1
|
Papakonstantinou A, Kalmoukos P, Mpalaska A, Koravou EE, Gavriilaki E. ADAMTS13 in the New Era of TTP. Int J Mol Sci 2024; 25:8137. [PMID: 39125707 PMCID: PMC11312255 DOI: 10.3390/ijms25158137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a life-threatening, often immune-mediated disease that affects 2-13 persons per million per year. Hemolytic anemia, thrombocytopenia, and end-organ damage due to the formation of microthrombi are characteristic of TTP. ADAMTS13 is a disintegrin, metalloproteinase, cleaving protein of von Willebrand factor (VWF) that processes the VWF multimers to prevent them from interacting with platelets and, in turn, to microvascular thrombosis. Prompt diagnosis of TTP is critical yet challenging. Thrombotic microangiopathies have similar clinical presentation. Measurement of ADAMTS13 activity helps in the differential diagnosis. Less than 10% ADAMTS13 activity is indicative of TTP. Laboratory ADAMTS13 activity assays include incubating the test plasma with the substrate (full-length VWM multimers) and detection with direct or indirect measurement of the cleavage product. The purpose of this study is to examine the diagnostic potential, advantages, and weaknesses of the ADAMTS13 potency in TTP.
Collapse
Affiliation(s)
- Anna Papakonstantinou
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (A.M.); (E.-E.K.)
| | - Aikaterini Mpalaska
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (A.M.); (E.-E.K.)
| | - Evaggelia-Evdoxia Koravou
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (A.M.); (E.-E.K.)
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (A.M.); (E.-E.K.)
| |
Collapse
|
2
|
Bonnez Q, Dekimpe C, Bekaert T, Tellier E, Kaplanski G, Joly BS, Veyradier A, Coppo P, Lammertyn J, Tersteeg C, De Meyer SF, Vanhoorelbeke K. Diagnosis of thrombotic thrombocytopenic purpura: easy-to-use fiber optic surface plasmon resonance immunoassays for automated ADAMTS-13 antigen and conformation evaluation. J Thromb Haemost 2024; 22:1936-1946. [PMID: 38554935 DOI: 10.1016/j.jtha.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Laboratory diagnosis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) remains challenging when ADAMTS-13 activity ranges between 10% and 20%. To prevent misdiagnosis, open ADAMTS-13 conformation gained clinical attention as a novel biomarker, especially to diagnose acute iTTP in patients with diagnostic undecisive ADAMTS-13 activity. Plasma ADAMTS-13 conformation analysis corrects for ADAMTS-13 antigen, with both parameters being characterized in enzyme-linked immunosorbent assay (ELISA)-based reference assays requiring expert technicians. OBJECTIVES To design ADAMTS-13 antigen and conformation assays on automated, easy-to-use fiber optic surface plasmon resonance (FO-SPR) technology to promote assay accessibility and diagnose challenging iTTP patients. METHODS ADAMTS-13 antigen and conformation assays were designed on FO-SPR technology. Plasma of 20 healthy donors and 20 acute iTTP patients were quantified, and data from FO-SPR and ELISA reference assays were compared. RESULTS Following assay design, both antigen and conformation FO-SPR assays were optimized and characterized, presenting strong analytical sensitivity (detection limit of 0.001 μg/mL) and repeatability (interassay variation of 14.4%). Comparative analysis suggested positive correlation (Spearman r of 0.92) and good agreement between FO-SPR and ELISA assays. As expected, FO-SPR assays showed a closed or open ADAMTS-13 conformation in healthy donors and acute iTTP patients, respectively. CONCLUSION Both ADAMTS-13 antigen and conformation assays were transferred onto automated, easy-to-use FO-SPR technology, displaying potent analytical sensitivity and reproducibility. ADAMTS-13 antigen and conformation were determined for healthy donors and acute iTTP patients showing strong correlation with ELISA reference. Introducing FO-SPR technology in clinical context could support routine diagnosis of acute iTTP patients, notably when ADAMTS-13 activity fluctuates between 10% and 20%.
Collapse
Affiliation(s)
- Quintijn Bonnez
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium. https://twitter.com/BonnezQuintijn
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Tim Bekaert
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Edwige Tellier
- Institut National de la Santé et de la Recherche Médicale, INRAE, C2VN, Aix-Marseille University, Marseille, France
| | - Gilles Kaplanski
- Institut National de la Santé et de la Recherche Médicale, INRAE, C2VN, Aix-Marseille University, Marseille, France; Service de Médecine Interne et Immunologie Clinique, CHU Conception, Aix-Marseille University, APHM, Marseille, France
| | - Bérangère S Joly
- Service d'Hématologie Biologique Hôpital Lariboisière, AP-HP and EA3518, IRSL, Université Paris Cité, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie Biologique Hôpital Lariboisière, AP-HP and EA3518, IRSL, Université Paris Cité, Paris, France; Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France
| | - Paul Coppo
- Department of Hematology, Reference Center for Thrombotic Microangiopathies, Saint-Antoine University Hospital, AP-HP, Paris, France
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.
| |
Collapse
|
3
|
Prasannan N, Dragunaite B, Subhan M, Thomas M, de Groot R, Singh D, Vanhoorelbeke K, Scully M. Peak ADAMTS13 activity to assess ADAMTS13 conformation and risk of relapse in immune-mediated thrombotic thrombocytopenic purpura. Blood 2024; 143:2644-2653. [PMID: 38502824 DOI: 10.1182/blood.2023023269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
ABSTRACT Previous studies have demonstrated that >38% of patients with immune-mediated thrombotic thrombocytopenic purpura in remission with activity >50% had an open ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) conformation. We assessed ADAMTS13 conformation in remission (ADAMTS13 activity >60%), focusing on peak ADAMTS13 activity levels and longitudinal assessment in 420 samples across 157 patients. Fewer cases had an open conformation at peak ADAMTS13 activity than unselected remission samples with ADAMTS13 activity >60% (23% vs 43%). Patients with a closed ADAMTS13 conformation at peak ADAMTS13 activity had an eightfold lower relapse rate in the subsequent year (9% vs 46%) and a fivefold lower relapse rate within 2 years (23% vs 62%) compared with cases with an open conformation. Patients with an open conformation at peak ADAMTS13 activity required preemptive anti-CD20 treatment earlier than those with a closed conformation (median, 10 vs 25 months). Longitudinally, an open conformation was evident at, and often preceded relapse. When the conformation was already open before relapse, an increase in the conformation index at relapse was seen despite the undetectable anti-ADAMTS13 immunoglobulin G (IgG) antibody. In cases with detectable anti-ADAMTS13 IgG antibody, these became undetectable before achieving a closed conformation, highlighting the relapse risk even with undetectable anti-ADAMTS13 IgG antibody and the clinical utility of open/closed during monitoring. To our knowledge, this is the first study to show an association between relapse risk and ADAMTS13 conformation when activity levels are at a peak. The open conformation identifies antibody-mediated subclinical disease that is not detectable by the current ADAMTS13 testing.
Collapse
Affiliation(s)
- Nithya Prasannan
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Haemostasis Research Unit, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Bertina Dragunaite
- Haemostasis Research Unit, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Maryam Subhan
- Haemostasis Research Unit, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Mari Thomas
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Haemostasis Research Unit, Institute of Cardiovascular Science, University College London, London, United Kingdom
- National Institute for Health Research Cardiometabolic Programme, Cardiovascular BRC, University College London Hospital/University College London, London, United Kingdom
| | - Rens de Groot
- Haemostasis Research Unit, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Deepak Singh
- Special Coagulation, Health Services Laboratories, London, United Kingdom
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Marie Scully
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Haemostasis Research Unit, Institute of Cardiovascular Science, University College London, London, United Kingdom
- National Institute for Health Research Cardiometabolic Programme, Cardiovascular BRC, University College London Hospital/University College London, London, United Kingdom
| |
Collapse
|
4
|
Underwood MI, Thomas MR, Scully MA, Crawley JTB. ADAMTS-13 conformation influences autoimmune recognition in immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2024; 22:1069-1079. [PMID: 38160729 DOI: 10.1016/j.jtha.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP) have anti-ADAMTS-13 immunoglobulin G (IgG) autoantibodies that enhance ADAMTS-13 clearance and/or inhibit its function. ADAMTS-13 normally circulates in a closed conformation, which is manifested by the interaction of the CUB domains with the central spacer domain. Disruption of the spacer-CUB interaction opens ADAMTS-13, which augments its proteolytic function but may also expose cryptic autoimmune epitopes that promote further autoantibody recognition. OBJECTIVES To explore differences in autoantibody binding to ADAMTS-13 in its closed or open conformations in patients with iTTP and to correlate these differences with disease-related parameters. METHODS We developed a novel assay to measure autoantibodies binding to closed and open ADAMTS-13. Autoantibody titer and IgG subclass binding to open or closed ADAMTS-13 were measured in 70 iTTP first presentation samples and correlated with clinical data, remission, and relapse. RESULTS In 70 patients with iTTP, the mean autoantibody titer against open ADAMTS-13 was, on average, approximately 2-fold greater than that against closed ADAMTS-13, suggesting that ADAMTS-13 opening increases epitope exposure and immune complex formation. Autoantibody titer against closed/open ADAMTS-13 and IgG subclass did not correlate with ADAMTS-13 antigen at presentation. Two patients with iTTP and persistent autoantibodies lost specificity for closed ADAMTS-13 in remission. Recognition of closed/open ADAMTS-13 and autoantibody IgG subclass between the first and second iTTP episodes were very similar. CONCLUSION ADAMTS-13 autoantibody binding is highly influenced by ADAMTS-13 conformation. Although this does not appear to modify the pathogenicity of autoantibodies, the autoantibody signature at relapse suggests that relapse represents re-emergence of the original autoimmune response rather than de novo presentation.
Collapse
|
5
|
De Waele L, Sakai K, Mancini I, Sinkovits G, Falter T, Inoue T, Agosti P, Rossmann H, Von Auer C, Tersteeg C, De Meyer SF, Joly BS, Veyradier A, Coppo P, Fijnheer R, Peyvandi F, Prohászka Z, Lämmle B, Vanhoorelbeke K. Open ADAMTS-13 conformation index predicts earlier relapse in immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2024; 22:493-502. [PMID: 37866519 DOI: 10.1016/j.jtha.2023.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND ADAMTS-13 adopts an open conformation in patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP) in acute phase while being closed in healthy donors. We reported that a substantial number of patients with iTTP in remission with restored ADAMTS-13 activity (>50%) still had an open ADAMTS-13 conformation, although a closed conformation is expected given the extent of remission. OBJECTIVES To investigate whether open ADAMTS-13, represented by a conformation index >0.5, is associated with a risk of earlier ADAMTS-13 and/or clinical relapse. METHODS We collected follow-up data (ADAMTS-13 parameters, ADAMTS-13 and clinical relapse, and treatment) from 81 patients with iTTP in remission with ADAMTS-13 activity >50%. RESULTS During follow-up, 19 ADAMTS-13 and 10 clinical relapses were reported (median follow-up period, 20 months). First, open or closed ADAMTS-13 conformation was dichotomized based on the 0.5 conformation index cutoff. Open ADAMTS-13 (conformation index, >0.5) was not identified as a risk factor for ADAMTS-13 and clinical relapse (log-rank test and Cox regression model). In contrast, by identifying the optimal conformation index cutoff for relapse prediction, using classification and regression tree analysis, a conformation index >0.645 and >0.835 was shown to be a risk factor for ADAMTS-13 relapse (hazard ratio, 3.3; 95% CI, 1.3-8.3; P = .01) and clinical relapse (hazard ratio, 4.4; 95% CI, 1.3-15.3; P = .02), respectively. CONCLUSION Patients with open ADAMTS-13 with a conformation index >0.645 and >0.835 have a >3- and >4-fold higher risk of earlier ADAMTS-13 and clinical relapse, respectively. Hence, ADAMTS-13 conformation index could be used to complement ADAMTS-13 activity monitoring to timely notice ADAMTS-13 relapse and prevent clinical relapse.
