1
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
2
|
Balic Z, Misra S, Willard B, Reinhardt DP, Apte SS, Hubmacher D. Alternative splicing of the metalloprotease ADAMTS17 spacer regulates secretion and modulates autoproteolytic activity. FASEB J 2021; 35:e21310. [PMID: 33484187 DOI: 10.1096/fj.202001120rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
ADAMTS proteases mediate biosynthesis and breakdown of secreted extracellular matrix (ECM) molecules in numerous physiological and disease processes. In addition to their catalytic domains, ADAMTS proteases contain ancillary domains, which mediate substrate recognition and ECM binding and confer distinctive properties and roles to individual ADAMTS proteases. Although alternative splicing can greatly expand the structural and functional diversity of ADAMTS proteases, it has been infrequently reported and functional consequences have been rarely investigated. Here, we characterize the structural and functional impact of alternative splicing of ADAMTS17, mutations in which cause Weill-Marchesani syndrome 4. Two novel ADAMTS17 splice variants, ADAMTS17A and ADAMTS17B, were investigated by structural modeling, mass spectrometry, and biochemical approaches. Our results identify a novel disulfide-bridged insertion in the ADAMTS17A spacer that originates from inclusion of a novel exon. This insertion results in differential autoproteolysis of ADAMTS17, and thus, predicts altered proteolytic activity against other substrates. The second variant, ADAMTS17B, results from an in-frame exon deletion and prevents ADAMTS17B secretion. Thus, alternative splicing of the ADAMTS spacer significantly regulates the physiologically relevant proteolytic activity of ADAMTS17, either by altering proteolytic specificity (ADAMTS17A) or by altering cellular localization (ADAMTS17B).
Collapse
Affiliation(s)
- Zerina Balic
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Belinda Willard
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Dirk Hubmacher
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Goel A, Ramakrishna B, Zachariah U, Sajith KG, Burad DK, Kodiatte TA, Keshava SN, Balasubramanian KA, Elias E, Eapen CE. What makes non-cirrhotic portal hypertension a common disease in India? Analysis for environmental factors. Indian J Med Res 2020; 149:468-478. [PMID: 31411170 PMCID: PMC6676844 DOI: 10.4103/ijmr.ijmr_1405_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In India, an unexplained enteropathy is present in a majority of non-cirrhotic intrahepatic portal hypertension (NCIPH) patients. Small intestinal bacterial contamination and tropical enteropathy could trigger inflammatory stimuli and activate the endothelium in the portal venous system. Groundwater contaminated with arsenic is an environmental factor of epidemic proportions in large areas of India which has similar consequences. Von Willebrand factor (a sticky protein) expressed by activated endothelium may promote formation of platelet microthrombi and occlusion of intrahepatic portal vein branches leading to NCIPH. Environmental factors linked to suboptimal hygiene and sanitation, which enter through the gastrointestinal (GI) tract, predispose to platelet plugging onto activated endothelium in portal microcirculation. Thus, NCIPH, an example of poverty linked thrombophilia, is a disease mainly affecting the lower socio-economic strata of Indian population. Public health measures to improve sanitation, provide clean drinking water and eliminate arsenic contamination of drinking water are urgently needed. Till such time as these environmental factors are addressed, NCIPH is likely to remain 'an Indian disease'.
