1
|
Nema RK, Singh S, Singh AK, Sarma DK, Diwan V, Tiwari RR, Mondal RK, Mishra PK. Protocol for detection of pathogenic enteric RNA viruses by regular monitoring of environmental samples from wastewater treatment plants using droplet digital PCR. SCIENCE IN ONE HEALTH 2024; 3:100080. [PMID: 39525942 PMCID: PMC11546125 DOI: 10.1016/j.soh.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The present comprehensive protocol is focused on the detection of pathogenic enteric RNA viruses, explicitly focusing on norovirus genogroup Ⅱ (GⅡ), astrovirus, rotavirus, Aichi virus, sapovirus, hepatitis A and E viruses in wastewater treatment plants through droplet digital PCR (ddPCR). Enteric viruses are of significant public health concern, as they are the leading cause of diseases like gastroenteritis. Regular monitoring of environmental samples, particularly from wastewater treatment plants, is crucial for early detection and control of these viruses. This research aims to improve the understanding of the prevalence and dynamics of enteric viruses in urban India and will serve as a model for similar studies in other regions. Our protocol's objective is to establish a novel ddPCR-based methodology for the detection and molecular characterization of enteric viruses present in wastewater samples sourced from Bhopal, India. Our assay is capable of accurately quantifying virus concentrations without standard curves, minimizing extensive optimization, and enhancing sensitivity and precision, especially for low-abundance targets. METHODS The study involves fortnightly collecting and analyzing samples from nine wastewater treatment plants over two years, ensuring comprehensive coverage and consistent data. Our study innovatively applies ddPCR to simultaneously detect and quantify enteric viruses in wastewater, a more advanced technique. Additionally, we will employ next-generation sequencing for detailed viral genome identification in samples tested positive for pathogenic viruses. CONCLUSION This study will aid in understanding these viruses' genetic diversity and mutation rates, which is crucial for developing tailored intervention strategies. The findings will be instrumental in shaping public health responses and improving epidemiological surveillance, especially in localities heaving sewage networks.
Collapse
Affiliation(s)
- Ram Kumar Nema
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Ashutosh Kumar Singh
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan R. Tiwari
- ICMR - National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajesh Kumar Mondal
- Division of Microbiology, Immunology & Pathology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
2
|
Takuissu GR, Kenmoe S, Ndip L, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Oyono MG, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko'o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Nkie Esemu S, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Suffredini E, La Rosa G. Hepatitis E Virus in Water Environments: A Systematic Review and Meta-analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:223-235. [PMID: 36036329 PMCID: PMC9458591 DOI: 10.1007/s12560-022-09530-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans, through foodborne, zoonotic, and waterborne transmission routes. This study aimed to assess the prevalence of HEV in water matrices. Six categories were defined: untreated and treated wastewater, surface water (river, lake, and seawater), drinking water, groundwater, and other water environments (irrigation water, grey water, reservoir water, flood water, and effluent of pig slaughterhouse). We searched PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Study selection and data extraction were performed by at least two independent investigators. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameter. Sources of heterogeneity were explored by subgroup analysis. This study is registered with PROSPERO, number CRD42021289116. We included 87 prevalence studies from 58 papers, 66.4% of which performed in Europe. The overall prevalence of HEV in water was 9.8% (95% CI 6.4-13.7). The prevalence was higher in untreated wastewater (15.1%) and lower in treated wastewater (3.8%) and in drinking water (4.7%). In surface water, prevalence was 7.4%, and in groundwater, the percentage of positive samples, from only one study available, was 8.3%. Overall, only 36.8% of the studies reported the genotype of HEV, with genotype 3 (HEV-3) prevalent (168 samples), followed by HEV-1 (148 sample), and HEV-4 (2 samples). High-income countries were the most represented with 59/87 studies (67.8%), while only 3/87 (3.5%) of the studies were performed in low-income countries. The overall prevalence obtained of this study was generally higher in industrialized countries. Risk of bias was low in 14.9% of the studies and moderate in 85.1%. The results of this review showed the occurrence of HEV in different waters environments also in industrialized countries with sanitation and safe water supplies. While HEV transmission to humans through water has been widely demonstrated in developing countries, it is an issue still pending in industrialized countries. Better knowledge on the source of pollution, occurrence, survival in water, and removal by water treatment is needed to unravel this transmission path.