Collapse
Affiliation(s)
- Laure De Waele
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kazuya Sakai
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - Ilaria Mancini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Università degli Studi di Milano, Department of Pathophysiology and Transplantation, and Fondazione Luigi Villa, Milan, Italy
| | - György Sinkovits
- Department of Internal Medicine and Hematology, Semmelweis University and Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, Kashihara, Japan
| | - Pasquale Agosti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Università degli Studi di Milano, Department of Pathophysiology and Transplantation, and Fondazione Luigi Villa, Milan, Italy
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Charis Von Auer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Bérangère S Joly
- Service d'Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris and EA3518, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie Biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris and EA3518, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, Service d'hématologie, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris and Sorbonne Université, Paris, France
| | - Rob Fijnheer
- Department for Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Università degli Studi di Milano, Department of Pathophysiology and Transplantation, and Fondazione Luigi Villa, Milan, Italy
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University and Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Haemostasis Research Unit, University College London, London, United Kingdom
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.
| |
Collapse
|
6
|
Madarati H, Singh K, Sparring T, Andrisani P, Liaw PC, Fox-Robichaud AE, Kretz CA. REVIEWING THE DYSREGULATION OF ADAMTS13 AND VWF IN SEPSIS. Shock 2024; 61:189-196. [PMID: 38150358 DOI: 10.1097/shk.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Sepsis is defined as a life-threatening organ dysfunction caused by excessive host response to infection, and represents the most common cause of in-hospital deaths. Sepsis accounts for 30% of all critically ill patients in the intensive care unit (ICU), and has a global mortality rate of 20%. Activation of blood coagulation during sepsis and septic shock can lead to disseminated intravascular coagulation, which is characterized by microvascular thrombosis. Von Willebrand factor (VWF) and ADAMTS13 are two important regulators of blood coagulation that may be important links between sepsis and mortality in the ICU. Herein we review our current understanding of VWF and ADAMTS13 in sepsis and other critical illnesses and discuss their contribution to disease pathophysiology, their use as markers of severe illness, and potential targets for new therapeutic development.
Collapse
Affiliation(s)
- Hasam Madarati
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Béranger N, Coppo P, Tsatsaris V, Boisseau P, Provôt F, Delmas Y, Poullin P, Vanhoorelbeke K, Veyradier A, Joly BS. Management and follow-up of pregnancy-onset thrombotic thrombocytopenic purpura: the French experience. Blood Adv 2024; 8:183-193. [PMID: 38039511 PMCID: PMC10805644 DOI: 10.1182/bloodadvances.2023011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
ABSTRACT Pregnancy-onset thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening disease of which diagnosis and management requires experienced multidisciplinary teams. The mechanisms responsible for a deficiency in the disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13) leading to pregnancy-onset TTP may be congenital or acquired, and studying ADAMTS13 conformation could be of interest. The differential diagnosis between TTP and other pregnancy-associated thrombotic microangiopathies (TMA) is often challenging. Our retrospective multicenter study highlights the significance and the challenges associated with pregnancy-onset TTP and childbirth in terms of diagnosis, obstetric management, and follow-up aspects. Among 1174 pregnancy-onset TMA enrolled in the French Registry for TMA from 2000 to 2020, we identified 108 pregnancy-onset TTP: 52 immune-mediated TTP (iTTP, 48.1%), 27 acquired TTP of unidentified mechanism (uTTP, 25%), and 29 congenital TTP (cTTP, 26.9%). Data show that maternal outcome is good (survival rate: 95%) and fetal outcome is linked to the gestational age at the onset of the disease (survival rate: 75.5%). Three distinct entities with different natural histories emerged: pregnancy-onset iTTP appears similar to idiopathic iTTP, with an open ADAMTS13 conformation, and is marked by a relapse risk independent of subsequent pregnancies; pregnancy-onset uTTP appears to have a different pathophysiology with an unexpected open ADAMTS13 conformation and a very low relapse risk independent of subsequent pregnancies; finally, pregnancy-onset cTTP is characterized by the necessity of pregnancy as a systematic and specific trigger and a need for prophylactic plasmatherapy for subsequent pregnancies. This trial was registered at www.clinicaltrials.gov as #NCT00426686, and at the Health Authority and the French Ministry of Health (P051064/PHRC AOM05012).
Collapse
Affiliation(s)
- Nicolas Béranger
- Service d'Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris.Nord, Université Paris Cité, Paris, France
- EA-3518, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Paul Coppo
- Service d’Hématologie, Centre de référence des microangiopathies thrombotiques, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Vassilis Tsatsaris
- Maternité Port Royal, Hôpital Cochin, FHU PREMA, Assistance Publique-Hôpitaux de Paris.Centre, Université de Paris, Paris, France
- INSERM UMR-S 1139, Physiopathologie et pharmacotoxicologie placentaire humaine, Université de Paris, Paris, France
| | | | | | - Yahsou Delmas
- Service de Néphrologie, CHU de Bordeaux, Bordeaux, France
| | - Pascale Poullin
- Service d’Hémaphérèse, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Service d'Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris.Nord, Université Paris Cité, Paris, France
- EA-3518, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Bérangère S. Joly
- Service d'Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris.Nord, Université Paris Cité, Paris, France
- EA-3518, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Launois A, Valade S, Mariotte E, Galicier L, Azoulay E, Roose E, Vanhoorelbeke K, Veyradier A, Joly BS. Hemophagocytic lymphohistiocytosis is associated with deficiency and closed conformation of ADAMTS-13. Res Pract Thromb Haemost 2024; 8:102292. [PMID: 38371335 PMCID: PMC10869956 DOI: 10.1016/j.rpth.2023.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 02/20/2024] Open
Abstract
Background A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS-13) is the specific von Willebrand factor-cleaving protease and circulates in a closed and latent conformation due to a spacer/CUB1 domain interaction. ADAMTS-13 is allosterically activated after binding of its substrate or antibodies, inducing an open conformation. Recently, we suggested a potential role of plasmin (fibrinolysin) in hemostasis disorders reported in most patients with hemophagocytic lymphohistiocytosis (HLH), a rare and life-threatening condition related to a severe systemic inflammatory state. Most patients with HLH had a partial ADAMTS-13 deficiency, and plasmin could induce a truncation of the C-terminal part of ADAMTS-13 and thus an open conformation. Objectives To understand the effect of plasmin on ADAMTS-13, our study aimed to investigate ADAMTS-13 conformation in patients with HLH. Methods Forty-five critically ill patients with HLH were prospectively enrolled between April 2015 and December 2018. ADAMTS-13 activity was measured by fluorescent resonance energy transfer-VWF73 assay, ADAMTS-13 antigen, and conformation with our homemade 3H9-enzyme-linked immunosorbent assay and 1C4-enzyme-linked immunosorbent assay. Results ADAMTS-13 activity ranged from <10 to 65 IU/dL, and 41 of the 45 patients had a quantitative deficiency in ADAMTS-13 (activity <50 IU/dL). Twenty patients had a severe ADAMTS-13 deficiency (activity <20 IU/dL). ADAMTS-13 conformation was folded in all patients under normal conditions. Surprisingly, the switch of ADAMTS-13 conformation expected with the monoclonal antibody 17G2 (anti-CUB1) was disturbed in 6 patients (activity <20 IU/dL). Conclusion Our study reported that ADAMTS-13 conformation is closed in HLH and provides an indirect proof that plasmin is not able to massively degrade ADAMTS-13. Further studies on glycosylation and citrullination profiles of ADAMTS-13 are needed to understand their role in HLH.
Collapse
Affiliation(s)
- Amélie Launois
- Service d’Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
- Equipe d'Accueil 3518, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Sandrine Valade
- Service de Réanimation médicale, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Eric Mariotte
- Service de Réanimation médicale, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Lionel Galicier
- Service d’Immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Elie Azoulay
- Service de Réanimation médicale, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Elien Roose
- Laboratory for Thrombosis Research, Interdisciplinarity Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinarity Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Service d’Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
- Equipe d'Accueil 3518, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Bérangère S. Joly
- Service d’Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
- Equipe d'Accueil 3518, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Radhwi O, Badawi MA, Almarzouki A, Al-Ayoubi F, ElGohary G, Asfina KN, Basendwah AM, Alhazmi IA, Almahasnah EA, AlBahrani A, Raizah AA, Yahya A, Alshahrani K, Hindawi S. A Saudi multicenter experience on therapeutic plasma exchange for patients with thrombotic thrombocytopenic purpura: A call for national registry. J Clin Apher 2023; 38:573-581. [PMID: 37317696 DOI: 10.1002/jca.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The improvement in the clinical care for patients with thrombotic thrombocytopenic purpura (TTP) is evolving, and many efforts are being put to standardize it. Here, we aimed to assess the provided care at a national level and identify deficiencies. METHODS A national Saudi retrospective descriptive study was carried out at six tertiary referral centers and included all patients who underwent therapeutic plasma exchange (TPE) for the diagnosis of TTP between May 2005, and July 2022. Collected information included demographic data, clinical features on presentation, and the results of laboratory investigations at admission and discharge. In addition, the number of TPE sessions, days till the first session of TPE, usage of immunological agents, and clinical outcomes were all collected. RESULTS One hundred patients were enrolled, predominantly female (56%). The mean age was 36.8 years. At diagnosis, 53% of patients showed neurological involvement. The mean platelet count at presentation was 21 × 109 /L. All patients had anemia (mean hematocrit 24.2%). Schistocytes were present in the peripheral blood film of all patients. The mean number of TPE rounds was 13 ± 9.3, and the mean days to start TPE since admission for the first episode was 2.5 days. ADAMTS13 level was measured in 48% of patients and was significantly low in 77% of them. Assessing for clinical TTP scores, 83%, 1000%, 64% of eligible patients had an intermediate/high PLASMIC, FRENCH, and Bentley scores, respectively. Caplacizumab was used on only one patient, and rituximab was administered to 37% of patients. A complete response for the first episode was achieved in 78% of patients. The overall mortality rate was 25%. Neither time to TPE, the use of rituximab or steroid affected survival. CONCLUSIONS Our study shows an excellent response to TPE with a survival rate approximate to the reported international literature. We observed a deficiency in using validated scoring systems in addition to confirming the disease by ADAMTS13 testing. This emphasizes the need for a national registry to facilitate proper diagnosis and management of this rare disorder.
Collapse
Affiliation(s)
- Osman Radhwi
- Department of Hematology, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha A Badawi
- Department of Hematology, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Blood Transfusion Services Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Adel Almarzouki
- Department of Hematology, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fakhr Al-Ayoubi
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ghada ElGohary
- Department of Adult Hematology/Oncology, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Kazi Nur Asfina
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Iman Ayed Alhazmi
- Hematology and Oncology Division, Department of Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Eiman A Almahasnah
- Adult Hematology Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed AlBahrani
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Abdulrahman Al Raizah
- Division of Adult Hematology, Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Saudi Society for Bone Marrow Transplant, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Hematology Department, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Ayel Yahya
- Division of Adult Hematology, Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Internal Medicine Department, King Khalid University, Abha, Saudi Arabia
| | - Khadeja Alshahrani
- Internal Medicine Department, Asser Central Hospital, Abha, Saudi Arabia
| | - Salwa Hindawi
- Department of Hematology, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Blood Transfusion Services Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Bonnez Q, Sakai K, Vanhoorelbeke K. ADAMTS13 and Non-ADAMTS13 Biomarkers in Immune-Mediated Thrombotic Thrombocytopenic Purpura. J Clin Med 2023; 12:6169. [PMID: 37834813 PMCID: PMC10573396 DOI: 10.3390/jcm12196169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare medical emergency for which a correct and early diagnosis is essential. As a severe deficiency in A Disintegrin And Metalloproteinase with ThromboSpondin type 1 repeats, member 13 (ADAMTS13) is the underlying pathophysiology, diagnostic strategies require timely monitoring of ADAMTS13 parameters to differentiate TTP from alternative thrombotic microangiopathies (TMAs) and to guide initial patient management. Assays for conventional ADAMTS13 testing focus on the enzyme activity and presence of (inhibitory) anti-ADAMTS13 antibodies to discriminate immune-mediated TTP (iTTP) from congenital TTP and guide patient management. However, diagnosis of iTTP remains challenging when patients present borderline ADAMTS13 activity. Therefore, additional biomarkers would be helpful to support correct clinical judgment. Over the last few years, the evaluation of ADAMTS13 conformation has proven to be a valuable tool to confirm the diagnosis of acute iTTP when ADAMST13 activity is between 10 and 20%. Screening of ADAMTS13 conformation during long-term patient follow-up suggests it is a surrogate marker for undetectable antibodies. Moreover, some non-ADAMTS13 parameters gained notable interest in predicting disease outcome, proposing meticulous follow-up of iTTP patients. This review summarizes non-ADAMTS13 biomarkers for which inclusion in routine clinical testing could largely benefit differential diagnosis and follow-up of iTTP patients.
