1
|
Prajapathi S, Pradhan A, Mohta A, Sethi R. The third-generation anticoagulants: factors XI, XII, and XIII inhibitors. Egypt Heart J 2024; 76:137. [PMID: 39387964 PMCID: PMC11466925 DOI: 10.1186/s43044-024-00570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Arterial or venous thromboembolic events are responsible for one-fourth of all deaths worldwide. Anticoagulants are the mainstay for the prevention and treatment of venous thromboembolic events (VTE). Heparin and vitamin K antagonists were the first non-specific medications used in anticoagulant therapy, followed by safer alternatives, such as fondaparinux, argatroban, and direct oral anticoagulants. However, the latter bear the risk of potentially lethal internal bleeding. Novel drugs inhibiting various coagulation factors, such as factors XIa, XIIa, and XIIIa, appear to have a lesser risk of bleeding and are in the spotlight. This review aims to consolidate findings from published clinical trials of newer drugs inhibiting factors XIa, XIIa, and XIIIa. MAIN BODY Factor XI inhibitors have been researched more extensively as compared to factor XII and factor XIII inhibitors. Phase 2 study results of factor XI inhibitors indicated their superiority over enoxaparin for reduction of VTE incidence and better safety profile in terms of bleeding. Factor XII inhibitors also hold the promise of lowering the risk of bleeding, as indicated in animal studies. Further human studies would ensure their safety and applicability in the human population. Numerous laboratory researches have revealed, the potent antithrombotic profile of factor XIII inhibition with limited bleeding risks. CONCLUSION Larger statistically powered studies could supplement data to establish the role of FXI inhibitors in the prevention of both arterial and venous thromboembolic events in high-risk populations. While early results of factor XII and factor XIII inhibitors look promising, they still have a long road ahead before their therapeutic efficacy in humans is established.
Collapse
Affiliation(s)
- Sudesh Prajapathi
- Department of Cardiology, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh, 226003, India
| | - Akshyaya Pradhan
- Department of Cardiology, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh, 226003, India.
| | - Aditi Mohta
- Department of Community Medicine, Integral Institute of Medical Sciences and Research, Lucknow, Uttar Pradesh, India
| | - Rishi Sethi
- Department of Cardiology, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
2
|
Vu K, Kar S, Goyal N, Mottamal M, Afosah DK, Al-Horani RA. Discovery of Heparin Mimetic, Potent, and Selective Inhibitors of Human Clotting Factor XIIIa. ACS OMEGA 2024; 9:31105-31119. [PMID: 39035933 PMCID: PMC11256326 DOI: 10.1021/acsomega.4c04518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Factor XIIIa (FXIIIa) is a cysteine transglutaminase that catalyzes the last step in the coagulation process. An anion-binding site inhibition of FXIIIa is a paradigm-shifting strategy that may offer key advantages of controlled inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We previously reported a flavonoid trimer-based allosteric inhibitor of FXIIIa with moderate potency and selectivity. To further advance this approach, we evaluated a series of 27 variably sulfonated heparin mimetics against human FXIIIa. Only 13 molecules exhibited inhibitory activity at the highest concentration tested with IC50 values of 2-286 μM. Specifically, inhibitor 16 demonstrated an IC50 value of 2.4 ± 0.5 μM in a bisubstrate, fluorescence-based trans-glutamination assay. It also demonstrated a significant selectivity over other clotting factors including thrombin, factor Xa, and factor XIa as well as other cysteine enzymes including papain and tissue transglutaminase 2. Inhibitor 16 did not affect the viability of three human cell lines at a concentration that is 5-fold its FXIIIa-IC50. The molecule had a very weak effect on the activated partial thromboplastin time of human plasma at a concentration of >700 μM, further supporting its functional selectivity. Importantly, molecule 16 inhibited FXIIIa-mediated polymerization of fibrin(ogen) in a concentration-dependent manner as shown by the gel electrophoresis experiment. Michaelis-Menten kinetics revealed that the molecule competes with the Gln-donor protein substrate, i.e., dimethylcasein, but not with the Lys-donor small substrate, i.e., dansylcadaverine. Molecular modeling studies revealed that this type of molecule likely binds to an anion-binding site comprising the basic amino acids of Lys54, Lys61, Lys73, Lys156, and Arg244 among others. Overall, our work puts forward a new anion-binding site, selective, nontoxic, sulfonated heparin mimetic FXIIIa inhibitor 16 for further development as an effective and safer anticoagulant.