Collapse
Affiliation(s)
- G R Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - S Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - L Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - C Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - M G Oyono
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - R Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - S Tchatchouang
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - J Kenfack-Zanguim
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - R Lontuo Fogang
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | - E Zeuko'o Menkem
- Department of Biomedical Sciences, University of Buea, Buea, Cameroon
| | - G I Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | | | - S Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
3
|
Hepatitis A and E in the Mediterranean: A systematic review. Travel Med Infect Dis 2022; 47:102283. [PMID: 35227863 DOI: 10.1016/j.tmaid.2022.102283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/05/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022]
|
4
|
Al Absi ES, Al-Sadeq DW, Khalili M, Younes N, Al-Dewik N, Abdelghany SK, Abouzid SS, Al Thani AA, Yassine HM, Coyle PV, Nasrallah GK. The prevalence of HEV among non-A-C hepatitis in Qatar and efficiency of serological markers for the diagnosis of hepatitis E. BMC Gastroenterol 2021; 21:266. [PMID: 34130641 PMCID: PMC8207580 DOI: 10.1186/s12876-021-01841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The rapid growth of Qatar in the last two decades has attracted a large influx of immigrant workers who mostly come from HEV-hyperendemic countries. Thus, we aim to investigate the prevalence of HEV among acute non-A-C hepatitis patients in Qatar; and to evaluate the performance of four dominant commercial serological assays for HEV diagnosis. METHODS 259 patients with non-A-C hepatitis were tested using the Wantai HEV-IgM, HEV-IgG, HEV-Ag ELISA kits, and the MP Biomedical HEV-Total Ab ELISA kit. ALT levels were tested and HEV RNA (viral loads) was performed using Taqman AmpliCube HEV RT-PCR kit (Mikrogen, Neuried, Germany). The performance of each kit was assessed according to the RT-PCR results. RESULTS HEV-RNA was detected in 23.1% of the samples. Most of these HEV-RNA-positive cases belonged to non-Qatari residents from the Indian subcontinent; India, Pakistan, etc. HEV-Ag, HEV-IgM, HEV-IgG, HEV-Total Ab were detected in 5.56%, 8.65%, 32.1%, and 34.2% of all tested samples, respectively. Elevated ALT levels were highly correlated with the HEV-Ag, HEV-IgM, HEV-RNA but not with the HEV-IgG and HEV-Total Ab. Although HEV-Ag was very specific (100%), yet its sensitivity was poor (36.7%). HEV-IgM demonstrated the best second marker for diagnosis of acute HEV after RT-PCR as jugged by the overall performance parameters: specificity (96.2%), sensitivity (71.4%), PPV (83.3%), NPP (92.7%), agreement with RT-PCR (91.0%), and Kappa-value (0.71). CONCLUSION Our study demonstrated a high prevalence of HEV virus in Qatar, mostly among immigrants from the Indian subcontinent. The HEV-IgM represents the best marker for detecting the acute HEV infection, where RT-PCR cannot be performed.