Collapse
Affiliation(s)
- Quintijn Bonnez
- Department of Chemistry, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
| | - Kazuya Sakai
- Department of Chemistry, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara 634-8522, Japan
| | - Karen Vanhoorelbeke
- Department of Chemistry, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
| |
Collapse
|
11
|
Falter T, Rossmann H, de Waele L, Dekimpe C, von Auer C, Müller-Calleja N, Häuser F, Degreif A, Marandiuc D, Messmer X, Sprinzl M, Lackner KJ, Jurk K, Vanhoorelbeke K, Lämmle B. A novel von Willebrand factor multimer ratio as marker of disease activity in thrombotic thrombocytopenic purpura. Blood Adv 2023; 7:5091-5102. [PMID: 37399489 PMCID: PMC10471935 DOI: 10.1182/bloodadvances.2023010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/05/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP), an autoantibody-mediated severe ADAMTS13 deficiency, is caused by insufficient proteolytic processing of von Willebrand factor (VWF) multimers (MMs) and microvascular thrombi. Recurrence of acute iTTP is associated with persistence or reappearance of ADAMTS13 deficiency. Some patients remain in remission despite recurring or persisting severe ADAMTS13 deficiency. In a prospective 2-year observational study, we investigated VWF MM patterns and ADAMTS13 in patients with iTTP in remission and at acute episodes. Of the 83 patients with iTTP, 16 suffered 22 acute episodes whereas 67 remained in clinical remission during follow-up, including 13 with ADAMTS13 <10% and 54 with ADAMTS13 ≥10%. High -molecular weight to low-molecular weight VWF MM ratio based on sodium dodecyl sulfate-agarose gel electrophoresis was compared with ADAMTS13 activity. VWF MM ratio was significantly higher in patients in remission with <10% compared with ≥10% ADAMTS13 activity. Fourteen samples obtained from 13 to 50 days (interquartile range; median, 39) before acute iTTP onset (ADAMTS13 <10% in 9 patients and 10%-26% in 5) showed VWF MM ratios significantly higher than those from 13 patients remaining in remission with ADAMTS13 <10%. At acute iTTP onset, VWF MM ratio decreased significantly and was low in all patients despite <10% ADAMTS13. The VWF MM ratio does not depend exclusively on ADAMTS13 activity. The disappearance of high molecular weight VWF MMs resulting in low VWF MM ratio at iTTP onset may be explained by consumption of larger VWF MMs in the microcirculation. The very high VWF MM ratio preceding acute iTTP recurrence suggests that VWF processing is hampered more than in patients remaining in remission.
Collapse
Affiliation(s)
- Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Laure de Waele
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Charis von Auer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Department of Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Adriana Degreif
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dana Marandiuc
- Transfusion Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Xavier Messmer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin Sprinzl
- Medical Department I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- University Clinic of Hematology & Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Lin J, Ding X, Yang P, Liu S, Li Q, Cruz MA, Dong JF, Fang Y, Wu J. Force-induced biphasic regulation of VWF cleavage by ADAMTS13. Thromb Res 2023; 229:99-106. [PMID: 37421684 DOI: 10.1016/j.thromres.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
It is crucial for hemostasis that platelets are rapidly recruited to the site of vascular injury by the adhesive ligand von Willebrand factor (VWF) multimers. The metalloproteinase ADAMTS13 regulates this hemostatic activity by proteolytically reducing the size of VWF and its proteolytic kinetics has been investigated by biochemical and single-molecule biophysical methods. However, how ADAMTS13 cleaves VWF in flowing blood remains poorly defined. To investigate the force-induced VWF cleavage, VWF A1A2A3 tridomains were immobilized and subjected to hydrodynamic forces in the presence of ADAMTS13. We demonstrated that the cleavage of VWF A1A2A3 by ADAMTS13 exhibited biphasic kinetics governed by shear stress, but not shear rate. By fitting data to the single-molecule Michaelis-Menten equation, the proteolytic constant kcat of ADAMTS13 had two distinct states. The mean proteolytic constant of the fast state (kcat-fast) was 0.005 ± 0.001 s-1, which is >10-fold faster than the slow state (kcat-slow = 0.0005 ± 0.0001 s-1). Furthermore, proteolytic constants of both states were regulated by shear stress in a biphasic manner, independent of the solution viscosity, indicating that the proteolytic activity of ADAMTS13 was regulated by hydrodynamic force. The findings provide new insights into the mechanism underlying ADAMTS13 cleaving VWF under flowing blood.
Collapse
Affiliation(s)
- Jiangguo Lin
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoru Ding
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Pu Yang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Silu Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine/Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Bonnez Q, Dekimpe C, Tellier E, Kaplanski G, Verhamme P, Tersteeg C, De Meyer SF, Lammertyn J, Joly B, Coppo P, Veyradier A, Vanhoorelbeke K. Measuring ADAMTS-13 activity to diagnose thrombotic thrombocytopenic purpura: a novel, fast fiber-optic surface plasmon resonance immunoassay. Res Pract Thromb Haemost 2023; 7:102171. [PMID: 37711907 PMCID: PMC10497779 DOI: 10.1016/j.rpth.2023.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023] Open
Abstract
Background Thrombotic thrombocytopenic purpura (TTP) is characterized by severe ADAMTS-13 activity deficiency (<10%). Diagnostic testing is challenging because of unavailability, high cost, and expert technician requirement of ADAMTS-13 enzyme assays. Cost-effective, automated fiber-optic surface plasmon resonance (FO-SPR) platforms show potential for developing diagnostic tests. Yet, FO-SPR has never been explored to measure enzymatic activities. Objectives To develop an easy-to-use ADAMTS-13 activity assay utilizing optical fibers to rapidly diagnose TTP. Methods The ADAMTS-13 activity assay was designed and optimized using FO-SPR technology based on a previously described enzyme-linked immunosorbent assay setup. A calibration curve was generated to quantify ADAMTS-13 activity in plasma of healthy donors and patients with acute immune-mediated TTP (iTTP), hemolytic uremic syndrome, or sepsis. ADAMTS-13 activity data from FO-SPR and fluorescence resonance energy transfer-based strategies (FRETS)-VWF73 reference assays were compared. Results After initial assay development, optimization improved read-out magnitude and signal-to-noise ratio and reduced variation. Further characterization demonstrated a detection limit (6.8%) and inter-assay variation (Coefficient of variation, 7.2%) that showed good analytical sensitivity and repeatability. From diverse plasma samples, only plasma from patients with acute iTTP showed ADAMTS-13 activities below 10%. Strong Pearson correlation (r = 0.854) between FO-SPR and reference FRETS-VWF73 assays were observed for all measured samples. Conclusions A fast ADAMTS-13 activity assay was designed onto automated FO-SPR technology. Optimization resulted in sensitive ADAMTS-13 activity measurements with a detection limit enabling clinical diagnosis of TTP within 3 hours. The FO-SPR assay proved strong correlation with the reference FRETS-VWF73 assay. For the first time, this assay demonstrated the capacity of FO-SPR technology to measure enzymatic activity in pre-clinical context.
Collapse
Affiliation(s)
- Quintijn Bonnez
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Edwige Tellier
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, INRAE, C2VN, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, INRAE, C2VN, Marseille, France
- Service de Médecine Interne et Immunologie Clinique, CHU Conception, Aix-Marseille University, APHM, Marseille, France
| | - Peter Verhamme
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven, Belgium
| | - Bérangère Joly
- Service d'Hématologie Biologique Hôpital Lariboisière, AP-HP and EA3518, IRSL, Université Paris Cité, Paris France
| | - Paul Coppo
- Department of Hematology, Reference Center for Thrombotic Microangiopathies (CNR-MAT), Saint-Antoine University Hospital, AP-HP, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie Biologique Hôpital Lariboisière, AP-HP and EA3518, IRSL, Université Paris Cité, Paris France
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT) AP-HP Paris France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
14
|
Oliver M, Patriquin CJ, Pavenski K. Predictors of relapse and prophylactic management of immune thrombotic thrombocytopenic purpura. Transfus Apher Sci 2023; 62:103749. [PMID: 37344323 DOI: 10.1016/j.transci.2023.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Monika Oliver
- Department of Medicine, University of Alberta, Canada; Division of Hematology, University of Alberta Hospital, Canada
| | - Christopher J Patriquin
- Department of Medicine, University of Toronto, Canada; Division of Medical Oncology & Hematology, University Health Network, Toronto, Canada
| | - Katerina Pavenski
- Department of Medicine, University of Toronto, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Canada; Departments of Medicine and Laboratory Medicine, St. Michael's Hospital-Unity Health Toronto, Canada.
| |
Collapse
|
15
|
Singh K, Madarati H, Sohrabipour S, Sparring T, Teney C, Kretz CA. Metalloprotease domain latency protects ADAMTS13 against broad-spectrum inhibitors of metalloproteases while maintaining activity toward VWF. J Thromb Haemost 2023; 21:1789-1801. [PMID: 36990157 DOI: 10.1016/j.jtha.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND ADAMTS13 is a circulating metalloprotease that cleaves von Willebrand factor (VWF) in a shear-dependent manner. ADAMTS13 is secreted as an active protease but has a long half-life, suggesting that it is resistant to circulating protease inhibitors. These zymogen-like properties indicate that ADAMTS13 exists as a latent protease that is activated by its substrate. OBJECTIVES To investigate the mechanism of ADAMTS13 latency and resistance to metalloprotease inhibitors. METHODS Probe the active site of ADAMTS13 and variants using alpha-2 macroglobulin (A2M), tissue inhibitors of metalloproteases (TIMPs), and Marimastat. RESULTS ADAMTS13 and C-terminal deletion mutants are not inhibited by A2M, TIMPs, or Marimastat, but cleave FRETS-VWF73, suggesting that the metalloprotease domain is latent in the absence of substrate. Within the metalloprotease domain, mutating the gatekeeper triad (R193, D217, D252) or substituting the calcium-binding (R180-R193) or the variable (G236-S263) loops with corresponding features from ADAMTS5 did not sensitize MDTCS to inhibition. However, substituting the calcium-binding loop and an extended variable loop (G236-S263) corresponding to the S1-S1' pockets with those from ADAMTS5, resulted in MDTCS-GVC5 inhibition by Marimastat, but not by A2M or TIMP3. Substituting the MD domains of ADAMTS5 into full-length ADAMTS13 resulted in a 50-fold reduction in activity compared with the substitution into MDTCS. However, both chimeras were susceptible to inhibition, suggesting that the closed conformation does not contribute to the latency of the metalloprotease domain. CONCLUSION The metalloprotease domain protects ADAMTS13 from inhibitors and exists in a latent state that is partially maintained by loops flanking the S1 and S1' specificity pockets.
