuclear factor-α contents, and increased (P < 0.05) serum high-density lipoprotein cholesterol, superoxide dismutase, and glutathione peroxidase contents compared with CON. These pigs also tended to have increased serum total protein and immunoglobulin G contents, and decreased serum low-density lipoprotein cholesterol and interleukin-1β contents compared with CON. In the colon, pigs fed FSE had a higher (P < 0.05) relative abundance of Bifidobacteriales at the order level, Lactobacillaceae and Bifidobacteriaceae at the family level, as well as Lactobacillus and Bifidobacterium at the genus level compared with CON. In conclusion, dietary Forsythia suspensa extract supplementation effectively improved antioxidant status and anti-inflammatory functions, as well as modulated meat fatty acid composition, and gut microbial community in finishing pigs.
Collapse
Affiliation(s)
- Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongliang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Li Liu
- Tianjin Zhongsheng Feed Co. Ltd., Tianjin, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Shenfei Long
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,Xiangshu Piao
| |
Collapse
|
9
|
Xu Q, Cheng M, Jiang R, Zhao X, Zhu J, Liu M, Chao X, Zhang C, Zhou B. Effects of dietary supplement with a Chinese herbal mixture on growth performance, antioxidant capacity, and gut microbiota in weaned pigs. Front Vet Sci 2022; 9:971647. [PMID: 36072392 PMCID: PMC9442064 DOI: 10.3389/fvets.2022.971647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Weaning stress decreases the growth performance of piglets and is one of the main concerns of pig industries. Traditional Chinese herbal medicines have been used to reduce the adverse effects of weaning stress as both nutritional supplements and antibiotic substitutes. This study aimed to evaluate the effects of a Chinese herbal mixture (Kangtaile, which contained Paeonia lactiflora, licorice, dandelion, and tea polyphenols) on the growth performances, immune response, antioxidant capacity, and intestinal microbiota of weaned pigs. A total of 400 weaned pigs [Duroc × (Landrace × Yorkshire)] were randomly allocated into one of four treatments: the CON group, fed with basic diet; the HM1 group, fed with basal diet supplemented with 0.5 g herbal mixture/kg diet; the HM2 group, fed with basal diet supplemented with 1.0 g herbal mixture/kg diet; or the HM3 group, fed with basal diet supplemented with 1.5 g herbal mixture/kg diet. The results revealed that dietary supplementation with the herbal mixture for 28 days improved average daily gain and feed conversion ratio, while decreased the diarrhea rate of weaned pigs. Moreover, dietary supple-mentation with the herbal mixture improved the antioxidant capacity through increasing the activity of catalase (CAT) and the total antioxidant capacity (T-AOC) level, while decreasing the concentration of malondialdehyde (MDA) in the serum. Pigs supplemented with herbal mixture presented an increased serum immunoglobulin (Ig)M level on day 14 compared with control pigs. The herbal mixture altered the composition of intestinal microbiota by influencing the relative abundances of Firmicutes and Bacteroidetes at the phylum level. The relative abundances of the Firmicutes and Bacteroidetes were significantly related to the body weight gain of pigs. In conclusion, supplementation of herbal mixture to the diet improved growth performance, immunity, and antioxidant capacity and modified the composition of intestinal microbiota in weaning pigs. This study provided new insights into the nutritional regulation effects of the herbal mixtures on weaned pigs.