Collapse
Affiliation(s)
- Enas S Al Absi
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Duaa W Al-Sadeq
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Makiyeh Khalili
- Department of Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Nadin Younes
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nader Al-Dewik
- Clinical and Metabolic Genetics Section, Pediatrics Department, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Qatar Medical Genetic Center and Interim Translational Research Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- College of Health and Life Science, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Pediatrics, Women's Wellness and Research Center, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sara K Abdelghany
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Women's Science Building, C01, P.O. Box 2713, Doha, Qatar
| | - Somaia S Abouzid
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Women's Science Building, C01, P.O. Box 2713, Doha, Qatar
| | - Asma A Al Thani
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Women's Science Building, C01, P.O. Box 2713, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Women's Science Building, C01, P.O. Box 2713, Doha, Qatar
| | - Peter V Coyle
- Virology Laboratory, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Women's Science Building, C01, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
5
|
Treagus S, Wright C, Baker-Austin C, Longdon B, Lowther J. The Foodborne Transmission of Hepatitis E Virus to Humans. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:127-145. [PMID: 33738770 PMCID: PMC8116281 DOI: 10.1007/s12560-021-09461-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Globally, Hepatitis E virus (HEV) causes over 20 million cases worldwide. HEV is an emerging and endemic pathogen within economically developed countries, chiefly resulting from infections with genotype 3 (G3) HEV. G3 HEV is known to be a zoonotic pathogen, with a broad host range. The primary source of HEV within more economically developed countries is considered to be pigs, and consumption of pork products is a significant risk factor and known transmission route for the virus to humans. However, other foods have also been implicated in the transmission of HEV to humans. This review consolidates the information available regarding transmission of HEV and looks to identify gaps where further research is required to better understand how HEV is transmitted to humans through food.
Collapse
Affiliation(s)
- Samantha Treagus
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
| | | | - Craig Baker-Austin
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Ben Longdon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - James Lowther
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| |
Collapse
|
6
|
Beyer S, Szewzyk R, Gnirss R, Johne R, Selinka HC. Detection and Characterization of Hepatitis E Virus Genotype 3 in Wastewater and Urban Surface Waters in Germany. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:137-147. [PMID: 32172512 PMCID: PMC7225198 DOI: 10.1007/s12560-020-09424-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
In highly populated areas, environmental surveillance of wastewater and surface waters is a key factor to control the circulation of viruses and risks for public health. Hepatitis E virus (HEV) genotype 3 is considered as an emerging pathogen in industrialized countries. Therefore, this study was carried out to determine the prevalence of HEV in environmental waters in urban and suburban regions in Germany. HEV was monitored in water samples using quantitative RT-PCR (RT-qPCR) and nested RT-PCR without or with virus concentration via polyethylene glycol precipitation or ultracentrifugation. By RT-qPCR, 84-100% of influent samples of wastewater treatment plants were positive for HEV RNA. Genotypes HEV-3c and 3f were identified in wastewater, with HEV-3c being the most prevalent genotype. These data correlate with subtypes identified earlier in patients from the same area. Comparison of wastewater influent and effluent samples revealed a reduction of HEV RNA of about 1 log10 during passage through wastewater treatment plants. In addition, combined sewer overflows (CSOs) after heavy rainfalls were shown to release HEV RNA into surface waters. About 75% of urban river samples taken during these CSO events were positive for HEV RNA by RT-qPCR. In contrast, under normal weather conditions, only around 30% of river samples and 15% of samples from a bathing water located at an urban river were positive for HEV. Median concentrations of HEV RNA of all tested samples at this bathing water were below the limit of detection.
Collapse
Affiliation(s)
- Sophia Beyer
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Regine Szewzyk
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Regina Gnirss
- Berliner Wasserbetriebe (BWB), Cicerostr. 24, 10709, Berlin, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| |
Collapse
|
7
|
Iaconelli M, Bonanno Ferraro G, Mancini P, Suffredini E, Veneri C, Ciccaglione AR, Bruni R, Della Libera S, Bignami F, Brambilla M, De Medici D, Brandtner D, Schembri P, D’Amato S, La Rosa G. Nine-Year Nationwide Environmental Surveillance of Hepatitis E Virus in Urban Wastewaters in Italy (2011-2019). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2059. [PMID: 32244915 PMCID: PMC7143501 DOI: 10.3390/ijerph17062059] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is an emerging causative agent of acute hepatitis worldwide. To provide insights into the epidemiology of HEV in Italy, a large-scale investigation was conducted into urban sewage over nine years (2011-2019), collecting 1374 sewage samples from 48 wastewater treatment plants located in all the 20 regions of Italy. Broadly reactive primers targeting the ORF1 and ORF2 regions were used for the detection and typing of HEV, followed by Sanger and next generation sequencing (NGS). Real-time RT-qPCR was also used to attempt quantification of positive samples. HEV RNA detection occurred in 74 urban sewage samples (5.4%), with a statistically significant higher frequency (7.1%) in central Italy. Fifty-six samples were characterized as G3 strains and 18 as G1. While the detection of G3 strains occurred in all the surveillance period, G1 strains were mainly detected in 2011-2012, and never in 2017-2019. Typing was achieved in 2 samples (3f subtype). Viral concentrations in quantifiable samples ranged from 1.2 × 103 g.c./L to 2.8 × 104 g.c./L. Our results suggest the considerable circulation of the virus in the Italian population, despite a relatively small number of notified cases, a higher occurrence in central Italy, and a noteworthy predominance of G3 strains.
