1
|
Feller T, McPherson HR, Connell SD, Ariëns RAS. Fibrinogen αC-region acts as a functional safety latch: Implications for a fibrin biomechanical behaviour model. Acta Biomater 2024:S1742-7061(24)00588-9. [PMID: 39393660 DOI: 10.1016/j.actbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Fibrin has unique biomechanical properties which are essential for its role as a scaffold for blood clots. Fibrin is highly extensible and demonstrates significant strain stiffening behaviour, which is essential for stress-distribution in the network. Yet the exact structures of fibrin at the sub-fibre level that contribute to its unique biomechanical characteristic are unknown. Here we show how truncations of the fibrinogen αC-region impact the biomechanical properties of fibrin fibres. Surprisingly, absence of the complete αC-region did not influence the low strain modulus of fibrin fibres but led to premature fibre rupture and decreased extensibility. Intermediate effects were observed with partial deletion of the αC-region, reflected by intermediate rupture stress and toughness. However, overall strain-stiffening behaviour remained even in absence of the αC-region, indicating that strain stiffening is not due to stress being transferred from the αC-region to the protofibril backbone. Upon stress-relaxation, decay constants and their relative contribution to the total relaxation remained similar at all strains, showing that a distinct relaxation process is present until fibre rupture. However, relative contribution of fast relaxation was maximal only in crosslinked fibres if the flexible αC-connector was present. These data show that the αC-region is not the main load-bearing structure within fibrin fibres and point to a critical role for the protofibril backbone instead. We present a revised structural model based on protofibril branching that fully explains the unique biomechanical behaviour of fibrin fibres, while the αC-region primarily acts as a safety latch at the highest of strains. STATEMENT OF SIGNIFICANCE: The findings presented in this paper reveal critically important details about how the molecular structure of fibrin contributes to its unique mechanical properties which are essential to fulfil its function as the scaffold of blood clots. In this work we used engineered proteins with alterations in an important but highly disordered area of the molecule called αC-region and we provide direct evidence for the first time for how the absence of either the globular αC-domain, or the complete αC-region impacts the mechanical behaviour of individual fibrin fibres. Using these results we developed a new structural model of protofibril organisation within fibrin fibres that fully explains their strain stiffening, relatively low modulus and their high, largely variable, extensibility.
Collapse
Affiliation(s)
- Tímea Feller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics, University of Leeds, UK.
| | - Helen R McPherson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics, University of Leeds, UK
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| |
Collapse
|
2
|
Gao C, Bao B, Bao C, Wu W. Fungi Fibrinolytic Compound 1 Plays a Core Role in Modulating Fibrinolysis, Altering Plasma Clot Structure, and Promoting Susceptibility to Lysis. Pharmaceutics 2023; 15:2320. [PMID: 37765289 PMCID: PMC10536852 DOI: 10.3390/pharmaceutics15092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrin clot structure and function are major determinants of venous and arterial thromboembolic diseases, as well as the key determinants of the efficiency of clot lysis. Studies have revealed that fungi fibrinolytic compound 1 (FGFC1) is a novel marine pyranisoindolone natural product with fibrinolytic activity. Here, we explore the impacts of FGFC1 on clot structure, lysis, and plasminogen activation in vitro using turbidimetric, enzyme-linked immunosorbent assay, confocal and electron microscopy, urokinase, or plasmin chromogenic substrate. Clots formed in the presence of FGFC1 expressed reduced fibrin polymerization rate and maximum turbidity; however, they did not influence the lag phase of fibrin polymerization. In the absence of scu-PA (single-chain urokinase plasminogen activator), microscopy revealed that FGFC1 increased the number of protofibrils within fibrin fiber and the pore diameter between protofibrils, inducing clots to form a region of thinner and looser networks separated by large pores. The effects of FGFC1 on scu-PA-mediated plasma clot structure were similar to those in the absence of scu-PA. In addition, FGFC1 promoted the lysis of clots and increased the D-dimer concentration in lysate. FGFC1 increased the generation rate of p-nitroaniline in plasma. These results show that FGFC1 has fibrinolytic activity in plasma, leading to interference with the release of fibrinopeptide B to affect lateral aggregation of protofibrils and increase clot susceptibility to fibrinolysis by altering its structure.
