1
|
Qin Y, Pillidge C, Harrison B, Adhikari B. Pathways in formulating foods for the elderly. Food Res Int 2024; 186:114324. [PMID: 38729692 DOI: 10.1016/j.foodres.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The growth of the elderly population worldwide is posing significant challenges to human society. The progressive physical and physiological changes occur with aging, including decreased appetite, incomplete digestion, and reduced absorption of nutrients. A common feature of many elderly people's diets is a deficiency in proteins (especially easily digestible ones) and micronutrients (e.g., vitamins, zinc, iron, and calcium). One of the solutions to this problem is the incorporation of these components into suitably texture-modified foods. There is a dearth of products that meet the needs of the elderly with special medical/health conditions such as dysphagia, osteoporosis, diabetes, and cardiovascular disease, as well as those who are in hospital and palliative care. Future research and development of foods for the elderly must address specific dietary needs of different subgroups of elderly people with underlying health conditions. The existence of different physical and physiological stages of the elderly means that their specific dietary requirements must be considered. This review summarizes current knowledge on nutritional requirements including those with underlying health problems and outlines the research and innovation pathways for developing new foods considering nutrition, texture, flavor, and other sensory aspects.
Collapse
Affiliation(s)
- Yuxin Qin
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | | | | | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; The Centre for Advanced Materials and Industrial Chemistry (CAMIC), Melbourne, VIC 3083, Australia.
| |
Collapse
|
2
|
Steele CM, Liu Q, MacCallum H, Peladeau-Pigeon M, Chen J, Hanson B, Vanderwegen J, Lam P. Validation of the IDDSI funnel for liquid flow testing. J Texture Stud 2024; 55:e12823. [PMID: 38613313 DOI: 10.1111/jtxs.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 04/14/2024]
Abstract
In 2017, the International Dysphagia Diet Standardisation Initiative (IDDSI) introduced the IDDSI flow test which enables patients, clinicians, caregivers, food service professionals and researchers to classify liquid thickness into five levels based on the volume of liquid remaining in a standard 10 mL slip tip syringe after 10 s of flow under gravity. Within a few months of publishing the IDDSI flow test instructions, several barriers emerged: (1) the preferred model of syringe (BD 303134) was not equally accessible around the world, causing some users to perform flow tests with alternate models of syringe; (2) differences in syringe geometry across models led to variations in IDDSI flow test results; and (3) the need to use a second syringe for sample loading added complexity and cost to end users. To address these barriers, IDDSI designed the IDDSI funnel, a novel device, which combines the geometry of the BD 303134 syringe with a kitchen funnel to facilitate easy loading of liquid samples without need for a second syringe. In this report, we compare the IDDSI flow test results across two devices: syringe BD 303134 and IDDSI funnel. IDDSI level classifications were in complete agreement with the syringe reference test results in 67/73 (92%) of the test fluids and temperature conditions with mean difference of residual liquid across devices of 0.2 (2% full scale). These results demonstrate excellent correspondence between the two devices.
Collapse
Affiliation(s)
- Catriona M Steele
- International Dysphagia Diet Standardisation Initiative, Vancouver, Canada
- KITE Research Institute-University Health Network, Toronto, Canada
- Canada Research Chair in Swallowing and Food Oral Processing, Ottawa, Canada
| | - Qian Liu
- School of Food Science & Biotechnology, Zhejiang Gongshang University, Zhejiang, China
| | - Haakon MacCallum
- International Dysphagia Diet Standardisation Initiative, Vancouver, Canada
| | | | - Jianshe Chen
- International Dysphagia Diet Standardisation Initiative, Vancouver, Canada
- School of Food Science & Biotechnology, Zhejiang Gongshang University, Zhejiang, China
| | - Ben Hanson
- International Dysphagia Diet Standardisation Initiative, Vancouver, Canada
- University College London, London, UK
| | - Jan Vanderwegen
- International Dysphagia Diet Standardisation Initiative, Vancouver, Canada
- Thomas More University, Mechelen, Belgium
| | - Peter Lam
- International Dysphagia Diet Standardisation Initiative, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Wang K, Cheng Z, Qiao D, Xie F, Zhao S, Zhang B. Polysaccharide-dextrin thickened fluids for individuals with dysphagia: recent advances in flow behaviors and swallowing assessment methods. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38556920 DOI: 10.1080/10408398.2024.2330711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide-dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide-dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future.
Collapse
Affiliation(s)
- Kedu Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Zihang Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Hou Y, Sun Y, Zhang P, Wang H, Tan M. Development and characterization of emulsion gels prepared via gliadin-based colloidal particles and gellan gum with tunable rheological properties for 3D printed dysphagia diet. Int J Biol Macromol 2023; 253:126839. [PMID: 37696376 DOI: 10.1016/j.ijbiomac.2023.126839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Dysphagia, a condition characterized by difficulty swallowing, has emerged as a threat to health. Herein, we investigated the feasibility of preparing a novel 3D-printed dysphagia diet using emulsions and gellan gum. A gel network was facilitated by the inclusion of gellan gum, which also helped to reduce the size of the oil droplets. Emulsion gels (with 0.3 %-0.5 % gellan gum) were stable at 25 °C for 30 days and tolerated a high ionic concentration of 800 mmol L-1. Emulsion gels remained stable after heat treatment and centrifugation. The excellent stability of the emulsion gels was related to the three-dimensional network developed by the gellan gum. The rheological results validated the solid-state behavior, shear thinning behavior and structural recovery of emulsion gels. Emulsion gels with 0.3 %-0.5 % gellan gum were suitable for 3D printing since they had high printing accuracy, self-support, and smooth surface texture. International Diet Standardization Initiative (IDDIS) tests have shown that emulsion gels can be classified as a level 3-5 dysphagia diet. In addition, the bioaccessibility of astaxanthin increased 1.7 times after being encapsulated by emulsion gels. Overall, these results demonstrate the potential of emulsion gels in the development of novel 3D-printed diets for dysphagia and bioactive protection.