Collapse
Affiliation(s)
- Marcello Iaconelli
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Pamela Mancini
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (D.D.M.)
| | - Carolina Veneri
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Anna Rita Ciccaglione
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.R.C.); (R.B.)
| | - Roberto Bruni
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.R.C.); (R.B.)
| | - Simonetta Della Libera
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Francesco Bignami
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Massimo Brambilla
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Research Centre for Engineering and Agri Food Processing, 24047 Treviglio, BG, Italy;
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (D.D.M.)
| | | | - Pietro Schembri
- Regional Department for Health Activities and Epidemiological Observatory of the Sicilian Region, 90146 Palermo, Italy;
| | - Stefania D’Amato
- Ministry of Health, Directorate-General for Prevention, 00144 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| |
Collapse
|
8
|
Wang ZW, Chen HW, Li FL. Identifying spatial heterogeneity of groundwater and its response to anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29435-29448. [PMID: 31399835 DOI: 10.1007/s11356-019-06121-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
With the rapid development of economy and society, the quality of groundwater is deteriorating under the dual influence of natural factors and anthropogenic factors, and it seriously threatens the safety of human drinking water. Identifying and analyzing the impact of anthropogenic activities is the key to solving this problem. Based on the groundwater problem in Changle County, Shandong Province, P.R. China, 43 groundwater samples were taken and tested. The statistical characteristics of the monitoring data, the groundwater chemical types, spatial distribution of groundwater, and influencing factors were analyzed by using enrichment factor, Mahalanobis distance, grey water footprint, and so on. The analysis results show that the overall water quality of Changle County is poor, and the main over-standard ions are Cl- , SO2- 4, and NO- 3. There is obvious spatial heterogeneity in the groundwater quality. The spatial variation of NO- 3 is affected by structural factors (topography, hydrology, etc.) and random factors (industrial, agricultural, etc.), and the spatial variability of NO- 3 is the most significant. Other water quality indicators are mainly affected by structural factors. The mass concentration of most ions decreases gradually from north to south, and the overall water quality in the southern region is better than that in the northern region. Thus, the supervision of chemical fertilizers and pesticides should be strengthened. The advanced treatment and reuse of wastewater from industrial parks should be promoted to improve the quality of groundwater and ensure the safety of human drinking water.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
- Water Resources Research Institute of Shandong Province, Jinan, China
| | - Hua-Wei Chen
- Water Resources Research Institute of Shandong Province, Jinan, China.
- Key Laboratory of Water Resources and Environment of Shandong Province, Jinan, China.