Collapse
Affiliation(s)
- Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Jiang
- Wuxi Sanzhi Bio-Tech Co., Ltd., Wuxi, China
| | - Xianle Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianjin Zhu
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bo Zhou
| |
Collapse
|
10
|
Huang Y, Yan Q, Jiang M, Guo S, Li H, Lin M, Zhan K, Zhao G, Duan J. Astragalus membranaceus Additive Improves Serum Biochemical Parameters and Reproductive Performance in Postpartum Dairy Cows. Front Vet Sci 2022; 9:952137. [PMID: 35898551 PMCID: PMC9310658 DOI: 10.3389/fvets.2022.952137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of the study was to assess the recovery, immune function, and breeding efficiency of postpartum dairy cows fed Astragalus membranaceus (AM) as a feed additive. The experiment used a completely randomized design. Cows were randomly assigned to two groups: (1) Control group fed total mixed ration (TMR; CON group, n = 15); (2) AM group fed TMR and AM (AM group, n = 15). The AM group was fed 675 g/day. The experimental results showed that compared with the CON group. The breeding interval of the AM group of dairy cows had a tendency to shorten (0.05 < p < 0.1). Plasma viscosity (PV), Plasma fibrinogen (FIB), the red cell aggregation index (TRCAI), Calcitonin (CT), Immunoglobulin M (IgM), and Luteinizing hormone (LH) results of AM group showed a time-treatment interaction (p < 0.05). Furthermore, the result of the study revealed that feeding AM as feed additives to dairy cows during the postpartum period had positive effects on wound recovery, immune function, endocrine regulation, and breeding efficiency.
Collapse
Affiliation(s)
- Yinghao Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Yan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqi Zhao
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jinao Duan
| |
Collapse
|
11
|
Sampath V, Park JH, Kim IH. Inclusion of probiotic (Lactobacillus plantarum) in high- and low-nutrient-density diets reveals a positive result on the growth performance, nutrient digestibility, gas emission, and blood profile in growing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 160 growing pigs (24.69 ± 1.89 kg) were randomly assigned to one of four treatments in a 2 × 2 factorial design with two different levels of nutrient density diet with or without 0.3% probiotic (Lactobacillus plantarum). Each treatment had eight replicates with five pigs (three gilts and two barrows) per pen. At the end of the trial, pigs fed 0.3% probiotic supplement had significantly increased body weight, whereas the average daily gain and gain to feed ratio was significantly increased in both probiotic and high-nutrient density (HD) diet. The nutrient digestibility of dry matter was significantly increased in pigs fed HD diet, whereas nitrogen and gross energy digestibility and blood characters immunoglobulin and lymphocyte counts were significantly increased in both HD and probiotic groups. Inclusion of HD diet with 0.3% probiotic significantly decreased NH3 and H2S gas emission. Moreover, nitrogen and energy showed a significant interaction between probiotic and density diet. In summary, dietary probiotics with HD diet increased the growth performance, nutrient digestibility, blood profile, and reduced gas emission. We suggest that 0.3% probiotic with HD diet could serve as an alternative feed additive to enhance the growth performance of growing pigs.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
12
|
Li Y, Sun T, Hong Y, Qiao T, Wang Y, Li W, Tang S, Yang X, Li J, Li X, Zhou Z, Xiao Y. Mixture of Five Fermented Herbs ( Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets. Front Microbiol 2021; 12:725196. [PMID: 34764942 PMCID: PMC8576326 DOI: 10.3389/fmicb.2021.725196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
To explore the feasibility of using fermented Chinese herbal mixture Zhihuasi Tk (Z. Tk) supplementation to increase the swine production, the protective effect of dietary supplementation with Z. Tk on the intestinal oxidative stress model and the regulation of both growth performance and intestinal microbiota of weaned piglets were investigated in vitro. Our results showed that the addition of Z. Tk increased the cell viability, prevented the decrease of glutathione peroxidase, and significantly increased the total antioxidant capacity and reduced the damage caused by H2O2 to the tight junction proteins of the porcine small intestinal epithelial cell line (IPEC-J2). Furthermore, weaned piglets supplemented with either 2 kg/ton zinc oxide (ZnO) or 4 kg/ton of Z. Tk in the diet increased body weight as well as average daily feed intake and daily gain, while the feed conversion rate and diarrhea rate decreased within 0–35 days. Results of the taxonomic structure of the intestinal microbiota showed that, in 21 days after weaning, the Firmicutes/Bacteroidetes ratio in experimental group was increased, while the abundance of beneficial bacteria such, as Lactobacillus, was increased by Z. Tk, showing inhibitory effect on pathogenic bacteria such as members of Proteobacteria. In summary, dietary supplementation with Z. Tk maintained the intestinal microbiota in a favorable state for the host to effectively reduce the abnormal changes in the intestinal microbial structure and improved growth performance of weaned piglets. Therefore, Z. Tk may potentially function as a substitute for ZnO in feed additives for weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yong Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Tiehu Sun