Collapse
Affiliation(s)
- Kanwal Singh
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Hasam Madarati
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sahar Sohrabipour
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Taylor Sparring
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Cherie Teney
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Lancellotti S, Sacco M, Tardugno M, Ferretti A, De Cristofaro R. Immune and Hereditary Thrombotic Thrombocytopenic Purpura: Can ADAMTS13 Deficiency Alone Explain the Different Clinical Phenotypes? J Clin Med 2023; 12:3111. [PMID: 37176552 PMCID: PMC10179526 DOI: 10.3390/jcm12093111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy caused by a hereditary or immune-mediated deficiency of the enzyme ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). TTPs are caused by the following pathophysiological mechanisms: (1) the presence of inhibitory autoantibodies against ADAMTS13; and (2) hereditary mutations of the ADAMTS13 gene, which is present on chromosome 9. In both syndromes, TTP results from a severe deficiency of ADAMTS13, which is responsible for the impaired proteolytic processing of high-molecular-weight von Willebrand factor (HMW-VWF) multimers, which avidly interact with platelets and subendothelial collagen and promote tissue and multiorgan ischemia. Although the acute presentation of the occurring symptoms in acquired and hereditary TTPs is similar (microangiopathic hemolytic anemia, thrombocytopenia, and variable ischemic end-organ injury), their intensity, incidence, and precipitating factors are different, although, in both forms, a severe ADAMTS13 deficiency characterizes their physiopathology. This review is aimed at exploring the possible factors responsible for the different clinical and pathological features occurring in hereditary and immune-mediated TTPs.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
| | - Monica Sacco
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| | - Maira Tardugno
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| | - Antonietta Ferretti
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica S. Cuore, 00168 Roma, Italy; (M.S.); (M.T.)
| |
Collapse
|
17
|
Frontiers in pathophysiology and management of thrombotic thrombocytopenic purpura. Int J Hematol 2023; 117:331-340. [PMID: 36757521 DOI: 10.1007/s12185-023-03552-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a fatal disease in which platelet-rich microthrombi cause end-organ ischemia and damage. TTP is caused by markedly reduced ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity. Hereditary or congenital TTP (cTTP) is caused by ADAMTS13 gene mutations. In acquired or immune TTP (iTTP), ADAMTS13 activity is reduced by anti-ADAMTS13 autoantibodies. TTP is characterized by thrombocytopenia, hemolytic anemia, fever, renal dysfunction, and neuropsychiatric symptoms. Therapeutic plasma exchange (TPE) and immunosuppressive therapy are the mainstays of treatment. As untreated TTP has a high mortality rate, immediate initiation of TPE is recommended when TTP is suspected. Conventionally, corticosteroids have been used for immunosuppressive therapy. Current drug therapies include rituximab, an anti-CD20 antibody that is effective in newly diagnosed cases and refractory cases, as well as for relapse prevention, and caplacizumab, an anti- von Willebrand factor (VWF) nanobody that inhibits the binding of platelets to VWF and prevents microthrombi formation. Recombinant human ADAMTS13 is a promising treatment for cTTP. Although these therapeutic advances have improved the outcomes of TTP, early diagnosis and prompt initiation of appropriate therapy are necessary to achieve these outcomes.
Collapse
|
18
|
Gómez-Seguí I, Pascual Izquierdo C, Mingot Castellano ME, de la Rubia Comos J. An update on the pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev Hematol 2023; 16:17-32. [PMID: 36537217 DOI: 10.1080/17474086.2023.2159803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Severe ADAMTS13 deficiency defines thrombotic thrombocytopenic purpura (TTP). ADAMTS13 is responsible for VWF cleavage. In the absence of this enzyme, widespread thrombi formation occurs, causing microangiopathic anemia and thrombocytopenia and leading to ischemic organ injury. Understanding ADAMTS13 function is crucial to diagnose and manage TTP, both in the immune and hereditary forms. AREAS COVERED The role of ADAMTS13 in coagulation homeostasis and the consequences of its deficiency are detailed. Other factors that modulate the consequences of ADAMTS13 deficiency are explained, such as complement system activation, genetic predisposition, or the presence of an inflammatory status. Clinical suspicion of TTP is crucial to start prompt treatment and avoid mortality and sequelae. Available techniques to diagnose this deficiency and detect autoantibodies or gene mutations are presented, as they have become faster and more available in recent years. EXPERT OPINION A better knowledge of TTP pathophysiology is leading to an improvement in diagnosis and follow-up, as well as a customized treatment in patients with TTP. This scenario is necessary to define the role of new targeted therapies already available or coming soon and the need to better diagnose and monitor at the molecular level the evolution of the disease.
Collapse
Affiliation(s)
- Inés Gómez-Seguí
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Cristina Pascual Izquierdo
- Servicio de Hematología y Hemoterapia, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Gregorio Marañón, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
| | - María Eva Mingot Castellano
- Servicio de Hematología, Área de Banco de Sangre y Establecimiento de Tejidos, Hospital Universitario Virgen del Rocío, Calle Manuel Siurot s/n, 41013, Sevilla, Spain
| | - Javier de la Rubia Comos
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain.,School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|
19
|
Pillai VG, Zheng XL. A novel mechanism underlying allosteric regulation of ADAMTS-13 revealed by hydrogen-deuterium exchange plus mass spectrometry. Res Pract Thromb Haemost 2022; 7:100012. [PMID: 36852110 PMCID: PMC9958085 DOI: 10.1016/j.rpth.2022.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 02/15/2023] Open
Abstract
Background ADAMTS-13, a plasma metalloprotease, cleaves von Willebrand factor. ADAMTS-13 activity appears to be regulated through allosteric inhibition by its distal C-terminus. Objectives The objective of this study was to better understand how domain-domain interactions may affect ADAMTS-13 conformations and functions. Methods We performed deuterium-hydrogen exchange plus mass spectrometry to assess the number and rate of deuterium incorporation into various peptides of full-length ADAMTS-13 and its truncated variants. Results Under physiological conditions, a bimodal distribution of deuterium incorporation was detected in the peptides from metalloprotease (217-230 and 282-304), cysteine-rich (446-482), and CUB (for complement C1r/C1s, Uegf, Bmp1) domains (1185-1214, 1313-1330, 1341-1347, 1358-1378, and 1393-1407) of full-length recombinant ADAMTS-13, but not of truncated variants. These results suggest that the full-length ADAMTS-13 undergoes conformational changes. On removal of the middle and distal C-terminal domains, the number and rate of deuterium incorporation were increased in the peptides from cysteine-rich (445-467, 467-482, and 495-503) and spacer domains (621-642 and 655-654) but decreased in the peptides from metalloprotease (115-124, 217-230, and 274-281). Moreover, most peptides, except for 217-230 and 1357-1376, exhibited a pD-dependent deuterium incorporation in the full-length ADAMTS-13, but not in the truncated variant (eg, MDTCS or T5C). These results further suggest that the bimodal deuterium incorporation observed in the peptides from the full-length ADAMTS-13 is the result of potential impact from the middle to distal C-terminal domains. Surface plasmon resonance revealed the direct binding interactions between the distal and proximal domains of ADAMTS-13. Conclusion Our results provide novel insight on how intramolecular interactions may affect conformations of ADAMTS-13, thus regulating its proteolytic functions.
Collapse
Affiliation(s)
- Vikram G. Pillai
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, USA,Department of Biophysics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, USA,Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, USA,Correspondence X. Long Zheng, MD, PhD, Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, 5016 Delp, Kansas City, Kansas 66160, USA.
| |
Collapse
|
20
|
ADAMTS13 conformation and immunoprofiles in Japanese patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv 2022; 7:131-140. [PMID: 36306339 PMCID: PMC9830168 DOI: 10.1182/bloodadvances.2022008885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an ultrarare thrombotic disease caused by autoantibody-induced ADAMTS13 deficiency. Open ADAMST13 conformation, induced by autoantibodies, was identified as a novel biomarker for iTTP. Determining immunoprofiles in patients with iTTP has been shown to guide the development of novel targeted therapies. However, these studies were done in mainly Caucasian iTTP cohorts. To validate those findings across other ethnic cohorts, we investigated 195 acute TTP plasma samples from the Japanese iTTP registry. Seventy-six of the 195 samples had detectable ADAMTS13 antigen levels, of which 94.7% were shown to have an open ADAMTS13 conformation. A positive correlation was observed between ADAMTS13 inhibitor titers (a diagnostic parameter in Japan) and anti-ADAMTS13 immunoglobulin G autoantibody titers. Studying anti-M, anti-DT, anti-CS, anti-T2-T5, anti-T6-T8, anti-CUB1-2 autoantibodies and the corresponding immunoprofile showed that 73% of the patients had anti-CS autoantibodies and 25.8% had anti-M autoantibodies, with the latter being higher than in Caucasians. Stratifying patients according to their immunoprofiles revealed that the profile with only anti-CS autoantibodies was the most common immunoprofile similar to that in Caucasians (28.9%). Although this profile did not affect the 1-year TTP-related mortality rate, patients with autoantibodies against all 6 ADAMTS13 fragments had a higher risk for TTP-related death than other patients (P = .02). We here validated open ADAMTS13 as a novel biomarker for acute iTTP and determined the dominant immunoprofiling in the Japanese cohort, contributing to setting up the diagnosis and managing guidelines across different ethnic cohorts and developing ADAMTS13 variants that do not bind to the anti-CS autoantibodies.
Collapse
|
21
|
Halkidis K, Zheng XL. ADAMTS13 conformations and mechanism of inhibition in immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2022; 20:2197-2203. [PMID: 35842925 PMCID: PMC9587499 DOI: 10.1111/jth.15822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 08/31/2023]
Abstract
ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor, is crucial for normal hemostasis. Acquired autoantibody-mediated deficiency of plasma ADAMTS13 results in a potentially fatal blood disorder, immune thrombotic thrombocytopenic purpura (iTTP). Plasma ADAMTS13 protease appears to exist in multiple conformations. Under physiological conditions, plasma ADAMTS13 exists predominantly in its "closed" conformation (or latent form), which may be activated by lowering pH, ligand binding, and binding of an antibody against the distal domains of ADAMTS13. In patients with iTTP, polyclonal antibodies target at various domains of ADAMTS13. However, nearly all inhibitory antibodies bind the spacer domain, whereas antibodies that bind the distal C-terminal domains may activate ADAMTS13 through removing its allosteric inhibition. Additionally, the anti-C-terminal antibodies may alter the potency of inhibitory antibodies towards ADAMTS13 activity. This review summarizes some of the most recent knowledge about the ADAMTS13 conformation and its mechanism of inhibition by its autoantibodies.