| | - Fu-Lin Li
- Water Resources Research Institute of Shandong Province, Jinan, China
- Key Laboratory of Water Resources and Environment of Shandong Province, Jinan, China
| |
Collapse
|
9
|
Di Profio F, Melegari I, Palombieri A, Sarchese V, Arbuatti A, Fruci P, Marsilio F, Martella V, Di Martino B. High prevalence of hepatitis E virus in raw sewage in Southern Italy. Virus Res 2019; 272:197710. [PMID: 31415790 DOI: 10.1016/j.virusres.2019.197710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) infections constitute a significant health problem worldwide. The burden of hepatitis E in Italy seems low when compared with other European countries. In recent years, improved surveillance activities in Italy have revealed marked geographical differences in HEV epidemiology, with some regions characterised by higher seroprevalence rates. Abruzzo Region (Southern Italy) is currently recognised as a high-risk area for HEV infection. In this study, we investigated the epidemiology of HEV in Teramo Province by monitoring four wastewater treatment plants (WWTPs). Out of 56 influent sewage specimens collected during 2016-2017, HEV RNA was detected in 13/56 (23.2%) sewage samples from all the four WWTPs. Upon sequence analysis of the partial ORF2 gene, four strains showed the highest nucleotide identity to Gt3 subtype c, being more closely related to other HEVs previously identified in human and animal hosts in Abruzzo. For one strain, sequence data were generated only for a short region of the ORF1 gene, revealing the highest identity to HEVs Gt3 of subtype f. Altogether, the findings of this study confirm that HEV largely circulates in the setting investigated.
Collapse
Affiliation(s)
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Alessio Arbuatti
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy.
| |
Collapse
|
10
|
Pisano MB, Lugo BC, Poma R, Cristóbal HA, Raskovsky V, Martínez Wassaf MG, Rajal VB, Ré VE. Environmental hepatitis E virus detection supported by serological evidence in the northwest of Argentina. Trans R Soc Trop Med Hyg 2019; 112:181-187. [PMID: 29800346 DOI: 10.1093/trstmh/try048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Background Hepatitis E virus (HEV) is an emergent cause of acute hepatitis worldwide. Water contamination is a possible source of viral infection. In South America, particularly in Argentina, little is known about environmental HEV circulation, including recreational water. The aim of this work was to provide evidence of current environmental and human circulation of HEV in northern Argentina. Methods Molecular detection of HEV in water samples from the Arias-Arenales River in the city of Salta by nested polymerase chain reaction (ORF2 region) and anti-HEV immunoglobulin G (IgG) and IgM detection in the general population by enzyme-linked immunosorbent assay was carried out. Results HEV RNA was detected in 1.6% (3/189) of the environmental samples. All sequences belonged to HEV genotype 3 and were very similar to those previously detected in the country. The prevalence of IgG anti-HEV was 9% (13/143) and three samples were positive for specific IgM. Conclusions Circulation of HEV in the northwest of Argentina was demonstrated for the first time, showing viral presence in environmental samples and infections in people who attended health care centres for routine control. These findings show that recreational waters are a possible source of virus and highlight the need to carry out HEV detection when a case of hepatitis occurs.
Collapse
Affiliation(s)
- María B Pisano
- Instituto de Virología 'Dr. J. M. Vanella', Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CONICET, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016, Córdoba, Argentina.,Cátedra de Virología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba. Av. Armada Argentina 3555, X5016DHK, Córdoba, Argentina
| | - Belén C Lugo
- Instituto de Virología 'Dr. J. M. Vanella', Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CONICET, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016, Córdoba, Argentina
| | - Ramiro Poma
- Instituto de Investigaciones para la Industria Química (INIQUI)-CONICET, Universidad Nacional de Salta, Av. Bolivia 5150, CP: 4400, Salta, Argentina
| | - Héctor A Cristóbal
- Instituto de Investigaciones para la Industria Química (INIQUI)-CONICET, Universidad Nacional de Salta, Av. Bolivia 5150, CP: 4400, Salta, Argentina
| | - Viviana Raskovsky
- Hospital Señor del Milagro, Av. Sarmiento 557, CP: 4400, Salta, Argentina
| | - Maribel G Martínez Wassaf