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yuxuan Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tong Qiao
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Yongsheng Wang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Wei Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Shi Tang
- COFCO Feed Co., Ltd., Beijing, China
| | - Xin Yang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jie Li
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaowen Li
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Jin Q, Cheng L, Zhu Y, Zhao X, Zhang W, Gao X, Xiong T, Guo L. Immune-related effects of compound astragalus polysaccharide and sulfated epimedium polysaccharide on newborn piglets. Anim Biotechnol 2021:1-12. [PMID: 34550852 DOI: 10.1080/10495398.2021.1979022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to evaluate the immune effects of compound astragalus polysaccharide and sulfated epimedium polysaccharide (APS-sEPS) on the peripheral blood lymphocyte and intestinal mucosa in newborn piglets. A total of 40 newborn piglets were randomly divided into four groups during a 25-day experiment, including APS-sEPS, APS, sEPS and control group. The results showed that supplementation with APS-sEPS to newborn piglets remarkably increased the physiological parameters, especially the WBC. In peripheral blood, piglets that received APS-sEPS showed the highest proliferation of T lymphocytes, the percentage of CD3 + CD4+ and CD3 + CD8+ cells were the highest on days 15 and 25 (p < 0.05). The serum concentrations of IFN-γ on days 7 and 15, and IL-4, IL-10, sIgA on days 7, 15 and 25 in APS-sEPS group were significantly higher than those in the control group (p < 0.05). Furthermore, the villus length and the ratio of villus length to crypt depth in APS-sEPS group were both significantly increased compared to that of control group (p < 0.05). In the duodenum, jejunum and illume, the concentrations of IFN-γ, IL-10, total IgG and sIgA in APS-sEPS group were all significantly higher than that in control group (p < 0.05). In intestinal mucosa, APS-sEPS significantly increased the expression of NF-κB and IRF-3 mRNA in each section of small intestine of piglets. Nevertheless, in the illume segment, the effect of APS-sEPS was more significant than that of APS and sEPS (p < 0.05). The expression of TLR4 was more significant than that of control group in duodenum only. The results from the present research provide evidence that the suckling piglets administered with APS-sEPS supplement exhibited enhanced immune function of peripheral blood lymphocyte and expression of specific antibodies, and ameliorated intestinal morphological development and increased activities of humoral immune response in the small intestine, which would be related to the activation of the TLR4-NF-κB signaling pathway and IRF3.
Collapse
Affiliation(s)
- Qing Jin
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Lei Cheng
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Yiling Zhu
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taìan, China
| | - Wei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Xuejun Gao
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Liwei Guo
- The Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
14
|
Effect of dietary phytobiotic mixture on growth performance, nutrient utilization, and immunity in weaned piglets. Trop Anim Health Prod 2021; 53:459. [PMID: 34542733 DOI: 10.1007/s11250-021-02910-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
This study investigated the effects of dietary phytobiotic mixture on growth performance, blood profiles, immune response, and fecal microorganisms in weaned piglets. Twenty four weaned crossbred piglets were equally divided into four groups in a completely randomized design. The animals in 4 groups were fed a basal diet added with (1) no antibiotics and phytobiotics (CON), (2) bacitracin (0.5 g/kg; AB), (3) a blend of Cinnamomum zeylanicum and Trachyspermum copticum essential oils (0.3 g/kg and 0.4 g/kg, respectively; EO), and (4) plant extracts (PEO) of Mikania micrantha and Garcinia lanceifolia (2.8 g/kg and 1.4 g/kg, respectively) and C. zeylanicum and T. copticum essential oils (0.3 g/kg and 0.4 g/kg, respectively). Inclusion of AB, EO, and PEO did not affect final body weight, average daily gain, feed intake, feed efficiency, and nutrient digestibility. Compared with the CON, serum protein profiles were not affected, but a few lipid profiles were improved, particularly cholesterol, low-density lipoprotein, and high-density lipoprotein in the EO and PEO groups. Lymphocyte proliferation index and concentrations of IgG and IgA and TNF-α were not affected by any treatments. The concentrations of IgM increased (P = 0.04) at 28 days and tended to increase (P = 0.10) at 56 days in the EO group. Serum IL-1β levels decreased on days 28 and 56 in the EO and PEO groups. Fecal Lactobacilli population generally increased (P < 0.01) in the AB, EO, and PEO groups compared with the CON. Fecal enterobacterial numbers were always greater for AB than for CON, EO, or PEO, but enterobacterial populations were sometimes lower in the EO group than the CON group. In conclusion, dietary EO or PEO has no effect on the growth performance, but it may improve a few lipid profiles, immune responses, and fecal microbial populations in piglets.