Collapse
Affiliation(s)
- Konstantine Halkidis
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
22
|
Venier LM, Patriquin CJ, Warkentin TE. Acute thrombocytopenia suggesting thrombotic microangiopathy. Am J Hematol 2022; 97:659-665. [PMID: 35253925 DOI: 10.1002/ajh.26515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Laura M. Venier
- Faculty of Health Sciences McMaster University Hamilton Ontario Canada
| | - Christopher J. Patriquin
- Division of Medical Oncology & Hematology, Department of Medicine University of Toronto Toronto Ontario Canada
| | - Theodore E. Warkentin
- Department of Medicine Michael G. DeGroote School of Medicine, McMaster University Hamilton Ontario Canada
- Department of Pathology & Molecular Medicine Michael G. DeGroote School of Medicine, McMaster University Hamilton Ontario Canada
| |
Collapse
|
23
|
Lämmle B. A third form of thrombotic thrombocytopenic purpura? Haematologica 2022; 108:299-300. [PMID: 35488359 PMCID: PMC9890005 DOI: 10.3324/haematol.2022.281095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Bernhard Lämmle
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany,Haemostasis Research Unit, University College London, London, UK,B. Lämmle
| |
Collapse
|
24
|
Joly BS, Roose E, Coppo P, Vanhoorelbeke K, Veyradier A. ADAMTS13 conformation is closed in non-immune acquired thrombotic thrombocytopenic purpura of unidentified pathophysiology. Haematologica 2022; 108:638-644. [PMID: 35484652 PMCID: PMC9892849 DOI: 10.3324/haematol.2022.280768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Bérangère S. Joly
- Service d’Hématologie Biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris and EA3518, Institut Universitaire d’Hématologie, Hôpital Saint Louis, Université de Paris, Paris, France,A. VEYRADIER -
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium,A. VEYRADIER -
| | - Paul Coppo
- Département d’Hématologie Clinique, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France *BSY and ER contributed equally as co-first authors
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris and EA3518, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Université de Paris, Paris.
| |
Collapse
|
25
|
Graça NAG, Joly BS, Voorberg J, Vanhoorelbeke K, Béranger N, Veyradier A, Coppo P. TTP: From empiricism for an enigmatic disease to targeted molecular therapies. Br J Haematol 2022; 197:156-170. [PMID: 35146746 PMCID: PMC9304236 DOI: 10.1111/bjh.18040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
The 100th anniversary of the first description of Thrombotic Thrombocytopenic Purpura (TTP) as a disease by Dr. Eli Moschcowitz approaches. For many decades, TTP remained mostly a mysterious fatal condition, where diagnosis was often post-mortem. Initially a pentad of symptoms was identified, a pattern that later revealed to be fallible. Sporadic observations led to empiric interventions that allowed for the first impactful breakthrough in TTP treatment, almost 70 years after its first description: the introduction of plasma exchange and infusions as treatments. The main body of knowledge within the field was gathered in the latest three decades: patient registries were set and proved crucial for advancements; the general mechanisms of disease have been described; the diagnosis was refined; new treatments and biomarkers with improvements on prognosis and management were introduced. Further changes and improvements are expected in the upcoming decades. In this review, we provide a brief historic overview of TTP, as an illustrative example of the success of translational medicine enabling to rapidly shift from a management largely based on empiricism to targeted therapies and personalized medicine, for the benefit of patients. Current management options and present and future perspectives in this still evolving field are summarized.
Collapse
Affiliation(s)
- Nuno A. G. Graça
- Department of Molecular Hematology, Sanquin‐Academic Medical CenterLandsteiner LaboratoryAmsterdamThe Netherlands
| | - Bérangère S. Joly
- Service d'hématologie biologique and EA3518‐ Institut universitaire d'hématologieGroupe Hospitalier Saint Louis‐Lariboisière, AP‐HP, Université Paris DiderotParisFrance
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin‐Academic Medical CenterLandsteiner LaboratoryAmsterdamThe Netherlands
- Department of Experimental Vascular MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - Nicolas Béranger
- Service d'hématologie biologique and EA3518‐ Institut universitaire d'hématologieGroupe Hospitalier Saint Louis‐Lariboisière, AP‐HP, Université Paris DiderotParisFrance
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
| | - Agnès Veyradier
- Service d'hématologie biologique and EA3518‐ Institut universitaire d'hématologieGroupe Hospitalier Saint Louis‐Lariboisière, AP‐HP, Université Paris DiderotParisFrance
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
| | - Paul Coppo
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
- Service d'HématologieHôpital Saint‐Antoine, AP‐HPParisFrance
- Sorbonne UniversitéUPMC Univ ParisParisFrance
| |
Collapse
|
26
|
Hanna RM, Henriksen K, Kalantar-Zadeh K, Ferrey A, Burwick R, Jhaveri KD. Thrombotic Microangiopathy Syndromes-Common Ground and Distinct Frontiers. Adv Chronic Kidney Dis 2022; 29:149-160.e1. [PMID: 35817522 DOI: 10.1053/j.ackd.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Thrombotic microangiopathies (TMAs) have in common a terminal phenotype of microangiopathic hemolytic anemia with end-organ dysfunction. Thrombotic thrombocytopenic purpura results from von Willebrand factor multimerization, Shiga toxin-mediated hemolytic uremic syndrome causes toxin-induced endothelial dysfunction, while atypical hemolytic uremic syndrome results from complement system dysregulation. Drug-induced TMA, rheumatological disease-induced TMA, and renal-limited TMA exist in an intermediate space that represents secondary complement activation and may overlap with atypical hemolytic uremic syndrome clinically. The existence of TMA without microangiopathic hemolytic features, renal-limited TMA, represents an undiscovered syndrome that responds incompletely and inconsistently to complement blockade. Hematopoietic stem cell transplant-TMA represents another more resistant form of TMA with different therapeutic needs and clinical course. It has become apparent that TMA syndromes are an emerging field in nephrology, rheumatology, and hematology. Much work remains in genetics, molecular biology, and therapeutics to unravel the puzzle of the relationships and distinctions apparent between the different subclasses of TMA syndromes.
Collapse
Affiliation(s)
- Ramy M Hanna
- UCI Medical Center Department of Medicine, Division of Nephrology, University of California Irvine, Orange, CA.
| | - Kammi Henriksen
- Department of Pathology, University of Chicago Medical Center, Chicago, IL
| | - Kamyar Kalantar-Zadeh
- UCI Medical Center Department of Medicine, Division of Nephrology, University of California Irvine, Orange, CA
| | - Antoney Ferrey
- UCI Medical Center Department of Medicine, Division of Nephrology, University of California Irvine, Orange, CA
| | - Richard Burwick
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Kenar D Jhaveri
- Glomerular Disease Center at Northwell Health, Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| |
Collapse
|
27
|
Updates on thrombotic thrombocytopenic purpura: Recent developments in pathogenesis, treatment and survivorship. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Pavenski K, Huang SHS, Patriquin CJ. Predictors of relapse and preventative strategies in immune thrombotic thrombocytopenic purpura. Expert Rev Hematol 2021; 14:1027-1040. [PMID: 34747320 DOI: 10.1080/17474086.2021.2003703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare autoimmune blood disorder, which presents with microangiopathic hemolytic anemia, thrombocytopenia, and microvascular thrombosis and is caused by severe deficiency of ADAMTS13. iTTP may result in both acute and chronic complications and is rapidly fatal without expedient treatment. Life-time risk of relapse is approximately 40%. AREAS COVERED A number of predictors of relapse has been described in the literature. The most well-studied predictor of relapse is persistent ADAMTS13 deficiency; however, it is not a perfect marker. Relapse can be prevented by treatment with immunosuppressive medications, with rituximab being the most studied. EXPERT OPINION Patients who recover from iTTP should be regularly assessed, including with ADAMTS13 activity testing. The optimal frequency of assessments has not been established, but every 3 months is recommended. Considering the potential for significant organ damage and mortality associated with iTTP relapse, patients in remission and with persistent ADAMTS13 activity of 10-20% should be prophylactically treated with immunosuppression. Additional markers to precisely identify patients at higher risk of relapse are needed.
Collapse
Affiliation(s)
- Katerina Pavenski
- Departments of Medicine and Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shih-Han Susan Huang
- Department of Medicine, Division of Nephrology, Western University, London, Canada
| | - Christopher J Patriquin
- Department of Medicine, Division of Medical Oncology & Hematology, University Health Network, Toronto, Canada
| |
Collapse
|
29
|
Laghmouchi A, Graça NAG, Voorberg J. Emerging Concepts in Immune Thrombotic Thrombocytopenic Purpura. Front Immunol 2021; 12:757192. [PMID: 34858410 PMCID: PMC8631936 DOI: 10.3389/fimmu.2021.757192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder of which the etiology is not fully understood. Autoantibodies targeting ADAMTS13 in iTTP patients have extensively been studied, the immunological mechanisms leading to the breach of tolerance remain to be uncovered. This review addresses the current knowledge on genetic factors associated with the development of iTTP and the interplay between the patient's immune system and environmental factors in the induction of autoimmunity against ADAMTS13. HLA-DRB1*11 has been identified as a risk factor for iTTP in the Caucasian population. Interestingly, HLA-DRB1*08:03 was recently identified as a risk factor in the Japanese population. Combined in vitro and in silico MHC class II peptide presentation approaches suggest that an ADAMTS13-derived peptide may bind to both HLA-DRB1*11 and HLA-DRB1*08:03 through different anchor-residues. It is apparent that iTTP is associated with the presence of infectious microorganisms, viruses being the most widely associated with development of iTTP. Infections may potentially lead to loss of tolerance resulting in the shift from immune homeostasis to autoimmunity. In the model we propose in this review, infections disrupt the epithelial barriers in the gut or lung, promoting exposure of antigen presenting cells in the mucosa-associated lymphoid tissue to the microorganisms. This may result in breach of tolerance through the presentation of microorganism-derived peptides that are homologous to ADAMTS13 on risk alleles for iTTP.
Collapse
Affiliation(s)
| | | | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
30
|
Anti-cysteine/spacer antibodies that open ADAMTS13 are a common feature in iTTP. Blood Adv 2021; 5:4480-4484. [PMID: 34559219 PMCID: PMC8579268 DOI: 10.1182/bloodadvances.2021004971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
An open ADAMTS13 conformation is a novel biomarker for iTTP and is induced by anti-ADAMTS13 autoantibodies. The autoantibodies against the CS region play an important role in the appearance of an open ADAMTS13 conformation.
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is caused by an autoantibody-mediated deficiency in ADAMTS13. In healthy individuals, ADAMTS13 has a folded conformation in which the central spacer (S) domain interacts with the C-terminal CUB domains. We recently showed that ADAMTS13 adopts an open conformation in iTTP and that patient immunoglobulin G antibodies (IgGs) can open ADAMTS13. Anti-ADAMTS13 autoantibodies in patients with iTTP are directed against the different ADAMTS13 domains, but almost all patients have autoantibodies binding to the cysteine/spacer (CS) domains. In this study, we investigated whether the autoantibodies against the CS and CUB domains can disrupt the S-CUB interaction of folded ADAMTS13, thereby opening ADAMTS13. To this end, we purified anti-CS and anti-CUB autoantibodies from 13 patients with acute iTTP by affinity chromatography. The successfully purified anti-CS (10/13 patients) and anti-CUB (4/13 patients) autoantibody fractions were tested further in our ADAMTS13 conformation enzyme-linked immunosorbent assay to study whether they could open ADAMTS13. Interestingly, all purified anti-CS fractions (10/10 patients) were able to open ADAMTS13. On the other hand, only half of the purified anti-CUB fractions (2/4 patients) opened ADAMTS13. Our finding highlights that anti-CS autoantibodies that open ADAMTS13 are a common feature of the autoimmune response in iTTP.
Collapse
|
31
|
Kleinveld DJB, Simons DDG, Dekimpe C, Deconinck SJ, Sloos PH, Maas MAW, Kers J, Muia J, Brohi K, Voorberg J, Vanhoorelbeke K, Hollmann MW, Juffermans NP. Plasma and rhADAMTS13 reduce trauma-induced organ failure by restoring the ADAMTS13-VWF axis. Blood Adv 2021; 5:3478-3491. [PMID: 34505883 PMCID: PMC8525227 DOI: 10.1182/bloodadvances.2021004404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Trauma-induced organ failure is characterized by endothelial dysfunction. The aim of this study was to investigate the role of von Willebrand factor (VWF) and its cleaving enzyme, ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13) in the occurrence of endothelial permeability and organ failure in trauma. In an observational study in a level-1 trauma center, 169 adult trauma patients with clinical signs of shock and/or severe injuries were included. Trauma was associated with low ADAMTS13 and high VWF antigen levels, thus generating an imbalance of ADAMTS13 to VWF. Patients who developed organ failure (23%) had greater ADAMTS13-to-VWF imbalances, persistently lower platelet counts, and elevated levels of high-molecular-weight VWF multimers compared with those without organ failure, suggesting microthrombi formation. To investigate the effect of replenishing low ADAMTS13 levels on endothelial permeability and organ failure using either recombinant human ADAMTS13 (rhADAMTS13) or plasma transfusion, a rat model of trauma-induced shock and transfusion was used. Rats in traumatic hemorrhagic shock were randomized to receive crystalloids, crystalloids supplemented with rhADAMTS13, or plasma transfusion. A 70-kDa fluorescein isothiocyanate-labeled dextran was injected to determine endothelial leakage. Additionally, organs were histologically assessed. Both plasma transfusion and rhADAMTS13 were associated with a reduction in pulmonary endothelial permeability and organ injury when compared with resuscitation with crystalloids, but only rhADAMTS13 resulted in significant improvement of a trauma-induced decline in ADAMTS13 levels. We conclude that rhADAMTS13 and plasma transfusion can reduce organ failure following trauma. These findings implicate the ADAMTS13-VWF axis in the pathogenesis of organ failure.