Collapse
Affiliation(s)
- Chunli Gao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.)
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Chunling Bao
- The Sixth People’s Hospital Affiliated, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| |
Collapse
|
3
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Medved L, Weisel JW. The Story of the Fibrin(ogen) αC-Domains: Evolution of Our View on Their Structure and Interactions. Thromb Haemost 2022; 122:1265-1278. [PMID: 34902868 PMCID: PMC10658776 DOI: 10.1055/a-1719-5584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although much has been established concerning the overall structure and function of fibrinogen, much less has been known about its two αC regions, each consisting of an αC-connector and an αC-domain, but new information has been accumulating. This review summarizes the state of our current knowledge of the structure and interactions of fibrinogen's αC regions. A series of studies with isolated αC regions and their fragments demonstrated that the αC-domain forms compact ordered structures consisting of N- and C-terminal subdomains including β sheets and suggested that the αC-connector has a poly(L-proline) type II structure. Functionally, the αC-domains interact intramolecularly with each other and with the central region of the molecule, first demonstrated by electron microscopy and then quantified by optical trap force spectroscopy. Upon conversion of fibrinogen into fibrin, the αC-domains switch from intra- to intermolecular interactions to form ordered αC polymers. The formation of αC polymers occurs mainly through the homophilic interaction between the N-terminal subdomains; interaction between the C-terminal subdomains and the αC-connectors also contributes to this process. Considerable evidence supports the idea that the αC-regions accelerate fibrin polymerization and affect the final structure of fibrin clots. The interactions between αC-regions are important for the mechanical properties of clots, increasing their stiffness and extensibility. Conversion of fibrinogen into fibrin results in exposure of multiple binding sites in its αC regions, providing interaction of fibrin with different proteins and cell types during hemostasis and wound healing. This heretofore mysterious part of the fibrinogen molecule is finally giving up its secrets.
Collapse
Affiliation(s)
- Leonid Medved
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Feller T, Connell SDA, Ariёns RAS. Why fibrin biomechanical properties matter for hemostasis and thrombosis. J Thromb Haemost 2022; 20:6-16. [PMID: 34528378 DOI: 10.1111/jth.15531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Polymeric fibrin displays unique structural and biomechanical properties that contribute to its essential role of generating blood clots that stem bleeds. The aim of this review is to discuss how the fibrin clot is formed, how protofibrils make up individual fibrin fibers, what the relationship is between the molecular structure and fibrin biomechanical properties, and how fibrin biomechanical properties relate to the risk of thromboembolic disease. Fibrin polymerization is driven by different types of bonds, including knob-hole interactions displaying catch-slip characteristics, and covalent crosslinking of fibrin polypeptides by activated factor XIII. Key biophysical properties of fibrin polymer are its visco-elasticity, extensibility and resistance to rupture. The internal packing of protofibrils within fibers changes fibrin biomechanical behavior. There are several methods to analyze fibrin biomechanical properties at different scales, including AFM force spectroscopy, magnetic or optical tweezers and rheometry, amongst others. Clinically, fibrin biomechanical characteristics are key for the prevention of thromboembolic disorders such as pulmonary embolism. Future studies are needed to address unanswered questions regarding internal molecular structure of the fibrin polymer, the structural and molecular basis of its remarkable mechanical properties and the relationship of fibrin biomechanical characteristics with thromboembolism in patients with deep vein thrombosis and ischemic stroke.
Collapse
Affiliation(s)
- Tímea Feller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Molecular and Nanoscale Physics Group, School of Physics, University of Leeds, Leeds, UK
| | - Simon D A Connell
- Molecular and Nanoscale Physics Group, School of Physics, University of Leeds, Leeds, UK
| | - Robert A S Ariёns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
McPherson HR, Duval C, Baker SR, Hindle MS, Cheah LT, Asquith NL, Domingues MM, Ridger VC, Connell SDA, Naseem KM, Philippou H, Ajjan RA, Ariëns RAS. Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability, and resistance to fibrinolysis. eLife 2021; 10:e68761. [PMID: 34633287 PMCID: PMC8553339 DOI: 10.7554/elife.68761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.