Collapse
|
15
|
Cui Y, Lu H, Tian Z, Deng D, Ma X. Current trends of Chinese herbal medicines on meat quality of pigs. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/138775/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Astragalus Polysaccharides Enhance the Immune Response to OVA Antigen in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9976079. [PMID: 34258286 PMCID: PMC8260300 DOI: 10.1155/2021/9976079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 01/25/2023]
Abstract
Vaccination has been identified as one of the most effective ways to prevent the transmission of infectious diseases in humans and animals. One of the most critical steps in vaccine development is the selection of a suitable adjuvant. Although various adjuvant candidates have been evaluated in the past few decades, only a limited amount of them are nontoxic and safe for human use. Astragalus polysaccharide (APS), due to its lack of toxicity, has been used as an immunomodulator to enhance immune responses. On the other hand, the immune effects of APS on ovalbumin are yet to be examined. Thus, in this study, we analyzed APS's effects on the immune response to ovalbumin in BALB/c mice. We have also used the classic adjuvant CpG oligodeoxynucleotide as the positive control.
Collapse
|
17
|
Sun HY, Kim YM, Kim IH. Evaluation of Achyranthes japonica Nakai extract on growth performance, nutrient utilization, cecal microbiota, excreta noxious gas emission, and meat quality in broilers fed corn-wheat-soybean meal diet. Poult Sci 2020; 99:5728-5735. [PMID: 33142490 PMCID: PMC7647728 DOI: 10.1016/j.psj.2020.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation of Achyranthes japonica Nakai (AJN) extract as a natural feed additive on growth performance, nutrient utilization, cecal microbiota, excreta noxious gas emission, and meat quality in broilers fed corn-wheat-soybean meal diet. In total, seven hundred twenty 1-day-old male Ross 308 broilers with an average body weight (BW) of 43.36 ± 1.42 g were used in a 35-d feeding trial. Broilers were randomly assigned to 1 of the 4 treatments. Each treatment had 10 replication pens with 18 birds per replication. Dietary treatments composed of corn-wheat-soybean meal-based diets along with the addition of 0, 0.025, 0.05, and 0.1% of AJN extract. The BW gain and feed conversion rate were linearly influenced (P < 0.05) by the supplementation of AJN extract during days 8 to 21, 22 to 35, and the overall experiment. At the end of the experiment, the digestibility of dry matter and nitrogen and the population of cecal lactic acid bacteria were linearly improved (P < 0.05) in response to increasing AJN extract supplementation. Excreta emission of ammonia showed a linear decrease (P < 0.05) with the increasing levels of AJN extract. The breast muscle percentage linearly increased (P < 0.05) in birds fed AJN extract contained diets. In summary, the inclusion of AJN extract in corn-wheat-soybean meal diet improved growth performance, nutrient utilization, intestinal microbiota balance, and breast meat production and decreased excreta ammonia emission, which confirmed the applicability of AJN extract as a natural feed additive in broilers.
