1
|
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022; 8:e10282. [PMID: 36042717 PMCID: PMC9420367 DOI: 10.1016/j.heliyon.2022.e10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Light is necessary for human health and well-being. As we spend more time indoors, we are being increasingly exposed to artificial light. The development of artificial lighting has allowed us to control the brightness, colour, and timing of our light exposure. Yet, the widespread use of artificial light has raised concerns about the impact of altering our light environment on our health. The widespread adoption of personal digital devices over the past decade has exposed us to yet another source of artificial light. We spend a significant amount of time using digital devices with light-emitting screens, including smartphones and tablets, at close range. The light emitted from these devices, while appearing white, has an emission spectrum with a peak in the blue range. Blue light is often characterised as hazardous as its photon energy is higher than that of other wavelengths of visible light. Under certain conditions, visible blue light can cause harm to the retina and other ocular structures. Blue light can also influence the circadian rhythm and processes mediated by melanopsin-expressing intrinsically photosensitive retinal ganglion cells. While the blue component of sunlight is necessary for various physiological processes, whether the low-illuminance artificial blue light emitted from digital devices presents a risk to our health remains an ongoing area of debate. As technological advancements continue, it is relevant to understand how new devices may influence our well-being. This review examines the existing research on artificial blue light safety and the eye, visual performance, and circadian functions.
Collapse
Affiliation(s)
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
2
|
Chellappa SL, Bromundt V, Frey S, Schlote T, Goldblum D, Cajochen C. Cross-sectional study of intraocular cataract lens replacement, circadian rest–activity rhythms, and sleep quality in older adults. Sleep 2022; 45:6515911. [DOI: 10.1093/sleep/zsac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Study Objectives
Age-related cataract decreases light transmission at the most sensitive spectrum for circadian photoentrainment, with negative ramifications for human health. Here, we assessed whether intraocular lens replacement (IOL) in older patients with previous cataract was associated with increased stability and amplitude of circadian rest–activity rhythms, and improved sleep quality.
Methods
Our cross-sectional study included sixteen healthy older individuals without ocular diseases (controls; 55–80 years; 63.6 ± 5.6y; 8 women) and 13 patients with previous cataract and bilateral IOL (eight with blue-blocking [BB] lens and five with ultraviolet-only [UV] blocking lens; 55–80 years; 69.9 ± 5.2y; 9 women). The study comprised three weeks of at home rest–activity assessments using wrist-worn actigraphs, and each week preceded a laboratory protocol. Primary outcomes were actigraphy-derived interdaily stability, intradaily variability, and relative amplitude of circadian rest–activity rhythms. Secondary outcomes were actigraphy-assessed sleep quality (i.e. time in bed, sleep duration, sleep efficiency, mean wake bout time and fragmentation index).
Results
Patients with IOL had significantly higher interdaily stability (“Group” effect: pFDR =.001), but not intradaily variability (“Group” effect: pFDR = n.s.), and significantly higher relative amplitude of rest–activity rhythms (“Group” effect: pFDR < .001). Moreover, patients with IOL had significantly higher activity levels during the day and lower levels during the evening, as compared to healthy older controls (“Group” effect: pFDR = .03). Analyses of actigraphy-derived sleep parameters yielded no significant differences across groups (“Group” effect: all pFDR > .1).