- Cátedra de Virología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba. Av. Armada Argentina 3555, X5016DHK, Córdoba, Argentina.,Laboratorio de Virología y biología molecular, LACE, Av. Vélez Sársfield 528, X5000JJS, Córdoba, Argentina
| | - Verónica B Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI)-CONICET, Universidad Nacional de Salta, Av. Bolivia 5150, CP: 4400, Salta, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta, Av. Bernardo Houssay 1099, CP: 4400, Salta, Argentina
| | - Viviana E Ré
- Instituto de Virología 'Dr. J. M. Vanella', Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CONICET, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5016, Córdoba, Argentina.,Cátedra de Virología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba. Av. Armada Argentina 3555, X5016DHK, Córdoba, Argentina
| |
Collapse
|
11
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
12
|
Long-term HEV carriers without antibody seroconversion among eligible immunocompetent blood donors. Emerg Microbes Infect 2018; 7:125. [PMID: 29977038 PMCID: PMC6033859 DOI: 10.1038/s41426-018-0125-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
Hepatitis E virus (HEV) is emerging as a potential threat to the safety of blood transfusions. In many countries and regions endemic for HEV, such as China, blood donors are not routinely tested for HEV infection. In this study, 11747 eligible blood donors were screened for anti-HEV immunoglobulin M (IgM)/immunoglobulin G (IgG) and HEV RNA and antigen in China. Twenty-four donors who were positive for both HEV antigen and RNA were followed for ≥ 70 days, and none of these donors reported clinical hepatitis or illness. At least 1 follow-up sample was provided by 17 donors, including 10 with viremia and/or antigenemia for ≥ 70 days and 3 with antigen and RNA positivity for >90 days. Fourteen of the 17 donors did not present with an obvious serologic response during the follow-up period. These results differed from previous reports, in which viremia lasted for 68 days and elicited an antibody response. These donors showed atypical HEV infection progression that differed from that of hepatitis E patients. The presence of these donors presents a challenge for transfusion transmission screening.
Collapse
|
13
|
La Rosa G, Proroga YTR, De Medici D, Capuano F, Iaconelli M, Della Libera S, Suffredini E. First Detection of Hepatitis E Virus in Shellfish and in Seawater from Production Areas in Southern Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:127-131. [PMID: 28956272 DOI: 10.1007/s12560-017-9319-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/23/2017] [Indexed: 05/21/2023]
Abstract
Shellfish samples (n = 384) from production areas, water samples from the same areas (n = 39) and from nearby sewage discharge points (n = 29) were analyzed for hepatitis E virus (HEV) by real-time and nested RT-PCR. Ten shellfish samples (2.6%) and five seawater samples (12.8%) tested positive for HEV; all characterized strains were G3 and showed high degree of sequence identity. An integrated surveillance in seafood and waters is relevant to reduce the risk of shellfish-associated illnesses.
Collapse
Affiliation(s)
- G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Y T R Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055, Portici, Italy
| | - D De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - F Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055, Portici, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
14
|
Mauceri C, Grazia Clemente M, Castiglia P, Antonucci R, Schwarz KB. Hepatitis E in Italy: A silent presence. J Infect Public Health 2017; 11:1-8. [PMID: 28864359 DOI: 10.1016/j.jiph.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 01/18/2023] Open
Abstract
Hepatitis E virus (HEV) was discovered in the 1980s and has been considered as being confined to developing countries. The purpose of this critical review was to determine the reported HEV seroprevalence rates in Italy, to identify predisposing factors and individuals at risk and to assess possible importation of HEV by immigrants. A critical review of 159 articles published in PubMed from 1994 to date was done. Only 27 original reports of 50 or more subjects, written in the English or Italian language, were included. Over three decades, the HEV seroprevalence varied from 0.12% to 49%, with the highest rates being reported from the central region of Italy. Risk factors included ingestion of raw pork or potentially contaminated food. The seroprevalence among immigrants ranged from 15.3% to 19.7% in Apulia. Italy has a population of 60656000; the total number of individuals surveyed was only 21.882 (0.036%). A national epidemiological survey program is needed to capture more comprehensive seroprevalence data.