Collapse
Affiliation(s)
- Ashish Goel
- Department of Hepatology, Division of GI Sciences, Christian Medical College, Vellore, India
| | - Banumathi Ramakrishna
- Department of Pathology, Division of GI Sciences, Christian Medical College, Vellore, India
| | - Uday Zachariah
- Department of Hepatology, Division of GI Sciences, Christian Medical College, Vellore, India
| | - K G Sajith
- Department of Hepatology, Division of GI Sciences, Christian Medical College, Vellore, India
| | - Deepak K Burad
- Department of Pathology, Division of GI Sciences, Christian Medical College, Vellore, India
| | - Thomas A Kodiatte
- Department of Pathology, Division of GI Sciences, Christian Medical College, Vellore, India
| | - Shyamkumar N Keshava
- Department of Radio-diagnosis, Division of GI Sciences, Christian Medical College, Vellore, India
| | - K A Balasubramanian
- Department of Wellcome Research Laboratory, Division of GI Sciences, Christian Medical College, Vellore, India
| | - Elwyn Elias
- Department of Hepatology, Division of GI Sciences, Christian Medical College, Vellore, India; Liver Unit, University Hospitals, Birmingham, UK
| | - C E Eapen
- Department of Hepatology, Division of GI Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
4
|
Hunt R, Hettiarachchi G, Katneni U, Hernandez N, Holcomb D, Kames J, Alnifaidy R, Lin B, Hamasaki-Katagiri N, Wesley A, Kafri T, Morris C, Bouché L, Panico M, Schiller T, Ibla J, Bar H, Ismail A, Morris H, Komar A, Kimchi-Sarfaty C. A Single Synonymous Variant (c.354G>A [p.P118P]) in ADAMTS13 Confers Enhanced Specific Activity. Int J Mol Sci 2019; 20:ijms20225734. [PMID: 31731663 PMCID: PMC6888508 DOI: 10.3390/ijms20225734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Synonymous variants within coding regions may influence protein expression and function. We have previously reported increased protein expression levels ex vivo (~120% in comparison to wild-type) from a synonymous polymorphism variant, c.354G>A [p.P118P], of the ADAMTS13 gene, encoding a plasma protease responsible for von Willebrand Factor (VWF) degradation. In the current study, we investigated the potential mechanism(s) behind the increased protein expression levels from this variant and its effect on ADAMTS13 physico-chemical properties. Cell-free assays showed enhanced translation of the c.354G>A variant and the analysis of codon usage characteristics suggested that introduction of the frequently used codon/codon pair(s) may have been potentially responsible for this effect. Limited proteolysis, however, showed no substantial influence of altered translation on protein conformation. Analysis of post-translational modifications also showed no notable differences but identified three previously unreported glycosylation markers. Despite these similarities, p.P118P variant unexpectedly showed higher specific activity. Structural analysis using modeled interactions indicated that subtle conformational changes arising from altered translation kinetics could affect interactions between an exosite of ADAMTS13 and VWF resulting in altered specific activity. This report highlights how a single synonymous nucleotide variation can impact cellular expression and specific activity in the absence of measurable impact on protein structure.
Collapse
Affiliation(s)
- Ryan Hunt
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Gaya Hettiarachchi
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Nancy Hernandez
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - David Holcomb
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Jacob Kames
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Redab Alnifaidy
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Brian Lin
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Aaron Wesley
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present Address: Department of Emergency Medicine, Banner University Medical Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Present Address: Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Maria Panico
- BioPharmaSpec Ltd., St. Saviour JE2 7LA, UK or or
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tal Schiller
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Juan Ibla
- Departments of Cardiac Surgery and Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Amra Ismail
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Howard Morris
- BioPharmaSpec Ltd., St. Saviour JE2 7LA, UK or or
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anton Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
- Correspondence: ; Tel.: +1-(240)-402-8203
| |
Collapse
|
5
|
Kokame K, Matsumoto M, Fujimura Y, Miyata T. ADAMTS13 activity and genetic mutations in Japan. Hamostaseologie 2018; 33:131-7. [DOI: 10.5482/hamo-12-11-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/13/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryThrombotic thrombocytopenic purpura (TTP), a life threatening disease, can be induced by congenital or acquired deficiency of plasma metalloprotease ADAMTS13. Since the publication of the first genetic analysis in patients with congenital ADAMTS13 deficiency in 2001, more than 100 genetic defects in the ADAMTS13 gene have been reported worldwide. Genetic analysis in patients with ADAMTS13 deficiency has greatly contributed to the understanding of the etiology of TTP. A rapid and quantitative assay method for the plasma ADAMTS13 activity was developed recently in 2005 and opened a new area of TTP research – namely genetic research using a general population to evaluate age and gender differences of ADAMTS13 activity as well as phenotype – genotype correlations of genetic polymorphisms and estimation of a homozygote or a compound heterozygote ADAMTS13 deficiencies. The Japanese general population study included 3616 individuals with an age between 30 – 80 years confirming other studies that while ADAMTS13 activity decreased with age, VWF antigen increased and VWF antigen levels are lowest in blood group O indviduals, whereas ADAMTS13 activity levels were not associated with the AB0 blood group. 25 polymorphisms with a minor allele frequency of more than 0.01 were found, among them 6 missense mutations and 19 synonymous mutations, except P475S missense polymorphisms that was only idenitified in an East Asian population, characterized by reduced ADAMTS13 activity. Prevalence of congenital ADAMTS13 deficiency in the Japanese population was estimated about one individual in 1.1 × 106 to be homozygote or compound heterozygote for ADAMTS13 deficiency. So far more than 40 mutations in Japanese congenital TTP patients were found, but R193W, Q449*, C754Afs*24 (c.2259delA) and C908Y were identified in more than four patients suggesting the precipitaion of these mutations in the Japanese population.
