1
|
Monteiro MS, Carnevale RF, Muro BBD, Mezzina ALB, Carnino BB, Poor AP, Matajira CEC, Garbossa CAP. The Role of Nutrition Across Production Stages to Improve Sow Longevity. Animals (Basel) 2025; 15:189. [PMID: 39858189 PMCID: PMC11758652 DOI: 10.3390/ani15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the oxidative and inflammatory status of these females. Additionally, prevalent conditions such as gastric ulcers and cystitis raise ethical, welfare, and economic concerns. Despite the several studies related to sow nutrition, there are no studies which compile and extrapolate nutrition approaches from the rearing period and their impact on sows' health and longevity. Also, the aim of our review was to shed light on gaps that require further investigation. Controlling body condition scores is crucial for maximizing productivity in sows. During gestation, high-fiber diets help maintain optimal body condition and prevent constipation, particularly during the peripartum period. Antioxidants offer a range of beneficial effects during this critical phase. Additionally, probiotics and acidifiers can enhance gut health and lower the risk of genitourinary infections. On the day of farrowing, energy supplementation emerges as a promising strategy to reduce farrowing duration. Collectively, these strategies address major health challenges, enhancing welfare and promoting sow's longevity.
Collapse
Affiliation(s)
- Matheus Saliba Monteiro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
| | - Rafaella Fernandes Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Ghent, Belgium
| | - Bruno Bracco Donatelli Muro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- PoulPharm, 8870 Izegem, Belgium;
| | - Ana Lígia Braga Mezzina
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | - Bruno Braga Carnino
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | | | - Carlos Emilio Cabrera Matajira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Sao Paulo 05508-000, Sao Paulo, Brazil;
| | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| |
Collapse
|
2
|
Long S, Mahfuz S, Piao X. Dietary 25-Hydroxycholecalciferol Supplementation from Day 85 of Gestation to Farrowing Enhances Performance, Antioxidant Capacity, and Immunoglobulins of Sows and Newborn Piglets. Animals (Basel) 2024; 14:3378. [PMID: 39682344 DOI: 10.3390/ani14233378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, the aim was to evaluate the effects of dietary 25-hydroxycholecalciferol supplementation from day 85 of gestation on performance, antioxidant capacity, and immunoglobulin level of sows and newborn piglets. On day 85 of gestation, forty Landrace × Yorkshire gestating sows (average body weight of 241 ± 6.8 kg; average parity of 3.47 ± 0.6) were allotted into two treatments (20 replicates per treatment) based on parity, body weight, and back fat thickness. From day 85 of gestation to farrowing, sows were fed a normal vitamin D3 diet as control (containing 50 μg/kg vitamin D3; CON), or a 25-hydroxycholecalciferol-supplemented diet (containing 50 μg/kg 25-hydroxycholecalciferol). Compared with CON, dietary 25-hydroxycholecalciferol supplementation increased (p < 0.05) protein and fat content in colostrum and the average birth body weight of newborn piglets. Sows fed 25-hydroxycholecalciferol showed increased (p < 0.05) apparent total tract digestibility of crude protein compared with CON. Diets supplemented with 25-hydroxycholecalciferol also increased (p < 0.05) the content of superoxide dismutase (SOD), and tended to increase (p = 0.06) the total antioxidant capacity content and reduce (p = 0.09) the malondialdehyde (MDA) level in colostrum. An increase (p < 0.05) in the content of SOD and a reduction (p < 0.05) in the content of MDA in the serum of newborn piglets was also observed in the 25-hydroxycholecalciferol treatment compared with CON. Dietary 25-hydroxycholecalciferol supplementation also enhanced (p < 0.05) the immunoglobulin G content and reduced (p < 0.05) the concentration of tumor nuclear factor-α in the serum of sows, as well as reducing (p < 0.05) the content of immunoglobulin G and immunoglobulin A in the serum of newborn piglets compared with CON. Supplementation of 25-hydroxycholecalciferol in sow diets increased (p < 0.05) the content of alkaline phosphatase in the serum and colostrum of sows, the concentration of insulin and crosslap in serum of sows, and the serum calcium content of newborn piglets compared with CON. In conclusion, dietary 25-hydroxycholecalciferol supplementation from day 85 of gestation could enhance performance, antioxidant capacity, and immunoglobulin in sows and newborn piglets.