Collapse
Affiliation(s)
- Carlo Mauceri
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Paolo Castiglia
- Department of Biomedical Sciences-Hygiene and Preventive Medicine Unit, University-AOU of Sassari, 07100 Sassari, Italy.
| | - Roberto Antonucci
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Kathleen B Schwarz
- Pediatric Liver Center, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA.
| |
Collapse
|
15
|
Adelabu OA, Chuks Iweriebor B, Nwodo UU, Obi LC, Okoh AI. Incidence and Molecular Characterization of Hepatitis E Virus from Swine in Eastern Cape, South Africa. Adv Virol 2017; 2017:1073253. [PMID: 28191016 PMCID: PMC5278201 DOI: 10.1155/2017/1073253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus-mediated infection is a serious public health concern in economically developing nations of the world. Globally, four major genotypes of HEV have been documented. Hepatitis E has been suggested to be zoonotic owing to the increase of evidence through various studies. Thus far, this paper reports on prevalence of hepatitis E virus among swine herd in selected communal and commercial farms in the Eastern Cape Province of South Africa. A total of 160 faecal samples were collected from swine herds in Amathole and Chris Hani District Municipalities of Eastern Cape Province for the presence of HEV. Of the 160 faecal samples screened, only seven were positive (4.4%) for HEV. The nucleotide sequences analyses revealed the isolates as sharing 82% to 99% identities with other strains (KX896664, KX896665, KX896666, KX896667, KX896668, KX896669, and KX896670) from different regions of the world. We conclude that HEV is present among swine in the Eastern Cape Province, albeit in low incidence, and this does have public health implications. There is a need for maintenance of high hygienic standards in order to prevent human infections through swine faecal materials and appropriate cooking of pork is highly advised.
Collapse
Affiliation(s)
- Olusesan Adeyemi Adelabu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
| | - Benson Chuks Iweriebor
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
| | - U. U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
| | - Larry Chikwelu Obi
- Academic and Research Division, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape Province 5700, South Africa
| |
Collapse
|
16
|
Caruso C, Peletto S, Rosamilia A, Modesto P, Chiavacci L, Sona B, Balsamelli F, Ghisetti V, Acutis PL, Pezzoni G, Brocchi E, Vitale N, Masoero L. Hepatitis E Virus: A Cross-Sectional Serological and Virological Study in Pigs and Humans at Zoonotic Risk within a High-Density Pig Farming Area. Transbound Emerg Dis 2016; 64:1443-1453. [PMID: 27380833 DOI: 10.1111/tbed.12533] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/01/2023]
Abstract
An increase in autochthonous hepatitis E virus (HEV) infections has been recorded in Italy suspected to be zoonotically transmitted from pigs; this study was carried out to determinate the seroprevalence and risk factors associated with hepatitis HEV exposition, both in swine and humans working in pig farms, located within a high-density pig farming area in Piedmont region, north-western Italy. The presence of viral RNA in human and swine samples was also evaluated, and phylogenetic analysis was performed on HEV-positive samples. Forty-two swine farms were sampled; 142 workers were enrolled in the study and classified into two groups: (i) 69 workers with occupational contact with swine (including veterinarians and farmers) recruited in the 42 sampled farms; (ii) 73 without occupational contact with swine. Forty-one of 42 (97%) swine farms resulted positive to enzyme-linked immunosorbent assay test for HEV antibodies (Abs). Overall seroprevalence in swine was 50% (441/879), with seropositivity rate higher in sows (333/469, 71%). HEV RNA in stool samples was detected in animals from 13 of 42 tested farms (31%), and a higher positivity resulted in weaners (40/246, 16.3%). Phylogenetic analysis classified all HEV isolates within genotype 3 (subtypes 3f, 3e, 3c). All humans were negative for HEV viral genome in blood. Five of 142 sera were positive for IgG anti-HEV with an overall prevalence of 3.52% with no statistically significant differences in prevalence rates between workers at zoonotic risk and the control group (5.7% versus 1.3%). In contrast, a significant difference (OR 10.1) was observed within the subgroup including subjects exposed for short periods (veterinarians) compared with those who worked for long periods (farmers) suggesting a correlation between the time of exposure and the likelihood of HEV infection. Reporting HEV infection is not mandatory in Italy, but a constant epidemiological surveillance should be ensured to clarify the epidemiology of this disease.