Collapse
Affiliation(s)
- Helen R McPherson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Cedric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Stephen R Baker
- Department of Physics, Wake Forest UniversityWinston SalemUnited States
| | - Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Lih T Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Nathan L Asquith
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Marco M Domingues
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de LisboaLisbonPortugal
| | - Victoria C Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of SheffieldSheffieldUnited Kingdom
| | - Simon DA Connell
- Molecular and Nanoscale Physics Group, University of LeedsLeedsUnited Kingdom
| | - Khalid M Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Helen Philippou
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Ramzi A Ajjan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Robert AS Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| |
Collapse
|
7
|
Eberle J, Wiehe RS, Gole B, Mattis LJ, Palmer A, Ständker L, Forssmann WG, Münch J, Gebhardt JCM, Wiesmüller L. A Fibrinogen Alpha Fragment Mitigates Chemotherapy-Induced MLL Rearrangements. Front Oncol 2021; 11:689063. [PMID: 34222016 PMCID: PMC8249925 DOI: 10.3389/fonc.2021.689063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Rearrangements in the Mixed Lineage Leukemia breakpoint cluster region (MLLbcr) are frequently involved in therapy-induced leukemia, a severe side effect of anti-cancer therapies. Previous work unraveled Endonuclease G as the critical nuclease causing initial breakage in the MLLbcr in response to different types of chemotherapeutic treatment. To identify peptides protecting against therapy-induced leukemia, we screened a hemofiltrate-derived peptide library by use of an enhanced green fluorescent protein (EGFP)-based chromosomal reporter of MLLbcr rearrangements. Chromatographic purification of one active fraction and subsequent mass spectrometry allowed to isolate a C-terminal 27-mer of fibrinogen α encompassing amino acids 603 to 629. The chemically synthesized peptide, termed Fα27, inhibited MLLbcr rearrangements in immortalized hematopoietic cells following treatment with the cytostatics etoposide or doxorubicin. We also provide evidence for protection of primary human hematopoietic stem and progenitor cells from therapy-induced MLLbcr breakage. Of note, fibrinogen has been described to activate toll-like receptor 4 (TLR4). Dissecting the Fα27 mode-of action revealed association of the peptide with TLR4 in an antagonistic fashion affecting downstream NFκB signaling and pro-inflammatory cytokine production. In conclusion, we identified a hemofiltrate-derived peptide inhibitor of the genome destabilizing events causing secondary leukemia in patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Julia Eberle
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Boris Gole
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Liska Jule Mattis
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Anja Palmer
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Wolf-Georg Forssmann
- Pharis Biotec GmbH and Peptide Research Group, Institute of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Jan Münch
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Stamboroski S, Joshi A, Noeske PLM, Köppen S, Brüggemann D. Principles of Fibrinogen Fiber Assembly In Vitro. Macromol Biosci 2021; 21:e2000412. [PMID: 33687802 DOI: 10.1002/mabi.202000412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Fibrinogen nanofibers hold great potential for applications in wound healing and personalized regenerative medicine due to their ability to mimic the native blood clot architecture. Although versatile strategies exist to induce fibrillogenesis of fibrinogen in vitro, little is known about the underlying mechanisms and the associated length scales. Therefore, in this manuscript the current state of research on fibrinogen fibrillogenesis in vitro is reviewed. For the first time, the manifold factors leading to the assembly of fibrinogen molecules into fibers are categorized considering three main groups: substrate interactions, denaturing and non-denaturing buffer conditions. Based on the meta-analysis in the review it is concluded that the assembly of fibrinogen is driven by several mechanisms across different length scales. In these processes, certain buffer conditions, in particular the presence of salts, play a predominant role during fibrinogen self-assembly compared to the surface chemistry of the substrate material. Yet, to tailor fibrous fibrinogen scaffolds with defined structure-function-relationships for future tissue engineering applications, it still needs to be understood which particular role each of these factors plays during fiber assembly. Therefore, the future combination of experimental and simulation studies is proposed to understand the intermolecular interactions of fibrinogen, which induce the assembly of soluble fibrinogen into solid fibers.