Collapse
Affiliation(s)
- Shenfei Long
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101205, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101205, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Choi J, Lee J, Kim WK. Alterations in the gut microbiota of Eimeria infected broiler chickens fed diets supplemented with varying levels of dietary calcium and phosphorus, along with 25-hydroxycholecalciferol. Poult Sci 2024; 103:104223. [PMID: 39216268 PMCID: PMC11402547 DOI: 10.1016/j.psj.2024.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The purpose of the study was to investigate the effects of the reduced dietary calcium (Ca) and phosphorus (P) level and supplementation of 25-hydroxycholecalciferol (25-OHD3) on the expression of vitamin D receptor (VDR) and antimicrobial peptides and gut microbiota of broiler chickens with/without Eimeria challenge. A total of 576 fourteen-day-old broiler chicks were randomly allocated according to a 2 × 2 × 2 factorial design with main effects including Eimeria challenging (125,000 Eimeria acervulina, 25,000 Eimeria maxima, and 25,000 Eimeria tenella), dietary Ca and P levels (0.84% Ca and 0.42% available P or 0.64% Ca and 0.22% available P), and supplementation of 25-OHD3 (3,000 IU/kg) of 6 replicates. Three-way ANOVA was performed, and the effects of 3 main factors and their interactions were investigated. The reduced dietary Ca and P level downregulated cathelicidins 3 (CATH3) in the upper jejunum in the Eimeria challenging condition (interaction; P < 0.05). The reduced dietary Ca and P level decreased the relative mRNA expression of jejunal avian beta defensin 5 (AvBD5) in the Eimeria challenging condition (interaction; P < 0.05). The reduced dietary Ca and P level tended to decrease the relative mRNA expression of jejunal AvBD9 in the Eimeria challenging condition (interaction; P = 0.051). The reduced dietary Ca and P level decreased observed features (alpha diversity parameter for richness) in the upper jejunal microbiota in the Eimeria challenging condition (interaction; P < 0.05). The supplementation of 25-OHD3 decreased the relative abundance of the phylum Bacteroidetes (P < 0.05) and increased the relative abundance of the family Ruminococcaceae (P < 0.05) in the cecal digesta. The supplementation of 25-OHD3 decreased the serum endotoxin level in the Eimeria challenging condition (interaction; P < 0.05). Therefore, the reduced dietary Ca and P level modulated the upper jejunal microbiota via modulating the expression of antimicrobial peptides, and the supplementation of 25-OHD3 favorably modulated the cecal microbiota in broiler chickens with/without Eimeria challenge.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Li J, Bi Q, Pi Y, Jiang X, Li Y, Li X. Dietary Supplementation with 25-Hydroxyvitamin D 3 on Reproductive Performance and Placental Oxidative Stress in Primiparous Sows during Mid-to-Late Gestation. Antioxidants (Basel) 2024; 13:1090. [PMID: 39334749 PMCID: PMC11428878 DOI: 10.3390/antiox13091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The placenta plays a crucial role in nutrient transport and waste exchange between the dam and fetus, sustaining fetal growth. While the positive effects of 25-hydroxyvitamin D3 (25-OH-D3) on animal performance have been reported, its impact on placental function remains largely unknown. Therefore, this study aimed to investigate the effects of supplementing 25-OH-D3 in the diet of primiparous sows on reproductive performance, antioxidant capacity, placental oxidative stress, nutrient transport, and inflammatory response during mid-to-late gestation. A total of 45 healthy Landrace × Yorkshire primiparous sows on day 60 of gestation were selected and randomly allocated to three treatment groups based on body weight and backfat thickness: the control group (corn-soybean meal basal diet), the VD3 group (basal diet + 2000 IU VD3), and the 25-OH-D3 group (basal diet + 50 μg/kg 25-OH-D3). The results demonstrated that supplementation with 25-OH-D3 in the diet enhanced sows' average litter weight and birth weight during mid-to-late gestation. Additionally, plasma malondialdehyde (MDA) concentrations in sows significantly decreased in the VD3 and 25-OH-D3 groups (p < 0.05). Furthermore, lower gene expressions of placental HO-1, GPX2, IL-8, and IL-6 were found in the VD3 or 25-OH-D3 groups (p < 0.05 or p < 0.10), while higher gene expressions of GLUT1 and SNAT2 in the placenta of sows were observed in the VD3 and 25-OH-D3 groups, respectively (p < 0.05). These findings indicate that the supplementation of VD3 and 25-OH-D3 in the diet of sows can improve their plasma oxidative stress status, enhance placental antioxidant capacity and nutrient transport, and reduce placental inflammatory responses, with more pronounced improvements in sow performance observed in sows fed diets supplemented with 25-OH-D3.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Stein HH. Review: Aspects of digestibility and requirements for minerals and vitamin D by growing pigs and sows. Animal 2024; 18 Suppl 1:101125. [PMID: 38575402 DOI: 10.1016/j.animal.