Collapse
Affiliation(s)
- Derek J B Kleinveld
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Derek D G Simons
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Shannen J Deconinck
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Pieter H Sloos
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Adrie W Maas
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joshua Muia
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK
| | - Karim Brohi
- Centre for Trauma Sciences, Queen Mary University of London, London, United Kingdom
| | - Jan Voorberg
- Sanquin, Department of Cellular Hemostasis, Amsterdam, The Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Anti-ADAMTS13 autoantibody profiling in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv 2021; 5:3427-3435. [PMID: 34495312 DOI: 10.1182/bloodadvances.2020004172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
Anti-A Disintegrin and Metalloproteinase with a ThromboSpondin type 1 motif, member 13 (ADAMTS13) autoantibodies cause a severe ADAMTS13 deficiency in immune-mediated thrombotic thrombocytopenic purpura (iTTP). ADAMTS13 consists of a metalloprotease (M), a disintegrin-like (D) domain, 8 thrombospondin type 1 repeats (T1-T8), a cysteine-rich (C), a spacer (S), and 2 CUB domains (CUB1-2). We recently developed a high-throughput epitope mapping assay based on small, nonoverlapping ADAMTS13 fragments (M, DT, CS, T2-T5, T6-T8, CUB1-2). With this assay, we performed a comprehensive epitope mapping using 131 acute-phase samples and for the first time a large group of remission samples (n = 50). Next, samples were stratified according to their immunoprofiles, a field that is largely unexplored in iTTP. Three dominant immunoprofiles were found in acute-phase samples: profile 1: only anti-CS autoantibodies (26.7%); profile 2: both anti-CS and anti-CUB1-2 autoantibodies (12.2%); and profile 3: anti-DT, anti-CS, anti-T2-T5, anti-T6-T8, and anti-CUB1-2 autoantibodies (8.4%). Interestingly, profile 1 was the only dominant immunoprofile in remission samples (52.0%). Clinical data were available for a relatively small number of patients with acute iTTP (>68), and no correlation was found between immunoprofiles and disease severity. Nevertheless, profile 1 was linked with younger and anti-T2-T5 autoantibodies with older age and the absence of anti-CUB1-2 autoantibodies with cerebral involvement. In conclusion, identifying acute phase and remission immunoprofiles in iTTP revealed that anti-CS autoantibodies seem to persist or reappear during remission providing further support for the clinical development of a targeted anti-CS autoantibody therapy. A large cohort study with acute iTTP samples will validate possible links between immunoprofiles or anti-domain autoantibodies and clinical data.
Collapse
|
33
|
Joly BS, Darmon M, Dekimpe C, Dupont T, Dumas G, Yvin E, Beranger N, Vanhoorelbeke K, Azoulay E, Veyradier A. Imbalance of von Willebrand factor and ADAMTS13 axis is rather a biomarker of strong inflammation and endothelial damage than a cause of thrombotic process in critically ill COVID-19 patients. J Thromb Haemost 2021; 19:2193-2198. [PMID: 34219357 PMCID: PMC8420340 DOI: 10.1111/jth.15445] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Critically ill patients with coronavirus disease 2019 (COVID-19) are prone to developing macrothrombosis and microthrombosis. COVID-19 has been reported to be rarely associated with thrombotic microangiopathies. A disintegrin and metalloprotease with thrombospondin type I repeats, member 13 (ADAMTS13) severe deficiency, the hallmark of thrombotic thrombocytopenic purpura (TTP), induces the formation of platelet, unusually large von Willebrand factor (VWF) multimer microthrombi. In immune-mediated TTP, ADAMTS13 adopts specifically an open conformation. The VWF/ADAMTS13 couple may contribute to the microthrombi formation in pulmonary alveolar capillaries in COVID-19. OBJECTIVE To investigate clinical features, hemostatic laboratory parameters, VWF/ADAMTS13 axis, and ADAMTS13 conformation in critically ill COVID-19 patients at admission. METHODS Fifty three critically ill COVID-19 patients were enrolled between March 18 and May 9 2020 in a monocentric hospital. RESULTS The median age was 59 years and the male-to-female ratio was 2.8/1. We reported seven pulmonary embolisms and 15 deaths. Biological investigations showed increased fibrinogen and factor V levels, and strongly increased D-dimers correlated with mortality. No patient presented severe thrombocytopenia nor microangiopathic hemolytic anemia. An imbalance between high VWF antigen levels and normal or slightly decreased ADAMTS13 activity levels (strongly elevated VWF/ADAMTS13 ratio) was correlated with mortality. Three patients had a partial quantitative deficiency in ADAMTS13. We also reported a closed conformation of ADAMTS13 in all patients, reinforcing the specificity of an open conformation of ADAMTS13 as a hallmark of TTP. CONCLUSION We suggest that slightly decreased or normal ADAMTS13 activity and highly elevated VWF are rather biomarkers reflecting both the strong inflammation and the endothelial damage rather than drivers of the thrombotic process of COVID-19.
Collapse
Affiliation(s)
- Bérangère S Joly
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris, Paris, France
- EA3518 Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Michael Darmon
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Thibault Dupont
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Guillaume Dumas
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Elise Yvin
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Nicolas Beranger
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris, Paris, France
- EA3518 Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Elie Azoulay
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris, Paris, France
- EA3518 Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| |
Collapse
|
34
|
Dekimpe C, Roose E, Kangro K, Bonnez Q, Vandenbulcke A, Tellier E, Kaplanski G, Feys HB, Tersteeg C, Männik A, De Meyer SF, Vanhoorelbeke K. Determination of anti-ADAMTS-13 autoantibody titers in ELISA: Influence of ADAMTS-13 presentation and autoantibody detection. J Thromb Haemost 2021; 19:2248-2255. [PMID: 33728786 DOI: 10.1111/jth.15297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is caused by inhibitory and/or clearing anti-ADAMTS-13 (A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats, member 13) autoantibodies. To determine the presence and total level of anti-ADAMTS-13 autoantibodies, commercial and in-house developed ELISAs are performed. However, different ELISA methods vary in relation to the presentation of recombinant (r)ADAMTS-13 and the detection method of the anti-ADAMTS-13 autoantibodies. Currently, the influence of those different approaches on anti-ADAMTS-13 autoantibody titers is not known. OBJECTIVES To assess the influence of different ADAMTS-13 presentation- and autoantibody detection methods on anti-ADAMTS-13 autoantibody titers in ELISA. MATERIALS/METHODS Anti-ADAMTS-13 autoantibody titers from 18 iTTP patients were determined using four different set-ups of anti-ADAMTS-13 autoantibody ELISAs. The ELISAs varied in the used presentation of rADAMTS-13 (directly coated full-length rADAMTS-13, directly coated rMDTCS and rT2C2, or antibody-captured full-length rADAMTS-13) and the detection antibodies (polyclonal anti-human IgG or monoclonal anti-human IgG1-4 antibodies). RESULTS Strong correlations between the different anti-ADAMTS-13 autoantibody ELISA approaches were observed, when using polyclonal anti-human IgG detection antibodies recognizing all IgG subclasses similarly, independent of the method of rADAMTS-13 presentation. Anti-ADAMTS-13 autoantibody titers correlated less when using a mixture of monoclonal anti-human IgG1-4 , because not all IgG subclasses were recognized with similar affinities. CONCLUSION Anti-ADAMTS-13 autoantibody levels using different methods of rADAMTS-13 presentation strongly correlate. However, the levels of anti-ADAMTS-13 autoantibodies are highly dependent on the detection antibody used, which should detect all IgG subclasses (IgG1-4 ) equally well.
Collapse
Affiliation(s)
- Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
- Icosagen Cell Factory OÜ, Kambja vald, Tartumaa, Estonia
| | - Quintijn Bonnez
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Edwige Tellier
- C2VN, INSERM, INRAE, Aix Marseille Universite, Marseille, France
| | - Gilles Kaplanski
- C2VN, INSERM, INRAE, Aix Marseille Universite, Marseille, France
- Hôpital de la Conception, Service de médecine interne, APHM, C2VN, INSERM, INRAE, Aix Marseille Universite, Marseille, France
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Andres Männik
- Icosagen Cell Factory OÜ, Kambja vald, Tartumaa, Estonia
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
35
|
Ercig B, Arfman T, Hrdinova J, Wichapong K, Reutelingsperger CPM, Vanhoorelbeke K, Nicolaes GAF, Voorberg J. Conformational plasticity of ADAMTS13 in hemostasis and autoimmunity. J Biol Chem 2021; 297:101132. [PMID: 34461090 PMCID: PMC8449270 DOI: 10.1016/j.jbc.2021.101132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force–dependent cleavage at a single Tyr–Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13–VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.
Collapse
Affiliation(s)
- Bogac Ercig
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Tom Arfman
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Johana Hrdinova
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Gómez-Seguí I, Pascual Izquierdo C, de la Rubia Comos J. Best practices and recommendations for drug regimens and plasma exchange for immune thrombotic thrombocytopenic purpura. Expert Rev Hematol 2021; 14:707-719. [PMID: 34275393 DOI: 10.1080/17474086.2021.1956898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Thrombotic thrombocytopenic purpura (TTP) is a life-threatening thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, thrombocytopenia, and organ injury. TTP pathophysiology is based on a severe ADAMTS13 deficiency, and is a medical emergency with fatal outcome if appropriate treatment is not initiated promptly. AREAS COVERED Authors will review the best options currently available to minimize mortality, prevent relapses, and obtain the best clinical response in patients with immune TTP (iTTP). Available bibliography about iTTP treatment has been searched in Library's MEDLINE/PubMed database from January 1990 until April 2021. EXPERT OPINION The generalized use of plasma exchange marked a paradigm in the management of iTTP. In recent years, strenuous efforts have been done for a better understanding of the pathophysiology of this disease, improve diagnosis, optimize treatment, reduce mortality, and prevent recurrences. The administration of front-line rituximab and, more recently, the availability of caplacizumab, the first targeted therapy for iTTP, have been steps toward a further reduction in early mortality and for the prevention of relapses.
Collapse
Affiliation(s)
- Inés Gómez-Seguí
- Servicio De Hematología Y Hemoterapia, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Cristina Pascual Izquierdo
- Servicio De Hematología Y Hemoterapia, Hospital General , Universitario Gregorio Marañón. Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Javier de la Rubia Comos
- Servicio De Hematología Y Hemoterapia, Hospital Universitari I Politècnic La Fe, Valencia, Spain.,School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|
37
|
de Bruijn S, Maes M, De Waele L, Vanhoorelbeke K, Gadisseur A. First report of a de novo iTTP episode associated with an mRNA-based anti-COVID-19 vaccination. J Thromb Haemost 2021; 19:2014-2018. [PMID: 34105244 PMCID: PMC8236927 DOI: 10.1111/jth.15418] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare but potentially life-threatening thrombotic microangiopathy, characterized by disseminated thrombus formation in the microvasculature, causing severe organ failure. Immune-mediated TTP (iTTP) is occasionally described after vaccination, especially against viral agents. We report a case of a 38-year-old woman with a de novo iTTP after exposure to the mRNA-based anti-coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer-BioNTech. She presented with increased bruising and petechiae starting 2 weeks after receiving the first dose of the anti-COVID-19 vaccine. Laboratory data revealed a severe ADAMTS13-deficiency in combination with a very high autoantibody titer against ADAMTS13. She was successfully treated with plasma exchange, corticosteroids, rituximab, and caplacizumab. To our knowledge, this is the first case report of iTTP after mRNA-based COVID-19 vaccination in a previously TTP-naïve patient.