Conclusions
Our cross-sectional study suggests that enhancing spectral lens transmission in patients with cataract may benefit their circadian health.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vivien Bromundt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | - David Goldblum
- University of Basel, Basel, Switzerland
- Pallas-Kliniken, Olten and Bern, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Chellappa SL, Bromundt V, Frey S, Cajochen C. Age-related neuroendocrine and alerting responses to light. GeroScience 2021; 43:1767-1781. [PMID: 33638088 DOI: 10.1007/s11357-021-00333-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
Abstract
Aging is associated with sleep and circadian alterations, which can negatively affect quality of life and longevity. Importantly, the age-related reduction in light sensitivity, particularly in the short-wavelength range, may underlie sleep and circadian alterations in older people. While evidence suggests that non-image-forming (NIF) light responses may diminish in older individuals, most laboratory studies have low sample sizes, use non-ecological light settings (e.g., monochromatic light), and typically focus on melatonin suppression by light. Here, we investigated whether NIF light effects on endogenous melatonin levels and sleep frontal slow-wave activity (primary outcomes), and subjective sleepiness and sustained attention (secondary outcomes) attenuate with aging. We conducted a stringently controlled within-subject study with 3 laboratory protocols separated by ~ 1 week in 31 young (18-30 years; 15 women) and 16 older individuals (55-80 years; eight women). Each protocol included 2 h of evening exposure to commercially available blue-enriched polychromatic light (6500 K) or non-blue-enriched light (3000 K or 2500 K) at low levels (~ 40 lx, habitual in evening indoor settings). Aging significantly affected the influence of light on endogenous melatonin levels, subjective sleepiness, sustained attention, and frontal slow-wave activity (interaction: P < 0.001, P = 0.004, P = 0.007, P = 0.001, respectively). In young individuals, light exposure at 6500 K significantly attenuated the increase in endogenous melatonin levels, improved subjective sleepiness and sustained attention performance, and decreased frontal slow-wave activity in the beginning of sleep. Conversely, older individuals did not exhibit signficant differential light sensitivity effects. Our findings provide evidence for an association of aging and reduced light sensitivity, with ramifications to sleep, cognition, and circadian health in older people.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, 221 Longwood Avenue, 039 BLI, Boston, MA, 02115, USA. .,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Vivien Bromundt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Grant LK, Kent BA, Mayer MD, Stickgold R, Lockley SW, Rahman SA. Daytime Exposure to Short Wavelength-Enriched Light Improves Cognitive Performance in Sleep-Restricted College-Aged Adults. Front Neurol 2021; 12:624217. [PMID: 33692742 PMCID: PMC7937889 DOI: 10.3389/fneur.2021.624217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
We tested the effect of daytime indoor light exposure with varying melanopic strength on cognitive performance in college-aged students who maintained an enforced nightly sleep opportunity of 7 h (i.e., nightly sleep duration no longer than 7 h) for 1 week immediately preceding the day of light exposure. Participants (n = 39; mean age ± SD = 24.5 ± 3.2 years; 21 F) were randomized to an 8 h daytime exposure to one of four white light conditions of equal photopic illuminance (~50 lux at eye level in the vertical plane) but different melanopic illuminance [24–45 melanopic-EDI lux (melEDI)] generated by varying correlated color temperatures [3000K (low-melEDI) or 5000K (high-melEDI)] and spectra [conventional or daylight-like]. Accuracy on a 2-min addition task was 5% better in the daylight-like high-melEDI condition (highest melEDI) compared to the conventional low-melEDI condition (lowest melEDI; p < 0.01). Performance speed on the motor sequence learning task was 3.2 times faster (p < 0.05) during the daylight-like high-melEDI condition compared to the conventional low-melEDI. Subjective sleepiness was 1.5 times lower in the conventional high-melEDI condition compared to the conventional low-melEDI condition, but levels were similar between conventional low- and daylight-like high-melEDI conditions. These results demonstrate that exposure to high-melanopic (short wavelength-enriched) white light improves processing speed, working memory, and procedural learning on a motor sequence task in modestly sleep restricted young adults, and have important implications for optimizing lighting conditions in schools, colleges, and other built environments.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Brianne A Kent
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Matthew D Mayer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Chellappa SL. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep 2021; 44:zsaa214. [PMID: 33049062 PMCID: PMC7879412 DOI: 10.1093/sleep/zsaa214] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial lighting is omnipresent in contemporary society with disruptive consequences for human sleep and circadian rhythms because of overexposure to light, particularly in the evening/night hours. Recent evidence shows large individual variations in circadian photosensitivity, such as melatonin suppression, due to artificial light exposure. Despite the emerging body of research indicating that the effects of light on sleep and circadian rhythms vary dramatically across individuals, recommendations for appropriate light exposure in real-life settings rarely consider such individual effects. This review addresses recently identified links among individual traits, for example, age, sex, chronotype, genetic haplotypes, and the effects of evening/night light on sleep and circadian hallmarks, based on human laboratory and field studies. Target biological mechanisms for individual differences in light sensitivity include differences occurring within the retina and downstream, such as the central circadian clock. This review also highlights that there are wide gaps of uncertainty, despite the growing awareness that individual differences shape the effects of evening/night light on sleep and circadian physiology. These include (1) why do certain individual traits differentially affect the influence of light on sleep and circadian rhythms; (2) what is the translational value of individual differences in light sensitivity in populations typically exposed to light at night, such as night shift workers; and (3) what is the magnitude of individual differences in light sensitivity in population-based studies? Collectively, the current findings provide strong support for considering individual differences when defining optimal lighting specifications, thus allowing for personalized lighting solutions that promote quality of life and health.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|