Collapse
Affiliation(s)
- Hao Yang Sun
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea; Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yong Min Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea.
| |
Collapse
|
18
|
Huang W, Yao C, Liu Y, Xu N, Yin Z, Xu W, Miao Y, Mai K, Ai Q. Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker ( Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Front Physiol 2020; 11:587674. [PMID: 33162901 PMCID: PMC7583326 DOI: 10.3389/fphys.2020.587674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
A 30-day feeding experiment was conducted to investigate effects of dietary allicin on survival, growth, antioxidant capacity, innate immunity and expression of inflammatory and appetite related genes in large yellow croaker larvae. Four iso-nitrogenous (53% crude protein) and iso-lipidic (19% crude lipid) diets were formulated via supplementing graded levels of allicin (0.0 (the control), 0.005, 0.01, and 0.02% dry diet, respectively). Results showed that, among dietary treatments, larvae fed the diet with 0.005% allicin had the highest survival rate (SR) (P < 0.05), while larvae fed the diet with 0.01% allicin had the highest specific growth rate (SGR) (P < 0.05). Activities of α-amylase in both pancreatic (PS) and intestine segments (IS) of larvae fed the diet with 0.01% allicin were significantly lower than that in the control (P < 0.05). On the other hand, the supplementation of 0.01% allicin in diets significantly increased activities of alkaline phosphatase (AKP) and leucine aminopeptidase (LAP) in the intestinal brush border membrane (BBM) of larvae than the control (P < 0.05), indicating the promoting roles of allicin on fish larval intestinal development. Moreover, compared to the control, both the nitric oxide (NO) content and the activity of nitric oxide synthase (NOS) were significantly up-regulated in larvae fed the diet with 0.005% allicin, and catalase (CAT) were significantly upregulated in larvae fed the diet with 0.02% allicin (P < 0.05). Transcriptional levels of pro-inflammatory genes including cyclooxygenase-2 (cox-2), interleukin-1β (il-1β) and interleukin-6 (il-6) significantly decreased with increasing allicin, compared to the control. The expression of appetite genes including npy, ghrelin and leptin significantly increased with the prolonged fasting period, and dietary allicin supplementation significantly increased the transcriptional level of neuropeptide Y (npy) at 0.01%, while increased the transcriptional level of leptin in larvae at 0.02% dosages (P < 0.05). These results showed that the supplementation of 0.005% – 0.01% allicin in diets could improve the survival and growth of large yellow croaker larvae probably by promoting intestinal development, alleviating inflammation and enhancing appetite.
Collapse
Affiliation(s)
- Wenxing Huang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Chuanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhaoyang Yin
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Youqing Miao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Sun HY, Kim IH. Effect of yeast culture (Saccharomyces cerevisiae) and garlic (Allium sativum) product mixture on growth performance, nutrient digestibility, faecal microflora, faecal noxious-gas emission and meat quality in finishing pigs. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Dietary supplementation with a single feed additive or a combination of different feed additives as growth promoters has been researched extensively. However, few studies have tested the combined use of probiotics (yeast culture) and phytogenics (garlic products) in pigs.
Aims
The present study was conducted to evaluate the effect of supplementation of a mixture of yeast culture, garlic extract and garlic essential oil (YGM) on growth performance, nutrient digestibility, faecal microflora, faecal noxious-gas emission and meat quality in finishing pigs.
Methods
Two hundred [(Landrace×Yorkshire)×Duroc] finishing pigs (50.37 ± 1.89 kg) were randomly allotted into two dietary treatments on the basis of bodyweight (BW) and sex for a 10-week feeding trial. Dietary treatments consisted of a basal diet (CON) and CON containing 0.1% of YGM. The YGM was composed of 54.5% of yeast culture, 40% of garlic extract powder and 5.5% of garlic essential oil. There were 20 replicated pens per treatment, with five pigs (3 barrows and 2 gilts) per pen. Pig BW was measured at the beginning and at the end of the experiment. Feed consumption was recorded daily during the experiment, on a pen basis, to calculate average daily gain (ADG).
Key results
Dietary YGM supplementation resulted in a higher (P < 0.05) final BW and ADG than in the control groups. Pigs fed YGM supplementation diet led to a higher (P < 0.05) digestibility of dry matter (DM) than in CON. The emission of hydrogen sulfide gas from faeces was significantly (P < 0.05) decreased in pigs fed YGM diets; however, ammonia and total mercaptan emissions were not influenced. There were no differences in meat-quality parameters between the two treatments.