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Some of the biggest changes in mineral nutrition for pigs that have occurred due to recent research were caused by the understanding that there is a loss of endogenous Ca and P into the intestinal tract of pigs. This resulted in development of the concept of formulating diets based on standardized total tract digestibility (STTD) rather than apparent total tract digestibility because the values for STTD of these minerals are additive in mixed diets. There are, however, no recent summaries of research on digestibility and requirements of macro- and microminerals and vitamin D for pigs. Therefore, the objective of this review was to summarize selected results of research conducted over the last few decades to determine the digestibility and requirements of some minerals and vitamin D fed to sows and growing pigs. Benefits of microbial phytase in terms of increasing the digestibility of most minerals have been demonstrated. Negative effects on the growth performance of pigs of over-feeding Ca have also been demonstrated, and frequent analysis of Ca in complete diets and raw materials is, therefore, recommended. There is no evidence that current requirements for vitamin D for weanling or growing-finishing pigs are not accurate, but it is possible that gestating and lactating sows need more vitamin D than currently recommended. Vitamin D analogs and metabolites such as 1(OH)D3 and 25(OH)D3 have beneficial effects when added to diets for sows in combination with vitamin D3. Recent research on requirements for macrominerals other than Ca and P is scarce, but it is possible that Mg in diets containing low levels of soybean meal is marginal. Some of the chelated microminerals have increased digestibility compared with sulfate forms, and hydroxylated forms of Cu and Zn appear to be superior to sulfate or oxide forms. Likewise, dicopper oxide and Cu methionine hydroxy analog have a greater positive effect on the growth performance of growing pigs than copper sulfate. The requirement for Mn may need to be increased whereas there appears to be no benefits of providing Fe above current requirements. In conclusion, diets for pigs should be formulated based on values for STTD of Ca and P and there are negative effects of providing excess Ca in diets. It is possible vitamin D analogs and metabolites offer benefits over vitamin D3 in diets for sows. Likewise, chelated forms of microminerals or chemical forms of minerals other than sulfates or oxides may result in improved pig performance.
Collapse
Affiliation(s)
- H H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Kosian D, Willistein M, Weßbecher R, Eggers C, May O, Boll M. Highly selective whole-cell 25-hydroxyvitamin D 3 synthesis using molybdenum-dependent C25-steroid dehydrogenase and cyclodextrin recycling. Microb Cell Fact 2024; 23:30. [PMID: 38245746 PMCID: PMC10799449 DOI: 10.1186/s12934-024-02303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The global prevalence of vitamin D (VitD) deficiency associated with numerous acute and chronic diseases has led to strategies to improve the VitD status through dietary intake of VitD-fortified foods and VitD supplementation. In this context, the circulating form of VitD3 (cholecalciferol) in the human body, 25-hydroxy-VitD3 (calcifediol, 25OHVitD3), has a much higher efficacy in improving the VitD status, which has motivated researchers to develop methods for its effective and sustainable synthesis. Conventional monooxygenase-/peroxygenase-based biocatalytic platforms for the conversion of VitD3 to value-added 25OHVitD3 are generally limited by a low selectivity and yield, costly reliance on cyclodextrins and electron donor systems, or by the use of toxic co-substrates. RESULTS In this study, we used a whole-cell approach for biocatalytic 25OHVitD3 synthesis, in which a molybdenum-dependent steroid C25 dehydrogenase was produced in the denitrifying bacterium Thauera aromatica under semi-aerobic conditions, where the activity of the enzyme remained stable. This enzyme uses water as a highly selective VitD3 hydroxylating agent and is independent of an electron donor system. High density suspensions of resting cells producing steroid C25 dehydrogenase catalysed the conversion of VitD3 to 25OHVitD3 using either O2 via the endogenous respiratory chain or externally added ferricyanide as low cost electron acceptor. The maximum 25OHVitD3 titer achieved was 1.85 g L-1 within 50 h with a yield of 99%, which is 2.2 times higher than the highest reported value obtained with previous biocatalytic systems. In addition, we developed a simple method for the recycling of the costly VitD3 solubiliser cyclodextrin, which could be reused for 10 reaction cycles without a significant loss of quality or quantity. CONCLUSIONS The established steroid C25 dehydrogenase-based whole-cell system for the value-adding conversion of VitD3 to 25OHVitD3 offers a number of advantages in comparison to conventional oxygenase-/peroxygenase-based systems including its high selectivity, independence from an electron donor system, and the higher product titer and yield. Together with the established cyclodextrin recycling procedure, the established system provides an attractive platform for large-scale 25OHVitD3 synthesis.
