1
|
Yuan G, Rong L, Liu J, Zhang Z, Hu C, Chen M, Ma L, Zhang YY, Li YP, Zhou Y. Serum‑derived hepatitis C virus can infect human glioblastoma cell line SF268 and activate the PI3K‑Akt pathway. Mol Med Rep 2019; 19:4441-4448. [PMID: 30896873 DOI: 10.3892/mmr.2019.10063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Extra‑hepatic manifestations are frequently observed in hepatitis C virus (HCV)‑infected patients; however the underlying mechanisms remain largely unknown. In the present study, the human glioblastoma SF268 cell line (the precise origin of the cell type is not clear) was infected with HCV using HCV‑positive serum, and viral replication was assessed by immunofluorescence, reverse transcription‑polymerase chain reaction (PCR), quantitative PCR and western blotting following infection. HCV core protein and HCV RNA were detected in HCV‑positive serum‑infected SF268 cells at day 4 post‑infection, while no infection was observed in cells exposed to HCV‑negative serum. The mean HCV RNA levels at day 4 post‑infection were up to 5.00 IU/ml log10; however, HCV RNA and immunostaining for core protein were negative when cultured to day 6 or longer. The data suggest that human glioblastoma SF268 cells were transiently infected with HCV. AKT serine/threonine kinase phosphorylation was also detected in HCV‑infected SF268 cells at day 4 post‑infection. To the best of our knowledge, this is the first demonstration that a human glioblastoma cell line can be infected with serum‑derived HCV. The results provide evidence that HCV infection can occur in cells of the central nervous system. Neurological disorder‑associated phosphoinositide 3‑kinase‑AKT signaling pathway was activated in parallel with HCV infection, suggesting that SF268 may serve as an in vitro model for investigating HCV‑nervous system cell interactions.
Collapse
Affiliation(s)
- Guosheng Yuan
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liang Rong
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Junwei Liu
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenzhen Zhang
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chengguang Hu
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mingxiao Chen
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ling Ma
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | - Yi-Ping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuanping Zhou
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
2
|
Aregay A, Dirks M, Schlaphoff V, Owusu Sekyere S, Haag K, Falk CS, Hengst J, Bremer B, Schuppner R, Manns MP, Pflugrad H, Cornberg M, Wedemeyer H, Weissenborn K. Systemic inflammation and immune cell phenotypes are associated with neuro-psychiatric symptoms in patients with chronic inflammatory liver diseases. Liver Int 2018; 38:2317-2328. [PMID: 29710425 DOI: 10.1111/liv.13869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/17/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Chronic inflammatory liver diseases are frequently associated with neuropsychiatric and cognitive dysfunctions. We hypothesized that symptomatic patients may show altered levels of soluble inflammatory mediators (SIMs) as well as changes in immune cell phenotypes. METHODS A comprehensive immune-phenotyping including investigation of 50 SIMs as well as ex-vivo phenotypes of NK-cells, CD3+, CD4+, CD8+ and regulatory T cells in 40 patients with viral and autoimmune chronic liver diseases was performed. The patients' cognitive functions were assessed using an extensive battery of neuropsychological testing. RESULTS AND CONCLUSION Overall, our data indicate that while SIMs are significantly up-regulated, NK- and T-cells are less-activated in patients with neuropsychiatric symptoms accompanying chronic inflammatory liver diseases compared to patients without these symptoms. Moreover, HCV patients showed a unique pattern of immune alterations as compared to patients with HBV, autoimmune hepatitis and primary biliary cirrhosis. These findings hint towards potential mechanisms explaining these symptoms in patients with chronic liver diseases.
Collapse
Affiliation(s)
- Amare Aregay
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Meike Dirks
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Verena Schlaphoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Solomon Owusu Sekyere
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Kim Haag
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Christine Susanne Falk
- Institute of Transplantation Immunology (IFB-Tx), Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Hannover, Germany
| | - Henning Pflugrad
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, Essen, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Zhang L, Ma P, Guan Q, Meng L, Su L, Wang L, Zhao J, Ji S. Protein phosphatase 2A regulates the p38 signaling pathway to affect the migration of astrocytes. Mol Med Rep 2018; 18:4328-4334. [PMID: 30152844 PMCID: PMC6172367 DOI: 10.3892/mmr.2018.9425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/08/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the effect and mechanism of protein phosphatase 2A (PP2A) on the migration of astrocytes. The primary astrocytes of neonatal mice were isolated and cultured in vitro, and treated with the PP2A activator D-erythro-sphingosine (DES) (activated group) or inhibitor okadaic acid (inhibitory group). The control group was treated with equal amounts of dimethyl sulfoxide. The activity of PP2A in the cells was detected using a commercial kit and the migration of cells was investigated using a Transwell migration assay. The protein expression of p38, phosphorylated (p)-p38, matrix metalloproteinase (MMP)-2 and MMP-9 was detected by western blotting. Cell migration and the protein expression of p38, p-p38, MMP-2 and MMP-9 was also determined following treatment of astrocytes with the p38 signaling pathway inhibitor SB202190 with or without the PP2A activator DES. The results demonstrated that the activity of PP2A in the PP2A inhibitory group was significantly decreased compared with the control group, while that of the PP2A-activated cells was significantly increased compared with the control. The protein levels of MMP-2 and MMP-9 in the PP2A inhibitory group astrocytes were significantly decreased compared with the control group, while PP2A-activated astrocytes exhibited significantly increased levels of these proteins. By contrast, the p-p38 level in PP2A inhibitory group astrocytes was significantly increased compared with the control group, while astrocytes in the activated group exhibited significantly lower levels compared with the control group. Furthermore, the cell migration ability, and MMP-2 and MMP-9 protein levels, of astrocytes that received combined treatment with SB202190 and the PP2A activator DES were significantly increased compared with the levels in astrocytes treated with SB202190 alone. The results of the current study indicate that PP2A may negatively regulate the p38 signaling pathway to promote astrocyte migration.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Qingkai Guan
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Linlin Su
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Sibei Ji
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|