Conclusions
Dietary YGM supplementation exerted beneficial effects on BW and ADG and DM digestibility, reduced hydrogen sulfide gas emission, and did not have any adverse effects on meat-quality parameters that are related to consumer acceptance.
Implications
The study has provided a basis and insight for future research on application of a combination of yeast culture, garlic extract and garlic essential oils, as an alternative to antibiotics in finishing pig diets.
Collapse
|
20
|
Tian HX, Zhang YJ, Chen C, Qin L, Xiao LZ, Ma HR, Yu HY. Effects of natural ingredients on the shelf life of chicken seasoning. Food Chem 2019; 293:120-126. [PMID: 31151591 DOI: 10.1016/j.foodchem.2019.03.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 11/17/2022]
Abstract
The effects of the natural ingredients Angelica sinensis (AS) and Codonopsis pilosula (CP) on the shelf life of chicken seasoning were investigated. Color differences and sensory evaluation were used to indicate sensory differences. Changes in volatiles were monitored. The rate of increase in the color value a* of the AS and CP samples was lower than that in the control. Rancid flavor appeared later in the AS and CP samples than in the control. The levels of aldehydes, ketones, and alkenes increased during storage. A kinetic model was built based on the proportion of aldehydes (main marker), to predict shelf life. The predicted shelf life at room temperature was 60 days for the control, 114 days for AS, and 89 days for CP. The shelf life of chicken seasoning could be prolonged with AS and CP. This kinetic model can be used to predict the shelf life of chicken seasoning.
Collapse
Affiliation(s)
- Huai-Xiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Jing Zhang
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lan Qin
- Nestlé R&D Centre Shanghai Ltd., Cao'an Road, Shanghai 201812, China
| | - Li-Zhong Xiao
- School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hao-Ran Ma
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Hai-Yan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
21
|
Yang H, Paruch L, Chen X, van Eerde A, Skomedal H, Wang Y, Liu D, Liu Clarke J. Antibiotic Application and Resistance in Swine Production in China: Current Situation and Future Perspectives. Front Vet Sci 2019; 6:136. [PMID: 31157244 PMCID: PMC6533531 DOI: 10.3389/fvets.2019.00136] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
To meet increasing demand for animal protein, swine have been raised in large Chinese farms widely, using antibiotics as growth promoter. However, improper use of antibiotics has caused serious environmental and health risks, in particular Antimicrobial resistance (AMR). This paper reviews the consumption of antibiotics in swine production as well as AMR and the development of novel antibiotics or alternatives in China. The estimated application of antibiotics in animal production in China accounted for about 84240 tons in 2013. Overuse and abuse of antibiotics pose a great health risk to people through food-borne antibiotic residues and selection for antibiotic resistance. China unveiled a national plan to tackle antibiotic resistance in August 2016, but more support is needed for the development of new antibiotics or alternatives like plant extracts. Antibiotic resistance has been a major global challenge, so international collaboration between China and Europe is needed.