Collapse
Affiliation(s)
- Dennis Kosian
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Weßbecher
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Constantin Eggers
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver May
- DSM Nutritional Products, Koninklijke DSM N.V., Kaiseraugst, 4303, Switzerland
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Becker LL, Gebhardt JT, Tokach MD, Woodworth JC, Goodband RD, DeRouchey JM, Bergstrom JR, Siepker CL. Effects of added 25(OH)D3 with varying standardized total tract digestible phosphorus concentrations on nursery pig performance, bone characteristics, and serum vitamin D status. J Anim Sci 2024; 102:skae254. [PMID: 39193832 PMCID: PMC11439147 DOI: 10.1093/jas/skae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024] Open
Abstract
A total of 360 pigs (DNA 600 × 241; initially 5.8 kg) were used in a 45-d growth study to evaluate the effects of adding 25(OH)D3 with 3 levels of standardized total tract digestible (STTD) P on nursery pig growth performance, bone and urine characteristics, and serum vitamin D. Pigs were weaned at 19 d of age and randomly allotted to 1 of 6 dietary treatments with 5 pigs per pen and 12 replications per treatment. Dietary treatments were arranged in a 2 × 3 factorial with main effects of 25(OH)D3 (0 or 50 µg/kg equivalent to 2,000 IU/kg of vitamin D3; Hy-D, dsm-firmenich, Plainsboro, NJ) and STTD P (70%, 100%, or 130% of the NRC [NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC) requirement estimate on a dietary percentage basis]. All diets contained 1,653 IU/kg of vitamin D3. On day 45, 1 pig per pen was euthanized to collect the right fibula, metacarpal, and 2nd and 10th ribs. Overall, increasing STTD P increased (quadratic, P ≤ 0.003) ADG, ADFI, and G:F with minimal improvement above 100% of the NRC STTD P requirement estimate. Added 25(OH)D3 had no effect on growth performance. Increasing STTD P decreased urinary Ca concentration (linear, P < 0.001) and increased urinary P concentration (quadratic, P < 0.001). When pigs were fed added 25(OH)D3, serum 25(OH)D3 increased (quadratic, P = 0.005) as STTD P increased but no differences were observed when 25(OH)D3 was not added and STTD P increased (25(OH)D3 × STTD P interaction, P = 0.032). When pigs were fed 25(OH)D3, serum 1,25(OH)2D3 increased (quadratic, P < 0.001) as STTD P decreased but the increase was not significant when no 25(OH)D3 was fed (STTD P × 25(OH)D3 interaction, P = 0.002). Bone ash percentage and weight increased (quadratic, P ≤ 0.065) in all bones as STTD P increased. Added 25(OH)D3 had no effect on bone density or bone ash weight; however, the reduction in bone ash percentage observed with reducing STTD P level tended to be less when 25(OH)D3 was provided (linear interaction, P = 0.098). Increasing STTD P decreased the likelihood of abnormal histologic bone lesions in the 10th rib. In summary, added 25(OH)D3 had limited effect on growth performance; however, an increase in serum concentrations of 25(OH)D3 and 24,25(OH)2D3 was observed. The addition of 25(OH)D3 to P-deficient diets increased percentage bone ash. Increasing STTD P to 100% of NRC [NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC] requirement estimate increased growth and 130% of NRC maximized bone ash.