Collapse
Affiliation(s)
- Yitong Hou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanda Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Pengjing Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
5
|
Yang H, Chou LY, Hua CC. Effects of Calcium and pH on Rheological Thermal Resistance of Composite Xanthan Gum and High-Methoxyl Apple Pectin Matrices Featuring Dysphagia-Friendly Consistency. Foods 2023; 13:90. [PMID: 38201118 PMCID: PMC10778284 DOI: 10.3390/foods13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
High-methoxyl apple pectin (AP) derived from apple was employed as the main ingredient facilitating rheological modification features in developing dysphagia-friendly fluidized alimentary matrices. Xanthan gum (XG) was also included as a composite counterpart to modify the viscoelastic properties of the thickened system under different thermal processes. The results indicate that AP is extremely sensitive to thermal processing, and the viscosity is greatly depleted under a neutral pH level. Moreover, the inclusion of calcium ions echoed the modification effect on the rheological properties of AP, and both the elastic property and viscosity value were promoted after thermal processing. The modification effect of viscoelastic properties (G' and G″) was observed whne XG was incorporated into the composite formula. Increasing the XG ratio from 7:3 to 6:4 (AP:XG) triggers the rheological transformation from a liquid-like form to a solid-like state, and the viscosity value shows that the AP-XG composite system exhibits better thermal stability after thermal processing. The ambient modifiers of pH (pH < 4) and calcium chloride concentration (7.5%) with an optimal AP-XG ratio of 7:3 led to weak-gel-like behavior (G″ < G'), helping to maintain the texture properties of dysphagia-friendly features similar to those prior to the thermal processing.
Collapse
Affiliation(s)
- Huaiwen Yang
- Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan
| | - Liang-Yu Chou
- Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, Chiayi City 621301, Taiwan
| |
Collapse
|
6
|
Wong MC, Chan KMK, Wong TT, Tang HW, Chung HY, Kwan HS. Quantitative Textural and Rheological Data on Different Levels of Texture-Modified Food and Thickened Liquids Classified Using the International Dysphagia Diet Standardisation Initiative (IDDSI) Guideline. Foods 2023; 12:3765. [PMID: 37893658 PMCID: PMC10606379 DOI: 10.3390/foods12203765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Diet modification is a common compensation strategy to promote swallowing safety in patients with swallowing difficulties. The International Dysphagia Diet Standardisation Initiative (IDDSI) guideline provides qualitative descriptions on texture-modified food and thickened liquid. This study aimed to establish quantitative textural and rheological data on different IDDSI levels based on common Chinese ingredients and dishes. Textural and rheological properties of 226 samples of various food textures and 93 samples of various liquid consistencies were obtained using a texture profile analysis (TPA) and viscometer, respectively. The establishment of such quantitative data can be used for future texture-modified food product development and research purposes.
Collapse
Affiliation(s)
- Man Chun Wong
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China (H.Y.C.)
| | - Karen M. K. Chan
- Swallowing Research Laboratory, The University of Hong Kong, Hong Kong, China;
| | - Tsz Ting Wong
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China (H.Y.C.)
| | - Ho Wah Tang
- Swallowing Research Laboratory, The University of Hong Kong, Hong Kong, China;
| | - Hau Yin Chung
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China (H.Y.C.)
| | - Hoi Shan Kwan
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China (H.Y.C.)
| |
Collapse
|
7
|
Protein gel with designed network and texture regulated via building blocks to study dysphagia diet classifications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
8
|
Fiszman S, Laguna L. Food design for safer swallowing: focusing on texture-modified diets and sensory stimulation of swallowing via TRP activation. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Hadde EK, Prakash S, Chen W, Chen J. Instrumental texture assessment of IDDSI texture levels for dysphagia management. Part 2: Texture modified foods. J Texture Stud 2022; 53:617-628. [PMID: 35708507 DOI: 10.1111/jtxs.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Texture-modified foods and thickened fluids play a major role in clinical treatment for individuals who suffer from swallowing difficulties (known as dysphagia). International Dysphagia Diet Standardization Initiative (IDDSI) developed a standardized terminology and description for texture-modified foods and thickened fluids to allow dysphagia patients to receive the correct consistency of food/drink. While the IDDSI framework provides a consistent texture description (Levels 0-7) and is widely accepted as an international standard, testing and assessment of IDDSI texture level are qualitative in nature and subjective in manner. These methods were proposed primarily for use by frontline carers, but are not most ideal for industrial purposes of quality control of such products. Therefore, the main aim of this work was to develop a quantitative instrumental method that best describes IDDSI levels as an objective framework. A set of test samples, including commercially available instant mashed potato, baby rice cereal, and cooked potato cubes of varying texture, were prepared. Two IDDSI measuring techniques, fork pressure test and spoon tilt test, were used to evaluate texture grades of these samples. Puncture and compression tests based on texture analyzer were used to assess cohesiveness, adhesiveness, firmness, and hardness for each food category (Levels 4-7). Thresholds of cohesiveness and adhesiveness, as well as bands of acceptable firmness and hardness for each food category were clearly identified and are proposed as objective complements to the IDDSI framework.
Collapse
Affiliation(s)
- Enrico Karsten Hadde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Sangeeta Prakash
- School of Agricultural and Food Science, The University of Queensland, Brisbane, Australia
| | - Wei Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|