Collapse
Affiliation(s)
- Kayla
T. Vu
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Srabani Kar
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
3
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
4
|
Marta-Enguita J, Navarro-Oviedo M, Machado FJDM, Bermejo R, Aymerich N, Herrera M, Zandio B, Pagola J, Juega J, Marta-Moreno J, Rodriguez JA, Páramo JA, Roncal C, Muñoz R, Orbe J. Role of factor XIII in ischemic stroke: a key molecule promoting thrombus stabilization and resistance to lysis. J Thromb Haemost 2024; 22:1080-1093. [PMID: 38160727 DOI: 10.1016/j.jtha.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Active coagulation factor XIII (FXIII) catalyzing crosslinking of fibrin and other hemostatic factors plays a key role in clot stability and lysis. OBJECTIVES To evaluate the effect of FXIII inhibition in a mouse model of ischemic stroke (IS) and the role of activated FXIII (FXIIIa) in clot formation and lysis in patients with IS. METHODS A ferric chloride IS murine model was performed before and after administration of a FXIIIa inhibitor (FXIIIinh). Thromboelastometry in human and mice blood was used to evaluate thrombus stiffness and lysis with FXIIIinh. FXIIIa-dependent fibrin crosslinking and lysis with fibrinolytic drugs (tissue plasminogen activator and tenecteplase) were studied on fibrin plates and on thrombi and clotted plasma of patients with IS. Finally, circulating and thrombus FXIIIa were measured in 85 patients with IS. RESULTS FXIIIinh administration before stroke induction reduced infarct size, α2-antiplasmin (α2AP) crosslinking, and local microthrombosis, improving motor coordination and fibrinolysis without intracranial bleeds (24 hours). Interestingly, FXIII blockade after stroke also reduced brain damage and neurologic deficit. Thromboelastometry in human/mice blood with FXIIIinh showed delayed clot formation, reduced clot firmness, and shortened tissue plasminogen activator lysis time. FXIIIa fibrin crosslinking increased fibrin density and lysis resistance, which increased further after α2AP addition. FXIIIinh enhanced ex vivo lysis in stroke thrombi and fibrin plates. In patients with IS, thrombus FXIII and α2AP were associated with inflammatory and hemostatic components, and plasma FXIIIa correlated with thrombus α2AP and fibrin. CONCLUSION Our results suggest a key role of FXIIIa in thrombus stabilization, α2AP crosslinking, and lysis resistance, with a protective effect of FXIIIinh in an IS experimental model.
Collapse
Affiliation(s)
- Juan Marta-Enguita
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain. https://twitter.com/jmartaen
| | - Manuel Navarro-Oviedo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Florencio J D M Machado
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario Navarra, Pamplona, Spain
| | - Nuria Aymerich
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Herrera
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Zandio
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jorge Pagola
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Jesús Juega
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Neurology Department, Hospital Universitario Miguel Servet, IIS-Aragon, Zaragoza, Spain
| | - Jose-Antonio Rodriguez
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Jose-Antonio Páramo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain; Hematology Department, Clinica Universidad Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Roberto Muñoz
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josune Orbe
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
6
|
Ablan FDO, Maurer MC. Fbg αC 389-402 Enhances Factor XIII Cross-Linking in the Fibrinogen αC Region Via Electrostatic and Hydrophobic Interactions. Biochemistry 2023; 62:2170-2181. [PMID: 37410946 PMCID: PMC10583745 DOI: 10.1021/acs.biochem.3c00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Coagulation Factor XIII (FXIII) stabilizes blood clots by cross-linking glutamines and lysines in fibrin and other proteins. FXIII activity in the fibrinogen αC region (Fbg αC 221-610) is critical for clot stability and growth. Fbg αC 389-402 is a binding site for thrombin-activated FXIII, (FXIII-A*), with αC E396 promoting FXIII-A* binding and activity in αC. The current study aimed to discover additional residues within Fbg αC 389-402 that accelerate transglutaminase activity toward αC. Electrostatic αC residues (E395, E396, and D390), hydrophobic αC residues (W391 and F394), and residues αC 328-425 were studied by mutations to recombinant Fbg αC 233-425. FXIII activity was monitored through MS-based glycine ethyl ester (GEE) cross-linking and gel-based fluorescence monodansylcadaverine (MDC) cross-linking assays. Truncation mutations 403 Stop (Fbg αC 233-402), 389 Stop (Fbg αC 233-388), and 328 Stop (Fbg αC 233-327) reduced Q237-GEE and MDC cross-linking compared to wild-type (WT). Comparable cross-linking between 389 Stop and 328 Stop showed that FXIII is mainly affected by the loss of Fbg αC 389-402. Substitution mutations E396A, D390A, W391A, and F394A decreased cross-linking relative to WT, whereas E395A, E395S, E395K, and E396D had no effect. Similar FXIII-A* activities were observed for double mutants (D390A, E396A) and (W391A, E396A), relative to D390A and W391A, respectively. In contrast, cross-linking was reduced in (F394A, E396A), relative to F394A. In conclusion, Fbg αC 389-402 boosts FXIII activity in Fbg αC, with D390, W391, and F394 identified as key contributors in enhancing αC cross-linking.