Collapse
Affiliation(s)
- Larissa L Becker
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | - Christopher L Siepker
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Pérez-Calvo E, McCormack UM, Muns R, Mulvenna C, Payling L, Romero L, Roger L, Walsh MC. A sustainable nutritional solution for fattening pigs based on 25-hydroxycholecalciferol and triterpenoids added to a low Ca diet containing phytase improves growth performance via the activation of muscle protein synthesis without compromising bone mineralization. Transl Anim Sci 2024; 8. [DOI: 10.1093/tas/txae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Abstract
In the current climate of sustainable animal agriculture, nutritional strategies that support fattening swine growth performance and bone mineralization whilst reducing environmental impacts are much sought after. This study evaluated the effect of supplementing 25(OH)D3 with triterpenoids to a Ca-reduced diet containing phytase during the grower-finisher phase. Growth performance, bone composition, plasma metabolites and muscle gene expression were evaluated. Sixty crossbreed boar pigs (initial body weight (BW) 42.0 ± 5.1 kg at 12 wk of age) were assigned to three treatments with 20 pigs/treatment in a completely randomized design. Treatments comprised: 1) a standard commercial grower-finisher diet (positive control (PC)) containing 1,500 IU/kg vitamin D3 [3,585 kcal/kg digestible energy, 16.19% CP, 0.70% Ca, 0.29% standardized total tract digestible P]; 2) a negative control (NC) based on the PC with reduction in Ca and P (minus 30% and 10%, respectively); 3) the NC with vitamin D3 replaced by a commercially available compounds combination containing 25(OH)D3 and triterpenoids, dosed at 500 mg per kg of feed (TRT). All diets were provided ad libitum for 7 wk, and feed intake was recorded individually via electronic feeder stations. For the overall period, average daily gain and average daily feed intake were increased (P < 0.05) in TRT vs. NC or PC (+ 13.0% and + 8.3%, respectively, vs. NC); final BW was 7.8% higher vs. NC (+ 5.2% vs. PC; P < 0.05). Whole-body DXA-scanning at 19 wk of age showed that bone mineral density, content and percentage were reduced in NC vs. PC and equivalent to PC in TRT. Plasma 25(OH)D3 and P levels were raised in TRT (+ 33 ng/ml or 2.6-fold and + 0.55 mg/dL or 5.9%, respectively, vs. NC). The combination of 25(OH)D3 with triterpenoids was found to activate several biological pathways involved in muscle growth, including pathways that activate mTOR, a key central regulator of cell metabolism, growth, proliferation and survival when the gene expression was measured in the muscle tissue at 19 wk of age. These results suggest that the dietary combination of 25(OH)D3 with triterpenoids has the potential for use, alongside phytase, in supporting a reduction in Ca and P in the diet to reduce nutrient waste and improve the sustainability of production by promoting muscle growth and maintaining bone composition.
Collapse
Affiliation(s)
| | | | - Ramon Muns
- Livestock Production Branch, Agri-Food and Biosciences Institute , Hillsborough ,
| | - Christina Mulvenna
- Livestock Production Branch, Agri-Food and Biosciences Institute , Hillsborough ,
| | | | | | - Laurent Roger
- Animal Nutrition and Health, DSM-Firmenich , La Garenne-Colombes ,
| | - Maria C Walsh
- Animal Nutrition and Health, DSM-Firmenich , Kaiseraugst ,
| |
Collapse
|
9
|
Wierzbicka A, Pawlina-Tyszko K, Świątkiewicz M, Szmatoła T, Oczkowicz M. Changes in miRNA expression in the lungs of pigs supplemented with different levels and forms of vitamin D. Mol Biol Rep 2023; 51:8. [PMID: 38085380 PMCID: PMC10716066 DOI: 10.1007/s11033-023-08940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- β pathway and pathways related to metabolism and synthesis of glycan.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, Kraków, 30 248, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland.
