1
|
Dorrell RG, Nef C, Altan-Ochir S, Bowler C, Smith AG. Presence of vitamin B 12 metabolism in the last common ancestor of land plants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230354. [PMID: 39343018 PMCID: PMC11439496 DOI: 10.1098/rstb.2023.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 10/01/2024] Open
Abstract
Vitamin B12, also known as cobalamin, is an essential organic cofactor for methionine synthase (METH), and is only synthesized by a subset of bacteria. Plants and fungi have an alternative methionine synthase (METE) that does not need B12 and are typically considered not to utilize it. Some algae facultatively utilize B12 because they encode both METE and METH, while other algae are dependent on B12 as they encode METH only. We performed phylogenomic analyses of METE, METH and 11 further proteins involved in B12 metabolism across more than 1600 plant and algal genomes and transcriptomes (e.g. from OneKp), demonstrating the presence of B12-associated metabolism deep into the streptophytes. METH and five further accessory proteins (MTRR, CblB, CblC, CblD and CblJ) were detected in the hornworts (Anthocerotophyta), and two (CblB and CblJ) were identified in liverworts (Marchantiophyta) in the bryophytes, suggesting a retention of B12-metabolism in the last common land plant ancestor. Our data further show more limited distributions for other B12-related proteins (MCM and RNR-II) and B12 dependency in several algal orders. Finally, considering the collection sites of algae that have lost B12 metabolism, we propose freshwater-to-land transitions and symbiotic associations to have been constraining factors for B12 availability in early plant evolution. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Richard G. Dorrell
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Charlotte Nef
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS,INSERM, Université PSL, Paris75005, France
| | - Setsen Altan-Ochir
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS,INSERM, Université PSL, Paris75005, France
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS,INSERM, Université PSL, Paris75005, France
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
| |
Collapse
|
2
|
Gourgues S, Goñi-Urriza M, Milhe-Poutingon M, Baldoni-Andrey P, Gurieff NB, Gelber C, Le Faucheur S. Cobalt effects on prokaryotic communities of river biofilms: Impact on their colonization kinetics, structure and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175713. [PMID: 39191324 DOI: 10.1016/j.scitotenv.2024.175713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Although cobalt (Co) plays a significant role in the transition to low-carbon technologies, its environmental impact remains largely unknown. This study examines Co impacts on the prokaryotic communities within river biofilms to evaluate their potential use as bioindicators of Co contamination. To this end, biofilms were cultivated in artificial streams enriched with different environmental Co concentrations (0.1, 0.5, and 1 μM Co) over 28 days and examined for prokaryotic abundance and diversity via quantitative PCR and DNA-metabarcoding every 7 days. The prokaryotic community's resilience was further investigated after an additional 35 days without Co contamination. The prokaryotic communities were affected by 0.5 and 1 μM Co from the onset of biofilm colonization. The biofilm biomass was comparable between treatments, but the community composition differed. Control biofilms were dominated by Cyanobacteria and Planctomycetes, whereas Bacteroidetes dominated the Co-contaminated biofilms. Potential functional redundancy was observed through the implementation of carbon fixation alternatives by non-photosynthetic prokaryotes in biofilms exposed to high Co concentrations. No structural resilience was observed in the biofilms after 35 days without Co contamination. Measuring the prokaryotic community structural response using molecular approaches appears to be a promising method for assessing shifts in water quality owing to Co contamination.
Collapse
Affiliation(s)
- Sarah Gourgues
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | - Marisol Goñi-Urriza
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France
| | | | | | | | | | | |
Collapse
|
3
|
Graf J, Fresenborg L, Seitz HM, Pernil R, Schleiff E. A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in Anabaena sp. PCC 7120. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:41-56. [PMID: 38379927 PMCID: PMC10878165 DOI: 10.15698/mic2024.02.814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for Anabaena sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. Anabaena contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of tonB3 and btuD show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.
Collapse
Affiliation(s)
- Julia Graf
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Leonard Fresenborg
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Isotope and Element Research Center, Goethe University Frankfurt, 60438 Frankfurt Germany
| | - Hans-Michael Seitz
- Frankfurt Isotope and Element Research Center, Goethe University Frankfurt, 60438 Frankfurt Germany
- Institute for Geoscience, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Isotope and Element Research Center, Goethe University Frankfurt, 60438 Frankfurt Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straβe 1, 60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Max von Laue Str. 11, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Facey JA, Violi JP, King JJ, Sarowar C, Apte SC, Mitrovic SM. The Influence of Micronutrient Trace Metals on Microcystis aeruginosa Growth and Toxin Production. Toxins (Basel) 2022; 14:toxins14110812. [PMID: 36422986 PMCID: PMC9694995 DOI: 10.3390/toxins14110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Microcystis aeruginosa is a widespread cyanobacteria capable of producing hepatotoxic microcystins. Understanding the environmental factors that influence its growth and toxin production is essential to managing the negative effects on freshwater systems. Some micronutrients are important cofactors in cyanobacterial proteins and can influence cyanobacterial growth when availability is limited. However, micronutrient requirements are often species specific, and can be influenced by substitution between metals or by luxury uptake. In this study, M. aeruginosa was grown in modified growth media that individually excluded some micronutrients (cobalt, copper, iron, manganese, molybdenum) to assess the effect on growth, toxin production, cell morphology and iron accumulation. M. aeruginosa growth was limited when iron, cobalt and manganese were excluded from the growth media, whereas the exclusion of copper and molybdenum had no effect on growth. Intracellular microcystin-LR concentrations were variable and were at times elevated in treatments undergoing growth limitation by cobalt. Intracellular iron was notably higher in treatments grown in cobalt-deplete media compared to other treatments possibly due to inhibition or competition for transporters, or due to irons role in detoxifying reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Jordan A. Facey
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2000, Australia
- Correspondence:
| | - Jake P. Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2000, Australia
| | - Josh J. King
- CSIRO Land and Water, Lucas Heights, Sydney, NSW 2234, Australia
| | - Chowdhury Sarowar
- Prince of Wales Clinical School, University of New South Wales, Kensington, NSW 2052, Australia
| | - Simon C. Apte
- CSIRO Land and Water, Lucas Heights, Sydney, NSW 2234, Australia
| | - Simon M. Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2000, Australia
| |
Collapse
|
5
|
Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel Acidobacteria Genera in Microcystis Blooms Inferred from Metagenomic and Metatranscriptomic Evidence. Appl Environ Microbiol 2022; 88:e0180321. [PMID: 35862730 PMCID: PMC9317899 DOI: 10.1128/aem.01803-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H2O2. Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis, which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide.
Collapse
|