Collapse
|
6
|
Abstract
von Willebrand factor (VWF) is a key player in hemostasis, acting as a carrier for factor VIII and capturing platelets at sites of vascular damage. To capture platelets, it must undergo conformational changes, both within its A1 domain and at the macromolecular level through A2 domain unfolding. Its size and this function are regulated by the metalloproteinase ADAMTS-13. Recently, it has been shown that ADAMTS-13 undergoes a conformational change upon interaction with VWF, and that this enhances its activity towards its substrate. This review summarizes recent work on these conformational transitions, describing how they are controlled. It points to their importance in hemostasis, bleeding disorders, and the developing field of therapeutic application of ADAMTS-13 as an antithrombotic agent in obstructive microvascular thrombosis and in cardiovascular disease.
Collapse
Affiliation(s)
- K. South
- Centre for HaematologyImperial College LondonLondonUK
| | - D. A. Lane
- Centre for HaematologyImperial College LondonLondonUK
| |
Collapse
|
7
|
Identification of glycans on plasma-derived ADAMTS13. Blood 2016; 128:e51-e58. [PMID: 27574189 DOI: 10.1182/blood-2016-06-720912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
Patients suffering from acquired thrombotic thrombocytopenic purpura develop autoantibodies directed toward the plasma glycoprotein ADAMTS13. Here, we studied the glycan composition of plasma-derived ADAMTS13. Purified ADAMTS13 was reduced, alkylated, and processed into peptides with either trypsin or chymotrypsin. Glycopeptides were enriched using zwitterionic HILIC zip-tips and analyzed by tandem mass spectrometry employing higher-energy collision dissociation fragmentation. Upon detection of a diagnostic ion of a glycan fragment, electron transfer dissociation fragmentation was performed on the same precursor ion. The majority of N-linked glycans were of the complex type containing terminal sialic acids and fucose residues. A high mannose-containing glycan was attached to Asn614 in the spacer domain. Six O-linked glycans mostly terminating in sialic acid were found dispersed over ADAMTS13. Five O-linked glycans were attached to a Ser and one to Thr. All 6 O-linked glycans contained a terminal sialic acid. O-fucosylation is a common posttranslational modification of thrombospondin type 1 repeats. We identified 7 O-fucosylation sites in the thrombospondin (TSP) type 1 repeats. Unexpectedly, one additional O-fucosylation site was found in the disintegrin domain. This O-fucosylation site did not meet the proposed consensus sequence CSX(S/T)CG. C-mannosylation sites were identified in TSP1, linker TSP4-TSP5, and TSP8. Overall, our findings highlight the complexity of glycan modifications on ADAMTS13, which may have implications for its interaction with immune- or clearance receptors containing carbohydrate recognition domains.
Collapse
|
8
|
ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Toxins (Basel) 2016; 8:toxins8050155. [PMID: 27196928 PMCID: PMC4885070 DOI: 10.3390/toxins8050155] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW ADAMTS13 is a zinc-containing metalloprotease that cleaves von Willebrand factor (VWF). Deficiency of plasma ADAMTS13 activity is accountable for a potentially fatal blood disorder thrombotic thrombocytopenic purpura (TTP). Understanding of ADAMTS13-VWF interaction is essential for developing novel treatments to this disorder. RECENT FINDINGS Despite the proteolytic activity of ADAMTS13 being restricted to the metalloprotease domain, the ancillary proximal C-terminal domains including the disintegrin domain, first TSP-1 repeat, cysteine-rich region, and spacer domain are all required for cleavage of VWF and its analogs. Recent studies have added to our understandings of the role of the specific regions in the disintegrin domain, the cysteine-rich domain, and the spacer domain responsible for its interaction with VWF. Additionally, regulative functions of the distal portion of ADAMTS13 including the TSP-1 2-8 repeats and the CUB domains have been proposed. Finally, fine mapping of anti-ADAMTS13 antibody epitopes have provided further insight into the essential structural elements in ADAMTS13 for VWF binding and the mechanism of autoantibody-mediated TTP. SUMMARY Significant progress has been made in our understandings of the structure-function relationship of ADAMTS13 in the past decade. To further investigate ADAMTS13-VWF interactions for medical applications, these interactions must be studied under physiological conditions in vivo.