Collapse
Affiliation(s)
- Francis D. O. Ablan
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Muriel C. Maurer
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
7
|
Yin Q, Zhang X, Liao S, Huang X, Wan CC, Wang Y. Potential anticoagulant of traditional chinese medicine and novel targets for anticoagulant drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154880. [PMID: 37267694 DOI: 10.1016/j.phymed.2023.154880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Anticoagulants are the main drugs used for the prevention and treatment of thrombosis. Currently, anticoagulant drugs are primarily multitarget heparin drugs, single-target FXa inhibitors and FIIa inhibitors. In addition, some traditional Chinese drugs also have anticoagulant effects, but they are not the main direction of treatment at present. But the anticoagulant drugs mentioned above, all have a common side effect is bleeding. Many other anticoagulation targets are under investigation. With further exploration of coagulation mechanism, how to further determine new anticoagulant targets and how to make traditional Chinese medicine play anticoagulant role have become a new field of exploration. PURPOSE The purpose of the study was to summarize the recent research progress on coagulation mechanisms, new anticoagulant targets and traditional Chinese medicine. METHODS A comprehensive literature search was conducted using four electronic databases, including PubMed, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the study to 28 Feb 2023. Key words used in the literature search were "anticoagulation", "anticoagulant targets", "new targets", "coagulation mechanisms", "potential anticoagulant", "herb medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "blood coagulation factor", keywords are linked with AND/OR. Recent findings on coagulation mechanisms, potential anticoagulant targets and traditional Chinese medicine were studied. RESULTS The active components extracted from the Chinese medicinal herbs, Salvia miltiorrhiza, Chuanxiong rhizoma, safflower and Panax notoginseng have obvious anticoagulant effects and can be used as potential anticoagulant drugs, but the risk of bleeding is unclear. TF/FVIIa, FVIII, FIX, FXI, FXII, and FXIII have all been evaluated as targets in animal studies or clinical trials. FIX and FXI are the most studied anticoagulant targets, but FXI inhibitors have shown stronger advantages. CONCLUSION This review of potential anticoagulants provides a comprehensive resource. Literature analysis suggests that FXI inhibitors can be used as potential anticoagulant candidates. In addition, we should not ignore the anticoagulant effect of traditional Chinese medicine, and look forward to more research and the emergence of new drugs.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Suqing Liao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Jiangxi Key Laboratory for Post-Harvest Technology and Nondestructive Testing of Fruits & Vegetables, Nanchang 330045, PR. China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China.
| |
Collapse
|
8
|
Peptidic Inhibitors and a Fluorescent Probe for the Selective Inhibition and Labelling of Factor XIIIa Transglutaminase. Molecules 2023; 28:molecules28041634. [PMID: 36838622 PMCID: PMC9960274 DOI: 10.3390/molecules28041634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited. To combat these shortcomings, we designed, synthesised, and evaluated a library of 21 novel FXIIIa inhibitors. Electrophilic warheads, linker lengths, and hydrophobic units were varied on small molecule and peptidic scaffolds to optimize isozyme selectivity and potency. A previously reported FXIIIa inhibitor was then adapted for the design of a probe bearing a rhodamine B moiety, producing the innovative KM93 as the first known fluorescent probe designed to selectively label active FXIIIa with high efficiency (kinact/KI = 127,300 M-1 min-1) and 6.5-fold selectivity over TG2. The probe KM93 facilitated fluorescent microscopy studies within bone marrow macrophages, labelling FXIIIa with high efficiency and selectivity in cell culture. The structure-activity trends with these novel inhibitors and probes will help in the future study of the activity, inhibition, and localization of FXIIIa.
Collapse
|
9
|
Javed H, Singh S, Urs SUR, Oldenburg J, Biswas A. Genetic landscape in coagulation factor XIII associated defects – Advances in coagulation and beyond. Blood Rev 2022; 59:101032. [PMID: 36372609 DOI: 10.1016/j.blre.2022.101032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Coagulation factor XIII (FXIII) acts as a fine fulcrum in blood plasma that maintains the balance between bleeding and thrombosis by covalently crosslinking the pre-formed fibrin clot into an insoluble one that is resistant to premature fibrinolysis. In plasma, FXIII circulates as a pro-transglutaminase complex composed of the dimeric catalytic FXIII-A encoded by the F13A1 gene and dimeric carrier/regulatory FXIII-B subunits encoded by the F13B gene. Growing evidence accumulated over decades of exhaustive research shows that not only does FXIII play major roles in both pathological extremes of hemostasis i.e. bleeding and thrombosis, but that it is, in fact, a pleiotropic protein with physiological roles beyond coagulation. However, the current FXIII genetic-epidemiological literature is overwhelmingly derived from the bleeding pathology associated with its deficiency. In this article we review the current clinical, functional, and molecular understanding of this fascinating multifaceted protein, especially putting into the same perspective its genetic landscape.