Collapse
Affiliation(s)
| | - Marie‐Berthe Maes
- Department of Clinical BiologyAntwerp University HospitalAntwerpBelgium
| | - Laure De Waele
- Laboratory for Thrombosis ResearchInterdisciplinary Research Facility Life SciencesCatholic University of LeuvenKortrijkBelgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis ResearchInterdisciplinary Research Facility Life SciencesCatholic University of LeuvenKortrijkBelgium
| | - Alain Gadisseur
- Department of HematologyAntwerp University HospitalAntwerpBelgium
- Hemostasis and Thrombosis Research CenterAntwerp University HospitalAntwerpBelgium
| |
Collapse
|
38
|
Halkidis K, Siegel DL, Zheng XL. A human monoclonal antibody against the distal carboxyl terminus of ADAMTS-13 modulates its susceptibility to an inhibitor in thrombotic thrombocytopenic purpura. J Thromb Haemost 2021; 19:1888-1895. [PMID: 33834592 PMCID: PMC8324539 DOI: 10.1111/jth.15332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal thrombotic microangiopathy, resulting from a severe deficiency of plasma ADAMTS-13 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motif, member 13) activity. IgG-type autoantibodies are primarily responsible for the inhibition of plasma ADAMTS-13 activity. However, the mechanism underlying autoantibody-mediated inhibition is not fully understood. OBJECTIVE The purpose of the present study is to determine the role of IgG autoantibodies against various carboxyl-terminal domains of ADAMTS-13 in regulating ADAMTS-13 activity and its inhibition. METHOD Various human monoclonal antibodies isolated by phage display, recombinant protein expression and purification, and biochemical analyses were employed for the study. RESULTS Our results demonstrate for the first time that a human monoclonal antibody fragment, the single chain fragment of the variable region (scFv) isolated from a patient with acute iTTP that binds the distal carboxyl-terminus of ADAMTS-13, is able to activate ADAMTS-13 and increase the proteolytic cleavage of a FRETS-VWF73 substrate; moreover, binding of such a human monoclonal antibody against the carboxyl-terminus of ADAMTS-13 to plasma ADAMTS-13 appears to modulate inhibition by another human monoclonal antibody (i.e., scFv4-20), also isolated from an iTTP patient, that targets the spacer domain of ADAMTS-13. These results provide new insights into our understanding of the pathogenesis of iTTP.
Collapse
Affiliation(s)
- Konstantine Halkidis
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| |
Collapse
|
39
|
Zheng XL. The standard of care for immune thrombotic thrombocytopenic purpura today. J Thromb Haemost 2021; 19:1864-1871. [PMID: 34060225 PMCID: PMC8324529 DOI: 10.1111/jth.15406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022]
Abstract
Targeted therapy of immune thrombotic thrombocytopenic purpura (iTTP) requires acurate and prompt diagnosis and differentiation from complement-mediated hemolytic uremic syndrome and other causes of thrombotic microangiopathy. ADAMTS-13 (A Disintegrin And Metalloprotease with ThromboSpondin-1 Domain, member 13) evaluation (activity and inhibitors or anti-ADAMTS-13 IgG) is the key for diagnosis and further management of patients with suspected iTTP during acute episode and in clinical response or remission. Clinical trial results and real-world data have demonstrated the efficacy and safety of the triple therapy consisting of therapeutic plasma exchange, caplacizumab, and immunosuppressives (e.g., corticosteroids and rituximab) for acute iTTP. Such a therapeutic strategy has significantly accelerated the normalization of platelet counts, decreased the length of stays in the intensive care unit and the hospital, but most importantly reduced the mortality rate. The present review highlights some of the important advancements for the diagnosis and management of iTTP and proposes triple therapy as the standard of care for acute iTTP today.
Collapse
Affiliation(s)
- X Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
40
|
van Manen L, van Hezel ME, Boshuizen M, Straat M, de Man AME, Dekimpe C, Vanhoorelbeke K, van Bruggen R, Juffermans NP. Effect of red blood cell transfusion on inflammation, endothelial cell activation and coagulation in the critically ill. Vox Sang 2021; 117:64-70. [PMID: 34196412 PMCID: PMC9291904 DOI: 10.1111/vox.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023]
Abstract
Background and Objectives Red blood cell (RBC) transfusion is a frequently applied intervention in an intensive care unit. However, transfusion is associated with adverse outcomes including organ failure and thrombo‐embolic events. Mechanisms of these effects are not known but may be related to activation of the endothelium or of the coagulation or inflammatory system. We hypothesized that a RBC transfusion in the critically ill would result in further activation of these systems. Materials and Methods In 74 non‐bleeding critically ill patients receiving one RBC unit, markers of inflammation, endothelial cell activation and coagulation were measured before transfusion, at 1 h after transfusion and 24 h after transfusion. The impact of disease severity of the recipient on these changes was assessed by comparing septic and non‐septic patients (according to sepsis‐3 definition) and by correlation of biomarkers with the sequential organ failure assessment (SOFA) score. Results Levels of von Willebrand Factor (vWF), soluble ICAM‐1, soluble thrombomodulin, fibrinogen and d‐dimer were already high at baseline, whereas ADAMTS13 levels were low. VWF levels increased significantly 24 h after RBC transfusion (median 478% (338–597) vs. 526% (395–623), p = 0.009). The other biomarkers did not change significantly. Post transfusion change was not dependent on the presence of sepsis and was not correlated with SOFA score. Conclusion RBC transfusion in critically ill patients was associated with an increase in circulating vWF levels, suggesting a further increase in activation of the endothelium, a finding that was independent of the presence of sepsis or organ injury level.
Collapse
Affiliation(s)
- Lisa van Manen
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Location VUmc, University of Amsterdam, Amsterdam, The Netherlands.,Department of Blood Cell Research, Sanquin research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike E van Hezel
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Location VUmc, University of Amsterdam, Amsterdam, The Netherlands.,Department of Blood Cell Research, Sanquin research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Margit Boshuizen
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Location VUmc, University of Amsterdam, Amsterdam, The Netherlands.,Department of Blood Cell Research, Sanquin research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Marleen Straat
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Location VUmc, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelique M E de Man
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Location VUmc, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, OLVG Hospital, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function. Blood Adv 2021; 4:1072-1080. [PMID: 32196558 DOI: 10.1182/bloodadvances.2019001375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
Plasma ADAMTS13 circulates in a folded conformation that is stabilized by an interaction between the central Spacer domain and the C-terminal CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. Binding of ADAMTS13 to the VWF D4(-CK) domains or to certain activating murine monoclonal antibodies (mAbs) induces a structural change that extends ADAMTS13 into an open conformation that enhances its function. The objective was to characterize the mechanism by which conformational activation enhances ADAMTS13-mediated proteolysis of VWF. The activating effects of a novel anti-Spacer (3E4) and the anti-CUB1 (17G2) mAbs on the kinetics of proteolysis of VWF A2 domain fragments by ADAMTS13 were analyzed. mAb-induced conformational changes in ADAMTS13 were investigated by enzyme-linked immunosorbent assay. Both mAbs enhanced ADAMTS13 catalytic efficiency (kcat/Km) by ∼twofold (3E4: 2.0-fold; 17G2: 1.8-fold). Contrary to previous hypotheses, ADAMTS13 activation was not mediated through exposure of the Spacer or cysteine-rich domain exosites. Kinetic analyses revealed that mAb-induced conformational extension of ADAMTS13 enhances the proteolytic function of the metalloprotease domain (kcat), rather than augmenting substrate binding (Km). A conformational effect on the metalloprotease domain was further corroborated by the finding that incubation of ADAMTS13 with either mAb exposed a cryptic epitope in the metalloprotease domain that is normally concealed when ADAMTS13 is in a closed conformation. We show for the first time that the primary mechanism of mAb-induced conformational activation of ADAMTS13 is not a consequence of functional exosite exposure. Rather, our data are consistent with an allosteric activation mechanism on the metalloprotease domain that augments active site function.
Collapse
|
42
|
Tordon B, Warkentin TE, Moore JC, Arnold DM. Post-cardiac surgery thrombotic thrombocytopenic purpura: presence of anti-ADAMTS13 autoantibodies at preoperative baseline. Platelets 2021; 33:479-483. [PMID: 33852372 DOI: 10.1080/09537104.2021.1912314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thrombotic thrombocytopenic purpura (TTP) rarely complicates acute inflammatory conditions such as surgery, including post-cardiac surgery. Review of 32 previously-reported cases of post-cardiac surgery TTP indicates that this disorder often occurs as early as 2-3 days following surgery, which seems too soon to implicate new formation of anti-ADAMTS13 autoantibodies as a consequence of surgery itself. We diagnosed post-cardiac surgery TTP in a 60-year-old female that began approximately 3 days post-coronary artery bypass surgery in which anti-ADAMTS13 autoantibodies were implicated. We therefore investigated whether anti-ADAMTS13 autoantibodies were also present in a preoperative blood sample. Inhibitory (neutralizing) anti-ADAMTS13 autoantibodies were detectable in the preoperative blood sample, suggesting that the role of surgery in precipitating TTP might be due to effects such as abrupt increase in postoperative von Willebrand factor levels and associated proinflammatory factors, rather than effects of surgery itself leading to the formation of de novo anti-ADAMTS13 autoantibodies.
Collapse
Affiliation(s)
- Bryan Tordon
- Department of Medicine, Division of Hematology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Theodore E Warkentin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Transfusion Research, Hamilton, Ontario, Canada
| | - Jane C Moore
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Transfusion Research, Hamilton, Ontario, Canada
| |
Collapse
|
43
|
Bécel G, Faict S, Picod A, Bouzid R, Veyradier A, Coppo P. Thrombotic Thrombocytopenic Purpura: When Basic Science Meets Clinical Research. Hamostaseologie 2021; 41:283-293. [PMID: 33607665 DOI: 10.1055/a-1332-3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The therapeutic landscape of thrombotic thrombocytopenic purpura (TTP) is rapidly changing with the recent availability of new targeted therapies. This progressive shift from empiricism to pathophysiology-based treatments reflects an intensive interaction between the continuous findings in the field of basic science and an efficient collaborative clinical research and represents a convincing example of the strength of translational medicine. Despite the rarity of TTP, national and international efforts could circumvent this limitation and shed light on the epidemiology, clinical presentation, prognosis, and long-term outcome of this disease. Importantly, they also provided high-quality results and practice changing studies for the benefit of patients. We report here the most recent therapeutic findings that allowed progressively improving the prognostic of TTP, both at the acute phase and through long-term outcome.