Collapse
Affiliation(s)
- Stephani Stamboroski
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Strasse 12, Bremen, 28359, Germany
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, Bremen, 28359, Germany
| | - Arundhati Joshi
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, Bremen, 28359, Germany
| | - Paul-Ludwig Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Strasse 12, Bremen, 28359, Germany
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, Bremerhaven, 27568, Germany
| | - Susan Köppen
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, Bremen, 28359, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, 28359, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, Bremen, 28359, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
9
|
Xu RG, Gauer JS, Baker SR, Slater A, Martin EM, McPherson HR, Duval C, Manfield IW, Bonna AM, Watson SP, Ariëns RAS. GPVI (Glycoprotein VI) Interaction With Fibrinogen Is Mediated by Avidity and the Fibrinogen αC-Region. Arterioscler Thromb Vasc Biol 2021; 41:1092-1104. [PMID: 33472402 PMCID: PMC7901536 DOI: 10.1161/atvbaha.120.315030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: GPVI (glycoprotein VI) is a key molecular player in collagen-induced platelet signaling and aggregation. Recent evidence indicates that it also plays important role in platelet aggregation and thrombus growth through interaction with fibrin(ogen). However, there are discrepancies in the literature regarding whether the monomeric or dimeric form of GPVI binds to fibrinogen at high affinity. The mechanisms of interaction are also not clear, including which region of fibrinogen is responsible for GPVI binding. We aimed to gain further understanding of the mechanisms of interaction at molecular level and to identify the regions on fibrinogen important for GPVI binding. Approach and Results: Using multiple surface- and solution-based protein-protein interaction methods, we observe that dimeric GPVI binds to fibrinogen with much higher affinity and has a slower dissociation rate constant than the monomer due to avidity effects. Moreover, our data show that the highest affinity interaction of GPVI is with the αC-region of fibrinogen. We further show that GPVI interacts with immobilized fibrinogen and fibrin variants at a similar level, including a nonpolymerizing fibrin variant, suggesting that GPVI binding is independent of fibrin polymerization. Conclusions: Based on the above findings, we conclude that the higher affinity of dimeric GPVI over the monomer for fibrinogen interaction is achieved by avidity. The αC-region of fibrinogen appears essential for GPVI binding. We propose that fibrin polymerization into fibers during coagulation will cluster GPVI through its αC-region, leading to downstream signaling, further activation of platelets, and potentially stimulating clot growth.
Collapse
Affiliation(s)
- Rui-Gang Xu
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Julia S Gauer
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Stephen R Baker
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.).,Department of Physics, Wake Forest University, Winston Salem, NC (S.R.B.)
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Helen R McPherson
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Cédric Duval
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Iain W Manfield
- School of Molecular and Cellular Biology, Faculty of Biological Sciences (I.W.M.), University of Leeds, United Kingdom
| | - Arkadiusz M Bonna
- Department of Biochemistry, University of Cambridge, United Kingdom (A.M.B.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| |
Collapse
|
10
|
Abstract
Fibrinogen is a large glycoprotein, synthesized primarily in the liver. With a normal plasma concentration of 1.5-3.5 g/L, fibrinogen is the most abundant blood coagulation factor. The final stage of blood clot formation is the conversion of soluble fibrinogen to insoluble fibrin, the polymeric scaffold for blood clots that stop bleeding (a protective reaction called hemostasis) or obstruct blood vessels (pathological thrombosis). Fibrin is a viscoelastic polymer and the structural and mechanical properties of the fibrin scaffold determine its effectiveness in hemostasis and the development and outcome of thrombotic complications. Fibrin polymerization comprises a number of consecutive reactions, each affecting the ultimate 3D porous network structure. The physical properties of fibrin clots are determined by structural features at the individual fibrin molecule, fibrin fiber, network, and whole clot levels and are among the most important functional characteristics, enabling the blood clot to withstand arterial blood flow, platelet-driven clot contraction, and other dynamic forces. This chapter describes the molecular structure of fibrinogen, the conversion of fibrinogen to fibrin, the mechanical properties of fibrin as well as its structural origins and lastly provides evidence for the role of altered fibrin clot properties in both thrombosis and bleeding.