Collapse
|
10
|
Wolberg AS, Sang Y. Fibrinogen and Factor XIII in Venous Thrombosis and Thrombus Stability. Arterioscler Thromb Vasc Biol 2022; 42:931-941. [PMID: 35652333 PMCID: PMC9339521 DOI: 10.1161/atvbaha.122.317164] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the third most common vascular disease, venous thromboembolism is associated with significant mortality and morbidity. Pathogenesis underlying venous thrombosis is still not fully understood. Accumulating data suggest fibrin network structure and factor XIII-mediated crosslinking are major determinants of venous thrombus mass, composition, and stability. Understanding the cellular and molecular mechanisms mediating fibrin(ogen) and factor XIII production and function and their ability to influence venous thrombogenesis and resolution may inspire new anticoagulant strategies that target these proteins to reduce or prevent venous thrombosis in certain at-risk patients. This article summarizes fibrinogen and factor XIII biology and current knowledge of their function during venous thromboembolism.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and UNC Blood Research Center, University of North Carolina, Chapel Hill
| | - Yaqiu Sang
- Department of Pathology and UNC Blood Research Center, University of North Carolina, Chapel Hill
| |
Collapse
|
11
|
Kar S, Vu K, Mottamal M, Al-Horani RA. Ethacrynic acid is an inhibitor of human factor XIIIa. BMC Pharmacol Toxicol 2022; 23:35. [PMID: 35642005 PMCID: PMC9158266 DOI: 10.1186/s40360-022-00575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ethacrynic acid (EA) is a loop diuretic that is approved orally and parenterally to manage edema-associated diseases. Nevertheless, it was earlier reported that it is also associated with bleeding upon its parenteral administration. In this report, we investigated the effects of EA on human factor XIIIa (FXIIIa) of the coagulation process using a variety of techniques.
Methods
A series of biochemical and computational methods have been used in this study. The potency and efficacy of human FXIIIa inhibition by EA was evaluated using a bisubstrate-based fluorescence trans-glutamination assay under near physiological conditions. To establish the physiological relevance of FXIIIa inhibition by EA, the effect on FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) – α2-antiplasmin complex was evaluated using SDS-PAGE experiments. The selectivity profile of EA against other coagulation proteins was assessed by evaluating EA’s effect on human clotting times in the activated partial thromboplastin time (APTT) and the prothrombin time (PT) assays. We also used molecular modeling studies to put forward a putative binding mode for EA in the active site of FXIIIa. Results involving EA were the average of at least three experiments and the standard error ± 1 was provided. In determining the inhibition parameters, we used non-linear regression analysis.
Results
FXIIIa is a transglutaminase that works at the end of the coagulation process to form an insoluble, rigid, and cross-linked fibrin rich blood clot. In fact, inhibition of FXIIIa-mediated biological processes has been reported to result in a bleeding diathesis. Inhibition of FXIIIa by EA was investigated given the nucleophilic nature of the thiol-containing active site of the enzyme and the Michael acceptor-based electrophilicity of EA. In a bisubstrate-based fluorescence trans-glutamination assay, EA inhibited FXIIIa with a moderate potency (IC50 ~ 105 µM) and efficacy (∆Y ~ 66%). In SDS-PAGE experiments, EA appears to significantly inhibit the FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) – α2-antiplasmin complex which indicates that EA affects the physiological functions of FXIIIa. Interestingly, EA did not affect the clotting times of human plasma in the APTT and the PT assays at the highest concentration tested of 2.5 mM suggesting the lack of effects on the coagulation serine proteases and potentially the functional selectivity of EA with respect to the clotting process. Molecular modeling studies demonstrated that the Michael acceptor of EA forms a covalent bond with catalytic residue of Cys314 in the active site of FXIIIa.
Conclusions
Overall, our studies indicate that EA inhibits the physiological function of human FXIIIa in vitro which may potentially contribute to the bleeding complications that were reported with the association of the parenteral administration of EA.