| |
Collapse
|
10
|
Sauvé B, Chorfi Y, Montminy MPL, Guay F. Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides. Toxins (Basel) 2023; 15:394. [PMID: 37368695 DOI: 10.3390/toxins15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and-more recently-alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets' vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, Montreal University, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Lütke-Dörhoff M, Schulz J, Westendarp H, Visscher C, Wilkens MR. Effects of maternal and offspring treatment with two dietary sources of vitamin D on the mineral homeostasis, bone metabolism and locomotion of offspring fed protein- and phosphorus-reduced diets. Arch Anim Nutr 2023; 77:42-57. [PMID: 36757473 DOI: 10.1080/1745039x.2023.2172310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The present study aims to compare the effects of maternal and offspring treatment with 25-hydroxycholecalciferol (25-OHD3) and vitamin D3 on vitamin D status, mineral homoeostasis, bone metabolism and locomotion in the offspring. Either vitamin D3 (50 μg/kg diet) or 25-OHD3 (50 μg/kg diet) was supplemented to the gestation and lactation diets of 49 multiparous sows and/or to the diets of their growing offspring. Treatment of the sows did not affect plasma concentrations of 25-OHD3 of the offspring. Pigs fed 25-OHD3 had higher plasma concentrations of 25-OHD3 than pigs that received vitamin D3 during rearing and fattening. However, neither plasma concentrations of calcium, phosphate and bone markers during the observation period nor bone ash and bone mineral density at slaughter were clearly affected by the treatment. Maternal and offspring treatment with 25-OHD3 instead of vitamin D3 resulted in a slight reduction in the prevalence of leg swelling. In addition, more pigs walked with even steps and normal stride length. Further studies are needed to test whether the slight effects observed in the present experiment are reproducible and of relevance for animal health and welfare. In that case, the underlying mechanisms should be revealed in order to take advantage of potentially beneficial influences especially under certain feeding regimes.
Collapse
Affiliation(s)
- Michael Lütke-Dörhoff
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.,Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Heiner Westendarp
- Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Mirja R Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Williams HR, Chin TE, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Bergstrom JR, Rahe MC, Siepker CL, Sitthicharoenchai P, Radke SL, Ensley SM, Gebhardt JT. The effect of bone and analytical methods on the assessment of bone mineralization response to dietary phosphorus, phytase, and vitamin D in nursery pigs. J Anim Sci 2023; 101:skad353. [PMID: 37837391 PMCID: PMC10635674 DOI: 10.1093/jas/skad353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
A total of 360 pigs (DNA 600 × 241, DNA; initially 11.9 ± 0.56 kg) were used in a 28-d trial to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to dietary P, vitamin D, and phytase in nursery pigs. Pens of pigs (six pigs per pen) were randomized to six dietary treatments in a randomized complete block design with 10 pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: (1) 0.19% standardized total tract digestibility (STTD) P (deficient), (2) 0.33% STTD P (NRC [2012] requirement) using monocalcium phosphate, (3) 0.33% STTD P including 0.14% release from phytase (Ronozyme HiPhos 2700, DSM Nutritional Products, Parsippany, NJ), (4) 0.44% STTD P using monocalcium phosphate, phytase, and no vitamin D, (5) diet 4 with vitamin D (1,653 IU/kg), and (6) diet 5 with an additional 50 µg/kg of 25(OH)D3 (HyD, DSM Nutritional Products, Parsippany, NJ) estimated to provide an additional 2,000 IU/kg of vitamin D3. After 28 d on feed, eight pigs per treatment were euthanized for bone (metacarpal, 2nd rib, 10th rib, and fibula), blood, and urine analysis. The response to treatment for bone density and ash was dependent upon the bone analyzed (treatment × bone interaction for bone density, P = 0.044; non-defatted bone ash, P = 0.060; defatted bone ash, P = 0.068). Thus, the response related to dietary treatment differed depending on which bone (metacarpal, fibula, 2nd rib, or 10th rib) was measured. Pigs fed 0.19% STTD P had decreased (P < 0.05) bone density and ash (non-defatted and defatted) for all bones compared to 0.44% STTD P, with 0.33% STTD P generally intermediate or similar to 0.44% STTD P. Pigs fed 0.44% STTD P with no vitamin D had greater (P < 0.05) non-defatted fibula ash compared to all treatments other than 0.44% STTD P with added 25(OH)D3. Pigs fed diets with 0.44% STTD P had greater (P < 0.05) defatted second rib ash compared to pigs fed 0.19% STTD P or 0.33% STTD P with no phytase. In summary, bone density and ash responses varied depending on bone analyzed. Differences in bone density and ash in response to P and vitamin D were most apparent with fibulas and second ribs. There were apparent differences in the bone ash percentage between defatted and non-defatted bone. However, differences between the treatments remain consistent regardless of the analytic procedure. For histopathology, 10th ribs were more sensitive than 2nd ribs or fibulas for the detection of lesions.
Collapse
Affiliation(s)
- Hadley R Williams
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Taylor E Chin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | - Michael C Rahe
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Christopher L Siepker
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Panchan Sitthicharoenchai
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Scott L Radke
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Steve M Ensley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|