Collapse
|
10
|
Abstract
ADAMTS13 proteolytically regulates the platelet-tethering function of von Willebrand factor (VWF). ADAMTS13 function is dependent upon multiple exosites that specifically bind the unraveled VWF A2 domain and enable proteolysis. We carried out a comprehensive functional analysis of the ADAMTS13 cysteine-rich (Cys-rich) domain using engineered glycans, sequence swaps, and single point mutations in this domain. Mutagenesis of Cys-rich domain-charged residues had no major effect on ADAMTS13 function, and 5 out of 6 engineered glycans on the Cys-rich domain also had no effect on ADAMTS13 function. However, a glycan attached at position 476 appreciably reduced both VWF binding and proteolysis. Substitution of Cys-rich sequences for the corresponding regions in ADAMTS1 identified a hydrophobic pocket involving residues Gly471-Val474 as being of critical importance for both VWF binding and proteolysis. Substitution of hydrophobic VWF A2 domain residues to serine in a region (residues 1642-1659) previously postulated to interact with the Cys-rich domain revealed the functional importance of VWF residues Ile1642, Trp1644, Ile1649, Leu1650, and Ile1651. Furthermore, the functional deficit of the ADAMTS13 Cys-rich Gly471-Val474 variant was dependent on these same hydrophobic VWF residues, suggesting that these regions form complementary binding sites that directly interact to enhance the efficiency of the proteolytic reaction.
Collapse
|
11
|
Sorvillo N, Kaijen PH, Matsumoto M, Fujimura Y, van der Zwaan C, Verbij FC, Pos W, Fijnheer R, Voorberg J, Meijer AB. Identification of N-linked glycosylation and putative O-fucosylation, C-mannosylation sites in plasma derived ADAMTS13. J Thromb Haemost 2014; 12:670-9. [PMID: 24977290 DOI: 10.1111/jth.12535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acquired deficiency of ADAMTS13 causes a rare and life-threatening disorder called thrombotic thrombocytopenic purpura (TTP). Several studies have shown that aberrant glycosylation can play an important role in the pathogenesis of autoimmune diseases.N-linked glycosylation and putative O-fucosylation sites have been predicted or identified in recombinant ADAMTS13. However, it is not known which of these sites are glycosylated in plasma derived ADAMTS13. OBJECTIVES Here we investigated the presence of putative O-fucosylation, C-mannosylation and N-linked glycosylation sites on plasma derived ADAMTS13. METHODS/RESULTS Sites of N-linked glycosylation were determined by the use of peptide N-glycosidase-F (PNGase F), which removes the entire carbohydrate from the side chain of asparagines. Nine of the 10 predicted N-linked glycosylation sites were identified in or near the metalloproteinase,spacer, thrombospondin type 1 repeat (TSR1) and the CUB domain of plasma ADAMTS13. Moreover, six putative O-fucosylated sites were identified in the TSR domains of plasma ADAMTS13 by performing searches of the tandem mass spectrometry (MS/MS) data for loss of hexose (162 Da), deoxyhexose (146 Da), or hexose deoxyhexose(308 Da). The use of electron transfer dissociation (ETD) allowed for unambiguous identification of the modified sites. In addition to putative O-fucosylation and N-linked glycosylation, two putative C-mannosylation sites were identified within the TSR1 and TSR4 domains of ADAMTS13. CONCLUSIONS Our data identify several glycosylation sites on plasma derived ADAMTS13. We anticipate that our findings may be relevant for the initiation of autoimmune reactivity against ADAMTS13 in patients with acquired TTP.
Collapse
|
12
|
Proteolytic processing of von Willebrand factor by adamts13 and leukocyte proteases. Mediterr J Hematol Infect Dis 2013; 5:e2013058. [PMID: 24106608 PMCID: PMC3787661 DOI: 10.4084/mjhid.2013.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 01/06/2023] Open
Abstract
ADAMTS13 is a 190 kDa zinc protease encoded by a gene located on chromosome 9q34. This protease specifically hydrolyzes von Willebrand factor (VWF) multimers, thus causing VWF size reduction. ADAMTS13 belongs to the A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS) family, involved in proteolytic processing of many matrix proteins. ADAMTS13 consists of numerous domains including a metalloprotease domain, a disintegrin domain, several thrombospondin type 1 (TSP1) repeats, a cysteine-rich domain, a spacer domain and 2 CUB (Complement c1r/c1s, sea Urchin epidermal growth factor, and Bone morphogenetic protein) domains. ADAMTS13 cleaves a single peptide bond (Tyr1605-Met1606) in the central A2 domain of the VWF molecule. This proteolytic cleavage is essential to reduce the size of ultra-large VWF polymers, which, when exposed to high shear stress in the microcirculation, are prone to form with platelets clumps, which cause severe syndromes called thrombotic microangiopathies (TMAs). In this review, we a) discuss the current knowledge of structure-function aspects of ADAMTS13 and its involvement in the pathogenesis of TMAs, b) address the recent findings concerning proteolytic processing of VWF multimers by different proteases, such as the leukocyte-derived serine and metallo-proteases and c) indicate the direction of future investigations.
Collapse
|