Collapse
|
12
|
Büchold C, Hils M, Gerlach U, Weber J, Pelzer C, Heil A, Aeschlimann D, Pasternack R. Features of ZED1227: The First-In-Class Tissue Transglutaminase Inhibitor Undergoing Clinical Evaluation for the Treatment of Celiac Disease. Cells 2022; 11:cells11101667. [PMID: 35626704 PMCID: PMC9139979 DOI: 10.3390/cells11101667] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
ZED1227 is a small molecule tissue transglutaminase (TG2) inhibitor. The compound selectively binds to the active state of TG2, forming a stable covalent bond with the cysteine in its catalytic center. The molecule was designed for the treatment of celiac disease. Celiac disease is an autoimmune-mediated chronic inflammatory condition of the small intestine affecting about 1–2% of people in Caucasian populations. The autoimmune disease is triggered by dietary gluten. Consumption of staple foods containing wheat, barley, or rye leads to destruction of the small intestinal mucosa in genetically susceptible individuals, and this is accompanied by the generation of characteristic TG2 autoantibodies. TG2 plays a causative role in the pathogenesis of celiac disease. Upon activation by Ca2+, it catalyzes the deamidation of gliadin peptides as well as the crosslinking of gliadin peptides to TG2 itself. These modified biological structures trigger breaking of oral tolerance to gluten, self-tolerance to TG2, and the activation of cytotoxic immune cells in the gut mucosa. Recently, in an exploratory proof-of-concept study, ZED1227 administration clinically validated TG2 as a “druggable” target in celiac disease. Here, we describe the specific features and profiling data of the drug candidate ZED1227. Further, we give an outlook on TG2 inhibition as a therapeutic approach in indications beyond celiac disease.
Collapse
Affiliation(s)
- Christian Büchold
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany; (C.B.); (M.H.); (J.W.); (C.P.); (A.H.)
| | - Martin Hils
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany; (C.B.); (M.H.); (J.W.); (C.P.); (A.H.)
| | - Uwe Gerlach
- Sanofi-Aventis Deutschland GmbH, UG Serves as External Consultant for Medicinal Chemistry to Zedira, 65926 Frankfurt, Germany;
| | - Johannes Weber
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany; (C.B.); (M.H.); (J.W.); (C.P.); (A.H.)
| | - Christiane Pelzer
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany; (C.B.); (M.H.); (J.W.); (C.P.); (A.H.)
| | - Andreas Heil
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany; (C.B.); (M.H.); (J.W.); (C.P.); (A.H.)
| | - Daniel Aeschlimann
- Matrix Biology & Tissue Repair Research Unit, School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK;
| | - Ralf Pasternack
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany; (C.B.); (M.H.); (J.W.); (C.P.); (A.H.)
- Correspondence:
| |
Collapse
|
13
|
Kalita B, Saviola AJ, Samuel SP, Mukherjee AK. State-of-the-art review - A review on snake venom-derived antithrombotics: Potential therapeutics for COVID-19-associated thrombosis? Int J Biol Macromol 2021; 192:1040-1057. [PMID: 34656540 PMCID: PMC8514616 DOI: 10.1016/j.ijbiomac.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent responsible for the Coronavirus Disease-2019 (COVID-19) pandemic, has infected over 185 million individuals across 200 countries since December 2019 resulting in 4.0 million deaths. While COVID-19 is primarily associated with respiratory illnesses, an increasing number of clinical reports indicate that severely ill patients often develop thrombotic complications that are associated with increased mortality. As a consequence, treatment strategies that target COVID-associated thrombosis are of utmost clinical importance. An array of pharmacologically active compounds from natural products exhibit effects on blood coagulation pathways, and have generated interest for their potential therapeutic applications towards thrombotic diseases. In particular, a number of snake venom compounds exhibit high specificity on different blood coagulation factors and represent excellent tools that could be utilized to treat thrombosis. The aim of this review is to provide a brief summary of the current understanding of COVID-19 associated thrombosis, and highlight several snake venom compounds that could be utilized as antithrombotic agents to target this disease.
Collapse
Affiliation(s)
- Bhargab Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephen P Samuel
- Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, Norfolk PE30 4ET, UK
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India.
| |
Collapse
|
14
|
Bobrovsky P, Manuvera V, Baskova I, Nemirova S, Medvedev A, Lazarev V. Recombinant Destabilase from Hirudo medicinalis Is Able to Dissolve Human Blood Clots In Vitro. Curr Issues Mol Biol 2021; 43:2068-2081. [PMID: 34889897 PMCID: PMC8929072 DOI: 10.3390/cimb43030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Leeches are amazing animals that can be classified as conditionally poisonous animals since the salivary cocktail they produce is injected directly into the victim, and its components have strictly defined biological purposes, such as preventing blood clot formation. Thrombolytic drugs are mainly aimed at treating newly formed blood clots. Aged clots are stabilized by a large number of isopeptide bonds that prevent the action of thrombolytics. These bonds are destroyed by destabilase, an enzyme of the leech’s salivary glands. Here, we conducted a pilot study to evaluate the feasibility and effectiveness of the use of destabilase in relation to blood clots formed during real pathological processes. We evaluated the isopeptidase activity of destabilase during the formation of a stabilized fibrin clot. We showed that destabilase does not affect the internal and external coagulation cascades. We calculated the dose–response curve and tested the ability of destabilase to destroy isopeptide bonds in natural blood clots. The effect of aged and fresh clots dissolving ability after treatment with destabilase coincided with the morphological characteristics of clots during surgery. Thus, recombinant destabilase can be considered as a potential drug for the treatment of aged clots, which are difficult to treat with known thrombolytics.