Collapse
Affiliation(s)
- Hong Yang
- Norwegian Institute of Bioeconomy Research, Ås, Norway.,Department of Geography and Environmental Science, University of Reading, Reading, United Kingdom
| | - Lisa Paruch
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Xunji Chen
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | | | | | - Yanliang Wang
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | | |
Collapse
|
22
|
Yang CM, Han QJ, Wang KL, Xu YL, Lan JH, Cao GT. Astragalus and Ginseng Polysaccharides Improve Developmental, Intestinal Morphological, and Immune Functional Characters of Weaned Piglets. Front Physiol 2019; 10:418. [PMID: 31031640 PMCID: PMC6473041 DOI: 10.3389/fphys.2019.00418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance is a major issue in animal industries and antibiotic-free alternatives are needed to treat infectious diseases and improve performance of pigs. Plant extracts have been suggested as a potential solution. The present study was conducted to investigate the effects of Astragalus polysaccharides (Aps) and ginseng polysaccharide (Gps) on growth performance, intestinal morphology, immune function, volatile fatty acids (VFAs), and microfloral community in weaned piglets. A total of 180 weaned piglets were randomly divided into three treatment groups during a 28-days feeding experiment, including a basal diet (Con), basal diet supplemented with 800 mg/kg Aps (Aps), and basal diet supplemented with 800 mg/kg Gps (Gps). Results showed that both Aps and Gps increased body weight, average daily gain and feed conversion rate, and reduced the rate of diarrhea. Gps also decreased aspartate aminotransferase compared to the Con piglets after 14 days. No significant effects on alanine aminotransferase were observed. Both Aps and Gps piglets exhibited higher serum immunoglobulin M levels after 14 and 28 days, and also decreased jejunal crypt depth, increased jejunal villus length and villus height/crypt depth ratio, and increased expression of toll-like receptor 4, myeloid differentiation primary response 88, nuclear factor-kappa B proteins in the jejunum. Aps and Gps piglets also had higher concentrations of acetic acid, isobutyric acid, and butyrate in their colon. Data of high-throughput sequencing revealed that Aps and Gps affected bacterial quantity and diversity in the colon. Species richness and evenness were higher in both Aps and Gps piglets than the control piglets. Aps and Gps piglets also had a higher relative abundance of Lachnospiraceae and Anaerostipes, and the Aps piglets had a higher relative abundance of Lactobacillus gasseri and L. amylovorus. Therefore, dietary supplementation with Aps and Gps could be beneficial for optimizing the performance of industry pigs and reducing dependence on antibiotics. Furthermore, Plant polysaccharides play a great role in promoting the sustainable development of animal husbandry.
Collapse
Affiliation(s)
- C. M. Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Q. J. Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - K. L. Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Y. L. Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - J. H. Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - G. T. Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
23
|
Lei XJ, Yun HM, Kim IH. Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1429955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Jian Lei
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
24
|
Ren Q, Zhao S, Ren C, Ma Z. Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int J Immunopathol Pharmacol 2018; 32:2058738418759180. [PMID: 29451405 PMCID: PMC5849246 DOI: 10.1177/2058738418759180] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Astragalus polysaccharide (APS) has been widely reported to play an important role in inflammatory response. In this study, we aimed to explore the effects and underlying mechanisms of APS on lipopolysaccharide (LPS)-induced inflammation injury in H9c2 cardiomyoblasts. H9c2 cells were treated with different concentrations of APS, and cell viability was detected by the Cell Counting Kit-8 (CCK-8) assay. Then, the effect of APS on cell viability and apoptosis induced by LPS was determined by CCK-8, flow cytometry, and western blot. The expression and release of inflammatory cytokines were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA). Furthermore, expression of miR-127 in H9c2 cells was analyzed by qRT-PCR, and knocked down by transfection with miR-127 inhibitor. Western blot was used to analyze signaling pathway molecules. APS had no effect on H9c2 cells viability. However, APS could alleviate LPS-induced inflammation injury by increasing cell viability, reducing apoptosis, and inhibiting release of inflammatory cytokines in H9c2 cells ( P < 0.05). Additionally, we found that APS increased toll-like receptor 4 (TLR4) expressions in LPS-treated H9c2 cells. Mechanistically, we found that APS exerted the protective effect by down-regulating LPS-increased expression of miR-127 ( P < 0.05), inhibiting nuclear factor kappa B (NF-κB), JNK and promoting phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathways in LPS-treated H9c2 cells. The results demonstrated that APS could protect H9c2 cells against LPS-induced inflammation injury, which might be partially due to miR-127 down-regulation and regulation of NF-κB, JNK, and PI3K/AKT signaling pathways. These findings indicated that APS might be a potential therapeutic drug for treatment of myocarditis.
Collapse
Affiliation(s)
- Qi Ren
- Department of Cardiology, Jining No.1 People’s
Hospital, Jining, China
| | - Shaojun Zhao
- Department of Cardiology, Jining No.1 People’s
Hospital, Jining, China
| | - Changjie Ren
- Department of Cardiology, Jining No.1 People’s
Hospital, Jining, China
| | - Zhen Ma
- Department of Cardiology, Jining No.1 People’s
Hospital, Jining, China
| |
Collapse
|