Collapse
Affiliation(s)
- C Caruso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | - S Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | | | - P Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | - L Chiavacci
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | - B Sona
- Azienda Sanitaria Locale CN1, Cuneo, Italy
| | - F Balsamelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | - V Ghisetti
- Ospedale Amedeo di Savoia, Università di Torino, Turin, Italy
| | - P L Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | - G Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - E Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - N Vitale
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| | - L Masoero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valled' Aosta, Turin, Italy
| |
Collapse
|
17
|
Lapa D, Capobianchi MR, Garbuglia AR. Epidemiology of Hepatitis E Virus in European Countries. Int J Mol Sci 2015; 16:25711-43. [PMID: 26516843 PMCID: PMC4632823 DOI: 10.3390/ijms161025711] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/12/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Over the last decade the seroprevalence of immunoglobulin (IgG) anti hepatitis E virus (HEV) has been increasing in European countries and shows significant variability among different geographical areas. In this review, we describe the serological data concerning the general population and risk groups in different European countries. Anti-HEV antibody prevalence ranged from 1.3% (blood donors in Italy) to 52% (blood donors in France). Various studies performed on risk groups in Denmark, Moldova and Sweden revealed that swine farmers have a high seroprevalence of HEV IgG (range 13%-51.1%), confirming that pigs represent an important risk factor in HEV infection in humans. Subtypes 3e,f are the main genotypes detected in the European population. Sporadic cases of autochthonous genotype 4 have been described in Spain, France, and Italy. Although most HEV infections are subclinical, in immune-suppressed and transplant patients they could provoke chronic infection. Fulminant hepatitis has rarely been observed and it was related to genotype 3. Interferon and ribavirin treatment was seen to represent the most promising therapy.
Collapse
Affiliation(s)
- Daniele Lapa
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, Via Portuense 292, Rome 00149, Italy.
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, Via Portuense 292, Rome 00149, Italy.
| | - Anna Rosa Garbuglia
- Laboratory of Virology, "Lazzaro Spallanzani" National Institute for Infectious Diseases, Via Portuense 292, Rome 00149, Italy.
| |
Collapse
|
18
|
La Rosa G, Fratini M, Muscillo M, Iaconelli M, Taffon S, Equestre M, Chionne P, Madonna E, Pisani G, Bruni R, Ciccaglione AR. Molecular characterisation of human hepatitis E virus from Italy: comparative analysis of five reverse transcription-PCR assays. Virol J 2014; 11:72. [PMID: 24755361 PMCID: PMC4002560 DOI: 10.1186/1743-422x-11-72] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 11/25/2022] Open
Abstract
Background Hepatitis E (HEV) is an important public-health concern as a major cause of enterically transmitted hepatitis worldwide. In industrialised countries it is considered rare, and largely confined to travellers returning from endemic areas. However, autochthonous (locally acquired) HEV infection is also emerging in these regions. The infection is caused by different genotypes, depending on whether it is travel-related or autochthonous. Conventional RT-PCR followed by sequencing of PCR products can identify HEV genotype and, depending on the region, the subtype, thus helping in defining the origin of infection and tracing the source of contamination. Methods We re-analysed a collection of serum samples previously confirmed as hepatitis E positive by anti-HEV IgM and IgG assays as well as by Real-Time PCR, with the aim to compare the performances of five different broad range RT-PCR assays that could be provided for molecular characterisation of HEV. This approach is certainly valuable to investigate the molecular epidemiology of acute hepatitis E in countries where co-circulation of different genotypes occurs, like Italy. Results Samples were analyzed by five assays targeting the ORF1, ORF2, and ORF2/3 regions. The sensitivity of these assays varied significantly, depending on the target region. Only 46% of samples tested positive by nested PCR; moreover, no single method was able to detect all positive samples. Most sequences originated from patients who had travelled to endemic areas (genotype 1), while the minority originated from Italian patients with no travel history (genotype 3). Conclusion Broad range methods for molecular characterization of HEV still need to be improved to detect all circulating strains.
Collapse
Affiliation(s)
- Giuseppina La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|