Collapse
Affiliation(s)
- Pavel Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Correspondence: ; Tel.: +7-9166047849
| | - Valentin Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Izolda Baskova
- Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Svetlana Nemirova
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (S.N.); (A.M.)
| | - Alexandr Medvedev
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University” of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (S.N.); (A.M.)
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.M.); (V.L.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
15
|
Factor XIII-A: An Indispensable "Factor" in Haemostasis and Wound Healing. Int J Mol Sci 2021; 22:ijms22063055. [PMID: 33802692 PMCID: PMC8002558 DOI: 10.3390/ijms22063055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.
Collapse
|
16
|
Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism. Int J Mol Sci 2021; 22:ijms22041607. [PMID: 33562624 PMCID: PMC7914915 DOI: 10.3390/ijms22041607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Coagulation factor XIII (FXIII) is converted by thrombin into its active form, FXIIIa, which crosslinks fibrin fibers, rendering clots more stable and resistant to degradation. FXIII affects fibrin clot structure and function leading to a more prothrombotic phenotype with denser networks, characterizing patients at risk of venous thromboembolism (VTE). Mechanisms regulating FXIII activation and its impact on fibrin structure in patients with acute VTE encompassing pulmonary embolism (PE) or deep vein thrombosis (DVT) are poorly elucidated. Reduced circulating FXIII levels in acute PE were reported over 20 years ago. Similar observations indicating decreased FXIII plasma activity and antigen levels have been made in acute PE and DVT with their subsequent increase after several weeks since the index event. Plasma fibrin clot proteome analysis confirms that clot-bound FXIII amounts associated with plasma FXIII activity are decreased in acute VTE. Reduced FXIII activity has been associated with impaired clot permeability and hypofibrinolysis in acute PE. The current review presents available studies on the role of FXIII in the modulation of fibrin clot properties during acute PE or DVT and following these events. Better understanding of FXIII’s involvement in the pathophysiology of acute VTE might help to improve current therapeutic strategies in patients with acute VTE.
Collapse
|
17
|
Schmitz T, Paul George AA, Nubbemeyer B, Bäuml CA, Steinmetzer T, Ohlenschläger O, Biswas A, Imhof D. NMR-Based Structural Characterization of a Two-Disulfide-Bonded Analogue of the FXIIIa Inhibitor Tridegin: New Insights into Structure-Activity Relationships. Int J Mol Sci 2021; 22:ijms22020880. [PMID: 33477282 PMCID: PMC7830451 DOI: 10.3390/ijms22020880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The saliva of blood-sucking leeches contains a plethora of anticoagulant substances. One of these compounds derived from Haementeria ghilianii, the 66mer three-disulfide-bonded peptide tridegin, specifically inhibits the blood coagulation factor FXIIIa. Tridegin represents a potential tool for antithrombotic and thrombolytic therapy. We recently synthesized two-disulfide-bonded tridegin variants, which retained their inhibitory potential. For further lead optimization, however, structure information is required. We thus analyzed the structure of a two-disulfide-bonded tridegin isomer by solution 2D NMR spectroscopy in a combinatory approach with subsequent MD simulations. The isomer was studied using two fragments, i.e., the disulfide-bonded N-terminal (Lys1–Cys37) and the flexible C-terminal part (Arg38–Glu66), which allowed for a simplified, label-free NMR-structure elucidation of the 66mer peptide. The structural information was subsequently used in molecular modeling and docking studies to provide insights into the structure–activity relationships. The present study will prospectively support the development of anticoagulant-therapy-relevant compounds targeting FXIIIa.