Collapse
|
11
|
Alshammari RH, Rajesh UC, Morgan DG, Zaleski JM. Au-Cu@PANI Alloy Core Shells for Aerobic Fibrin Degradation under Visible Light Exposure. ACS APPLIED BIO MATERIALS 2020; 3:7631-7638. [PMID: 35019503 DOI: 10.1021/acsabm.0c00833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrin plays a critical role in wound healing and hemostasis, yet it is also the main case of cardiovascular diseases and thrombosis. Here, we show the unique design of Au-Cu@PANI alloy core-shell rods for fibrin clot degradation. Microscopic (transmission electron microscopy (TEM), scanning transmission electron microscopy-energy-dispersive X-ray (STEM-EDX)) and structural characterizations (powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS)) of the Au-Cu@PANI hybrid material reveal the formation of Au-Cu heterogeneous alloy core rods (aspect ratio = 3.7) with thin Cu2O and PANI shells that create a positive surface charge (ζ-potential = +22 mV). This architecture is supported by the survey XPS spectrum showing the presence of Cu 2p, N 1s, and C 1s features with binding energies of 934.8, 399.7, and 284.8 eV, respectively. Upon photolysis (λ ≥ 495 or 590 nm), these hybrid composite nanorods provide sufficient excited-state redox potential to generate reactive oxygen species (ROS) for degradation of model fibrin clots within 5-7 h. Detailed scanning electron microscopy (SEM) analysis of the fibrin network shows significant morphology modification including formation of large voids and strand termini, indicating degradation of fibrin protofibril by Au-Cu@PANI. The dye 1,3-diphenylisobenzofuran (DPBF) used to detect the presence of 1O2 shows a 27% bleaching of the absorption at λ = 418 nm within 75 min of irradiation of an aqueous Au-Cu@PANI solution in air. Moreover, electron paramagnetic resonance (EPR) spin-trapping experiments reveal a hyperfine-coupled triplet signature at room temperature with intensities 1:1:1: and g-value = 2.0057, characteristic of the reaction between the spin probe 4-Oxo-TEMP and 1O2 during irradiation. Controlled 1O2 scavenging experiments by NaN3 show 82% reduction in the spin-trapped EPR signal area. Both DPBF bleaching and EPR spin trapping indicate that in situ generated 1O2 is responsible for fibrin strand scission. This unique nanomaterial function via use of ubiquitous oxygen as a reagent could open creative avenues for future in vivo biomedical applications to treat fibrin clot diseases.
Collapse
Affiliation(s)
- Riyadh H Alshammari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.,Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - U Chinna Rajesh
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David Gene Morgan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeffrey M Zaleski
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Yu Z, Li H, Xia P, Kong W, Chang Y, Fu C, Wang K, Yang X, Qi Z. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng 2020; 14:22. [PMID: 32774454 PMCID: PMC7397605 DOI: 10.1186/s13036-020-00244-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Traffic accidents, falls, and many other events may cause traumatic spinal cord injuries (SCIs), resulting in nerve cells and extracellular matrix loss in the spinal cord, along with blood loss, inflammation, oxidative stress (OS), and others. The continuous development of neural tissue engineering has attracted increasing attention on the application of fibrin hydrogels in repairing SCIs. Except for excellent biocompatibility, flexibility, and plasticity, fibrin, a component of extracellular matrix (ECM), can be equipped with cells, ECM protein, and various growth factors to promote damage repair. This review will focus on the advantages and disadvantages of fibrin hydrogels from different sources, as well as the various modifications for internal topographical guidance during the polymerization. From the perspective of further improvement of cell function before and after the delivery of stem cell, cytokine, and drug, this review will also evaluate the application of fibrin hydrogels as a carrier to the therapy of nerve repair and regeneration, to mirror the recent development tendency and challenge.
Collapse
Affiliation(s)
- Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| |
Collapse
|