Collapse
Affiliation(s)
- Gaëlle Bécel
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France
| | - Sylvia Faict
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France
| | - Adrien Picod
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France
| | - Raïda Bouzid
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
| | - Agnès Veyradier
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'Hématologie Biologique, Groupe Hospitalier Saint-Louis-Lariboisière, AP-HP, Paris, France.,Université Paris-Diderot, Paris, France
| | - Paul Coppo
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Paris, France
| |
Collapse
|
44
|
Sukumar S, Lämmle B, Cataland SR. Thrombotic Thrombocytopenic Purpura: Pathophysiology, Diagnosis, and Management. J Clin Med 2021; 10:536. [PMID: 33540569 PMCID: PMC7867179 DOI: 10.3390/jcm10030536] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and ischemic end organ injury due to microvascular platelet-rich thrombi. TTP results from a severe deficiency of the specific von Willebrand factor (VWF)-cleaving protease, ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13). ADAMTS13 deficiency is most commonly acquired due to anti-ADAMTS13 autoantibodies. It can also be inherited in the congenital form as a result of biallelic mutations in the ADAMTS13 gene. In adults, the condition is most often immune-mediated (iTTP) whereas congenital TTP (cTTP) is often detected in childhood or during pregnancy. iTTP occurs more often in women and is potentially lethal without prompt recognition and treatment. Front-line therapy includes daily plasma exchange with fresh frozen plasma replacement and immunosuppression with corticosteroids. Immunosuppression targeting ADAMTS13 autoantibodies with the humanized anti-CD20 monoclonal antibody rituximab is frequently added to the initial therapy. If available, anti-VWF therapy with caplacizumab is also added to the front-line setting. While it is hypothesized that refractory TTP will be less common in the era of caplacizumab, in relapsed or refractory cases cyclosporine A, N-acetylcysteine, bortezomib, cyclophosphamide, vincristine, or splenectomy can be considered. Novel agents, such as recombinant ADAMTS13, are also currently under investigation and show promise for the treatment of TTP. Long-term follow-up after the acute episode is critical to monitor for relapse and to diagnose and manage chronic sequelae of this disease.
Collapse
Affiliation(s)
- Senthil Sukumar
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Bernhard Lämmle
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland;
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
- Haemostasis Research Unit, University College London, London WC1E 6BT, UK
| | - Spero R. Cataland
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
45
|
Velásquez Pereira LC, Roose E, Graça NAG, Sinkovits G, Kangro K, Joly BS, Tellier E, Kaplanski G, Falter T, Von Auer C, Rossmann H, Feys HB, Reti M, Prohászka Z, Lämmle B, Voorberg J, Coppo P, Veyradier A, De Meyer SF, Männik A, Vanhoorelbeke K. Immunogenic hotspots in the spacer domain of ADAMTS13 in immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2021; 19:478-488. [PMID: 33171004 DOI: 10.1111/jth.15170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/10/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is caused by anti-ADAMTS13 autoantibodies inducing a severe deficiency of ADAMTS13. Epitope mapping studies on samples obtained during acute iTTP episodes have shown that the iTTP immune response is polyclonal, with almost all patients having autoantibodies targeting the spacer domain of ADAMTS13. OBJECTIVES To identify the immunogenic hotspots in the spacer domain of ADAMTS13. PATIENTS/METHODS A library of 11 full-length ADAMTS13 spacer hybrids was created in which amino acid regions of the spacer domain of ADAMTS13 were exchanged by the corresponding region of the spacer domain of ADAMTS1. Next, the full-length ADAMTS13 spacer hybrids were used in enzyme-linked immunosorbent assay to epitope map anti-spacer autoantibodies in 138 samples from acute and remission iTTP patients. RESULTS Sixteen different anti-spacer autoantibody profiles were identified with a similar distribution in acute and remission patients. There was no association between the anti-spacer autoantibody profiles and disease severity. Almost all iTTP samples contained anti-spacer autoantibodies against the following three regions: amino acid residues 588-592, 602-610, and 657-666 (hybrids E, G, and M). Between 31% and 57% of the samples had anti-spacer autoantibodies against amino acid regions 572-579, 629-638, 667-676 (hybrids C, J, and N). In contrast, none of the samples had anti-spacer autoantibodies against amino acid regions 556-563, 564-571, 649-656, and 677-685 (hybrids A, B, L, and O). CONCLUSION We identified three hotspot regions (amino acid regions 588-592, 602-610, and 657-666) in the spacer domain of ADAMTS13 that are targeted by anti-spacer autoantibodies found in a large cohort of iTTP patients.
Collapse
Affiliation(s)
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Nuno A G Graça
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Icosagen Cell Factory OÜ, Kambia vald, Tartumaa, Estonia
| | - György Sinkovits
- Department of Internal Medicine and Hematology, and Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Bérangère S Joly
- Service d'Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris and EA3518, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Edwige Tellier
- INSERM, INRAE, C2VN, Aix-Marseille Univ, Marseille, France
- APHM, INSERM, C2VN, CHU Conception, Service de Médecine Interne et Immunologie Clinique, Aix-Marseille Univ, Marseille, France
| | | | - Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Charis Von Auer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marienn Reti
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, and Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Haemostasis Research Unit, University College London, London, UK
| | - Jan Voorberg
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Coppo
- Service d'hématologie, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
- Université Sorbonne Paris Cité, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris and EA3518, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Andres Männik
- Icosagen Cell Factory OÜ, Kambia vald, Tartumaa, Estonia
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
46
|
ADAMTS-13-VWF axis in sickle cell disease patients. Ann Hematol 2021; 100:375-382. [PMID: 33404693 DOI: 10.1007/s00277-020-04385-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Sickle cell disease (SCD) comprises a group of genetic disorders characterized by the presence of the hemoglobin (Hb) S in homozygosis or in heterozygosis with some other Hb variant or in interaction with thalassemia. SCD is characterized by a very complex pathophysiology, which determines a wide variability of clinical manifestations, including a chronic state of hypercoagulability responsible for the increased risk of thromboembolic events. ADAMTS13 and von Willebrand factor (VWF) play an important role in arterial and venous thrombosis. Thus, the aim of this study was to understand how the ADAMTS13-VWF axis behaves in sickle cell disease, as well as whether there is an association of these markers with the use of hydroxyurea (HU). This is a cross-sectional study conducted with 40 patients diagnosed with SCD and 40 healthy individuals. The analysis of the ADAMTS13-VWF axis was comparatively performed between groups of patients and controls and, afterwards, between patients with SCD who were users and non-users of HU. ADAMTS13 activity, ADAMTS13 activity/VWF:Ag, and ADAMTS13:Ag/VWF:Ag ratios were significantly lower and VWF:Ag levels significantly higher in SCD patients when compared to the controls. There was no statistically significant difference in ADAMTS13:Ag and VWF collagen binding (VWF:CB) levels between the groups evaluated. Among the categories of HU use, there was no statistically significant difference in any of the evaluated markers. As a conclusion, we could observe that the ADAMTS13-VWF axis is altered in SCD when compared to healthy individuals and that there is no association between these markers and the use of HU.
Collapse
|
47
|
Galstyan GM, Klebanova EE. [Diagnosis of thrombotic thrombocytopenic purpura]. TERAPEVT ARKH 2020; 92:207-217. [PMID: 33720596 DOI: 10.26442/00403660.2020.12.200508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 01/18/2023]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening disease, disease, characterised by microangiopathic hemolytic anaemia, consumption thrombocytopenia, and organ dysfunction. The pathogenesis of TTP is attributed to the deficiency in the activity of the metalloproteinase ADAMTS13, specific von Willebrand factor cleaving protease. TTP is suspected when detecting microangiopathic hemolytic anemia, thrombocytopenia, damage to various organs. Diagnosis of TTP is confirmed by the detection of ADAMTS13 activity in plasma less than 10%. Plasma samples for the study of ADAMTS13 activity should be taken before the start of plasma transfusions or plasma exchange. In patients with severe ADAMTS-13 deficiency autoantibodies anti-ADAMTS13 and inhibitor ADAMTS13 should be investigated. Anti-ADAMTS13 antibodies belonging to IgG not always have inhibitory effects. The inhibitory effect of anti-ADAMTS13 antibodies is confirmed by mixing test. All patients with the first established diagnosis of TTP should be examined for mutations of the ADAMTS13 gene.
Collapse
|
48
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
49
|
Graça NAG, Ercig B, Pereira LCV, Kangro K, Kaijen P, Nicolaes GAF, Veyradier A, Coppo P, Vanhoorelbeke K, Männik A, Voorberg J. Modifying ADAMTS13 to modulate binding of pathogenic autoantibodies of patients with acquired thrombotic thrombocytopenic purpura. Haematologica 2020; 105:2619-2630. [PMID: 33131251 PMCID: PMC7604655 DOI: 10.3324/haematol.2019.226068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022] Open
Abstract
Antibodies that develop in patients with immune thrombotic thrombocytopenic purpura (iTTP) commonly target the spacer epitope R568/F592/R660/Y661/Y665 (RFRYY). In this study we present a detailed contribution of each residue in this epitope for autoantibody binding. Different panels of mutations were introduced here to create a large collection of full-length ADAMTS13 variants comprising conservative (Y←→F), semi-conservative (Y/F→L), non-conservative (Y/F→N) or alanine (Y/F/R→A) substitutions. Previously reported Gain-of-Function (GoF, KYKFF) and truncated 'MDTCS' variants were also included. Sera of 18 patients were screened against all variants. Conservative mutations of the aromatic residues did not reduce the binding of autoantibodies. Moderate resistance was achieved by replacing R568 and R660 by lysines or alanines. Semi-conservative mutations of aromatic residues show a moderate effectiveness in autoantibody resistance. Non-conservative asparagine or alanine mutations of aromatic residues are the most effective. In the mixtures of autoantibodies from the majority (89%) of patients screened, autoantibodies targeting the spacer RFRYY epitope have preponderance compared to other epitopes. Reductions in ADAMTS13 proteolytic activity were observed for all full-length mutant variants, in varying degrees. The greatest activity reductions were observed in the most autoantibody-resistant variants (15-35% residual activity in FRETS-VWF73). Among these, a triple-alanine mutant RARAA showed activity in a VWF multimer assay. This study shows that non-conservative and alanine modifications of residues within the exosite-3 spacer RFRYY epitope in full-length ADAMTS13 resist the binding of autoantibodies from iTTP patients, while retaining residual proteolytic activity. Our study provides a framework for the design of autoantibody-resistant ADAMTS13 variants for further therapeutic development.
Collapse
Affiliation(s)
- Nuno A. G. Graça
- Icosagen Cell Factory OU, Ossu, Kambja, Tartumaa, Estonia
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Bogac Ercig
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
- Pharmatarget, Maastricht, the Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU, Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Paul Kaijen
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Gerry A. F. Nicolaes
- Pharmatarget, Maastricht, the Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Agnès Veyradier
- Service d’Hématologie Biologique and EA3518-Institut Universitaire d’Hématologie, Groupe Hospitalier Saint Louis-Lariboisiere, AP-HP, Universite Paris Diderot, Paris, France
- Centre de Reference des Microangiopathies Thrombotiques, Hopital Saint-Antoine, AP-HP, Paris, France
| | | | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU, Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Andres Männik
- Icosagen Cell Factory OU, Ossu, Kambja, Tartumaa, Estonia
| | - Jan Voorberg
- Department of Molecular and Cellular Hemostasis, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Horta S, Qu JH, Dekimpe C, Bonnez Q, Vandenbulcke A, Tellier E, Kaplanski G, Delport F, Geukens N, Lammertyn J, Vanhoorelbeke K. Co(III)-NTA Mediated Antigen Immobilization on a Fiber Optic-SPR Biosensor for Detection of Autoantibodies in Autoimmune Diseases: Application in Immune-Mediated Thrombotic Thrombocytopenic Purpura. Anal Chem 2020; 92:13880-13887. [DOI: 10.1021/acs.analchem.0c02586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Jia-Huan Qu
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Quintijn Bonnez
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Edwige Tellier
- INSERM, INRAE, C2VN, Jardin du Pharo, Aix Marseille Univ, 58 Boulevard Charles Livon, 13007 Marseille , France
| | - Gilles Kaplanski
- INSERM, INRAE, C2VN, Jardin du Pharo, Aix Marseille Univ, 58 Boulevard Charles Livon, 13007 Marseille , France
- APHM, INSERM, INRAE, C2VN, Hôpital de la Conception, Service de médecine interne, Aix Marseille Univ, 147 Boulevard Baille, 13005 Marseille, France
| | - Filip Delport
- FOx Biosystems NV, Bioville, Agoralaan Abis, Diepenbeek 3590, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|