Collapse
Affiliation(s)
- Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
- BioSolveIT GmbH, An der Ziegelei 79, D-53757 Sankt Augustin, Germany
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
| | - Charlotte A. Bäuml
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany;
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging—Fritz-Lipmann-Institute, Beutenbergstr. 11, D-07745 Jena, Germany;
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany;
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
- Correspondence: ; Tel.: +49-(0)228-735-254
| |
Collapse
|
18
|
Sustained depletion of FXIII-A by inducing acquired FXIII-B deficiency. Blood 2020; 136:2946-2954. [PMID: 32678423 PMCID: PMC9710420 DOI: 10.1182/blood.2020004976] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The activated form of coagulation factor XIII (FXIII-A2B2), FXIII-A*, is a hemostatic enzyme essential for inhibiting fibrinolysis by irreversibly crosslinking fibrin and antifibrinolytic proteins. Despite its importance, there are no modulatory therapeutics. Guided by the observation that humans deficient in FXIII-B have reduced FXIII-A without severe bleeding, we hypothesized that a suitable small interfering RNA (siRNA) targeting hepatic FXIII-B could safely decrease FXIII-A. Here we show that knockdown of FXIII-B with siRNA in mice and rabbits using lipid nanoparticles resulted in a sustained and controlled decrease in FXIII-A. The concentration of FXIII-A in plasma was reduced by 90% for weeks after a single injection and for more than 5 months with repeated injections, whereas the concentration of FXIII-A in platelets was unchanged. Ex vivo, crosslinking of α2-antiplasmin and fibrin was impaired and fibrinolysis was enhanced. In vivo, reperfusion of carotid artery thrombotic occlusion was also enhanced. Re-bleeding events were increased after challenge, but blood loss was not significantly increased. This approach, which mimics congenital FXIII-B deficiency, provides a potential pharmacologic and experimental tool to modulate FXIII-A2B2 activity.
Collapse
|
19
|
Locke M, Longstaff C. Extracellular Histones Inhibit Fibrinolysis through Noncovalent and Covalent Interactions with Fibrin. Thromb Haemost 2020; 121:464-476. [PMID: 33131044 DOI: 10.1055/s-0040-1718760] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones released into circulation as neutrophil extracellular traps are causally implicated in the pathogenesis of arterial, venous, and microvascular thrombosis by promoting coagulation and enhancing clot stability. Histones induce structural changes in fibrin rendering it stronger and resistant to fibrinolysis. The current study extends these observations by defining the antifibrinolytic mechanisms of histones in purified, plasma, and whole blood systems. Although histones stimulated plasminogen activation in solution, they inhibited plasmin as competitive substrates. Protection of fibrin from plasmin digestion is enhanced by covalent incorporation of histones into fibrin, catalyzed by activated transglutaminase, coagulation factor FXIII (FXIIIa). All histone subtypes (H1, H2A, H2B, H3, and H4) were crosslinked to fibrin. A distinct, noncovalent mechanism explains histone-accelerated lateral aggregation of fibrin protofibrils, resulting in thicker fibers with higher mass-to-length ratios and in turn hampered fibrinolysis. However, histones were less effective at delaying fibrinolysis in the absence of FXIIIa activity. Therapeutic doses of low-molecular-weight heparin (LMWH) prevented covalent but not noncovalent histone-fibrin interactions and neutralized the effects of histones on fibrinolysis. This suggests an additional antithrombotic mechanism for LMWH beyond anticoagulation. In conclusion, for the first time we report that histones are crosslinked to fibrin by FXIIIa and promote fibrinolytic resistance which can be overcome by FXIIIa inhibitors and histone-binding heparinoids. These findings provide a rationale for targeting the FXIII-histone-fibrin axis to destabilize fibrin and prevent potentially thrombotic fibrin networks.
Collapse
Affiliation(s)
- Matthew Locke
- Biotherapeutics Division, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Division, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| |
Collapse
|
20
|
Al-Horani RA, Kar S. Factor XIIIa inhibitors as potential novel drugs for venous thromboembolism. Eur J Med Chem 2020; 200:112442. [PMID: 32502864 PMCID: PMC7513741 DOI: 10.1016/j.ejmech.2020.112442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Human factor XIIIa (FXIIIa) is a multifunctional transglutaminase with a significant role in hemostasis. FXIIIa catalyzes the last step in the coagulation process. It stabilizes the blood clot by cross-linking the α- and γ-chains of fibrin. It also protects the newly formed clot from plasmin-mediated fibrinolysis, primarily by cross-linking α2-antiplasmin to fibrin. Furthermore, FXIIIa is a major determinant of clot size and clot's red blood cells content. Therefore, inhibitors targeting FXIIIa have been considered to develop a new generation of anticoagulants to prevent and/or treat venous thromboembolism. Several inhibitors of FXIIIa have been discovered or designed including active site and allosteric site small molecule inhibitors as well as natural and modified polypeptides. This work reviews the structural, biochemical, and pharmacological aspects of FXIIIa inhibitors so as to advance their molecular design to become more clinically relevant.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| |
Collapse
|
21
|
Csobán-Szabó Z, Fésüs L, Király R. Protein-peptide based assay for the characterization of human blood coagulation factor XIII-A isopeptidase activity. Anal Biochem 2020; 600:113699. [DOI: 10.1016/j.ab.2020.113699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
|
22
|
Bäuml CA, Paul George AA, Schmitz T, Sommerfeld P, Pietsch M, Podsiadlowski L, Steinmetzer T, Biswas A, Imhof D. Distinct 3-disulfide-bonded isomers of tridegin differentially inhibit coagulation factor XIIIa: The influence of structural stability on bioactivity. Eur J Med Chem 2020; 201:112474. [PMID: 32698061 DOI: 10.1016/j.ejmech.2020.112474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Tridegin is a 66mer cysteine-rich coagulation factor XIIIa (FXI-IIa) inhibitor from the giant amazon leech Haementeria ghilianii of yet unknown disulfide connectivity. This study covers the structural and functional characterization of five different 3-disulfide-bonded tridegin isomers. In addition to three previously identified isomers, one isomer containing the inhibitory cystine knot (ICK, knottin) motif, and one isomer with the leech antihemostatic protein (LAP) motif were synthesized in a regioselective manner. A fluorogenic enzyme activity assay revealed a positive correlation between the constriction of conformational flexibility in the N-terminal part of the peptide and the inhibitory potential towards FXI-IIa with clear differences between the isomers. This observation was supported by molecular dynamics (MD) simulations and subsequent molecular docking studies. The presented results provide detailed structure-activity relationship studies of different tridegin disulfide isomers towards FXI-IIa and reveal insights into the possibly existing native linkage compared to non-native disulfide tridegin species.
Collapse
Affiliation(s)
- Charlotte A Bäuml
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Paul Sommerfeld
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, D-53113, Bonn, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
23
|
Leitner M, Büchold C, Pasternack R, Binder NB. Feasibility of an automated coagulation factor XIIIa test using its isopeptidase activity. Anal Biochem 2020; 600:113757. [PMID: 32422134 DOI: 10.1016/j.ab.2020.113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022]
Abstract
Plasma transglutaminase FXIII provides mechanical and biochemical stability to blood clots. Congenital or acquired deficiency may be associated with bleeding diathesis and requires therefore careful monitoring. The precise automated measurement of a large number of plasma samples can provide new insights regarding the clinical relevance of certain FXIII levels. There is still the unmet diagnostic need for a reliable high-throughput method. Here we report the development and feasibility study of a promising prototype, adapting the precise FXIIIa isopeptidase assay principle on the optimized automated Ceveron s100 platform.
Collapse
Affiliation(s)
- Martina Leitner
- Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Brunner Str. 67, 1230, Vienna, Austria
| | | | - Ralf Pasternack
- Zedira GmbH, Roesslerstrasse 83, D 64293, Darmstadt, Germany.
| | - Nikolaus B Binder
- Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Brunner Str. 67, 1230, Vienna, Austria.
| |
Collapse
|
24
|
Inhibitors of blood coagulation factor XIII. Anal Biochem 2020; 605:113708. [PMID: 32335064 DOI: 10.1016/j.ab.2020.113708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.
Collapse
|
25
|
Pasternack R, Büchold C, Jähnig R, Pelzer C, Sommer M, Heil A, Florian P, Nowak G, Gerlach U, Hils M. Novel inhibitor ZED3197 as potential drug candidate in anticoagulation targeting coagulation FXIIIa (F13a). J Thromb Haemost 2020; 18:191-200. [PMID: 31578814 PMCID: PMC6973046 DOI: 10.1111/jth.14646] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Factor XIII (FXIII) is the final enzyme of the coagulation cascade. While the other enzymatic coagulation factors are proteases, FXIII belongs to the transglutaminase family. FXIIIa covalently crosslinks the fibrin clot and represents a promising target for drug development to facilitate fibrinolysis. However, no FXIII-inhibiting compound has entered clinical trials. Here, we introduce the features of a peptidomimetic inhibitor of FXIIIa (ZED3197) as a potential drug candidate. METHODS The potency of ZED3197 against FXIIIa and the selectivity against other human transglutaminases were characterized using transamidation and isopeptidase assays. The inhibition of fibrin crosslinking was evaluated by biochemical methods and thromboelastometry. Further, the pharmacology of the compound was explored in a rabbit model of venous stasis and reperfusion. RESULTS ZED3197 proved to be a potent and selective inhibitor of human FXIIIa. Further, the compound showed broad inhibitory activity against cellular FXIIIA from various animal species. Rotational thromboelastometry in whole human blood indicated that the inhibitor, in a dose-dependent manner, prolonged clot formation, reduced clot firmness, and facilitated clot lysis without affecting the clotting time, indicating minimal impact on hemostasis. In vivo, the novel FXIIIa inhibitor effectively decreased the weight of clots and facilitated flow restoration without prolongation of the bleeding time. CONCLUSIONS ZED3197 is the first drug-like potent compound targeting FXIIIa, a yet untapped target in anticoagulation. Due to the function of FXIII downstream of thrombin the approach provides minimal impact on hemostasis. In vivo data imply that the inhibitor dissociates an antithrombotic effect from increased bleeding tendency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Uwe Gerlach
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | |
Collapse
|