1
|
Ott EC, Cavinder CA, Wang S, Smith T, Lemley CO, Dinh TTN. Oxidative stress biomarkers and free amino acid concentrations in the blood plasma of moderately exercised horses indicate adaptive response to prolonged exercise training. J Anim Sci 2022; 100:6550158. [PMID: 35298640 PMCID: PMC9030216 DOI: 10.1093/jas/skac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 11/12/2022] Open
Abstract
Oxidative stress caused by routine physical stressors may negatively impact the performance of equine athletes; thus, the present study identifies oxidative biomarkers in the blood plasma of exercising horses. Stock-type horses were subject to a standardized moderate-intensity exercise protocol 3 times per week for 8 wk. Exercise protocol followed NRC guidelines consisting of 30% walk, 55% trot, and 15% canter, with a target heart rate (HR) of 90 BPM. Blood plasma was collected in wk 1, 2, 7, and 8 immediately before and 0, 30, 60, and 90 min after exercise and analyzed for total antioxidant capacity (TAC), thiobarbituric acid reactive substance (TBARS), glutathione peroxidase activity (GPx), and superoxide dismutase activity (SOD). Data were analyzed as repeated measures with wk, d, time, and their interactions as fixed effects. The TAC on day 2 (0.40 mM Trolox) was 7.5% greater than on day 3 (P = 0.013). There were wk × d × time interactions for SOD, TBARS, and GPx (P < 0.001). The TBARS remained at pre-exercise baseline (d-1 wk-1; 2.7 µM malondialdehyde) for most collection times within weeks 1, 7, and 8 (P ≥ 0.058); however, TBARS increased by 0.24 to 0.41 µM on day 2 of week 2 post-exercise (P < 0.001) and remained similarly elevated on day 3 pre- and immediately post-exercise (P < 0.001). The GPx similarly remained at baseline (172.6 µM/min; P ≥ 0.621) but increased by 48.18 to 83.4 µM/min at most collection times on days 1 and 2 of week 2 (P ≤ 0.023). The SOD remained at baseline (167.2 U/ mL; P ≥ 0.055) until increasing by 11.28 to 15.61 U/mL at 30 min post-exercise on day 1, week 1 and at most collection times on day 3, week 8 (P ≤ 0.043). Amino acids with antioxidant properties such as Met, Tyr, and Trp drastically decreased from weeks 2 to 8 (P < 0.001). Met and Tyr also decreased from -60 to 90 min (P < 0.047), whereas there was no time effect on Trp concentration (P = 0.841). The current study indicates the time-dependent nature of oxidative stress concerning persistent stressors such as exercise.
Collapse
Affiliation(s)
- Elizabeth C Ott
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Clay A Cavinder
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Shangshang Wang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Trent Smith
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thu T N Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
3
|
Borowska A, Wolska D, Niedzwiedz A, Borowicz H, Jaworski Z, Siemieniuch M, Szwaczkowski T. Some Genetic and Environmental Effects on Equine Asthma in Polish Konik Horses. Animals (Basel) 2021; 11:ani11082285. [PMID: 34438743 PMCID: PMC8388498 DOI: 10.3390/ani11082285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Equine Asthma (EA) is a blanket term covering inflammatory diseases of the lower airways in horses. It includes mild-to-moderate equine asthma, which affects horses of any age, and severe equine asthma, which is typically seen in horses older than 7 years of. Relationships of the disease’s occurrence with sex or breed have been proven. However, some authors consider genetic background a predisposing factor, due to the fact that in some bloodlines a clinical form of asthma is more frequently observed. This indicates serious breeding and economic consequences. This study aimed to identify the factors affecting predisposition to severe equine asthma in the population of Polish Konik horses and some environmental and inbreeding effects on the disease. Generally, in the observed population, EA is negligibly affected by the factors analysed. Individual inbreeding effects on asthma were not confirmed by various statistical approaches, but significant maternal inbreeding effects were observed. These results are very important from the perspective of the currently implemented genetic resource conservation programme. Abstract Current knowledge of the genetic and environmental backgrounds of equine asthma seems to be insufficient, especially for primitive horse breeds. The main objectives of this study were to estimate the effects of sex, birth period, stud, parentage line and inbreeding on asthma morbidity in Polish Konik horses. Records of 274 horses (housed in two studs) were analysed. These animals were allocated to maternal and paternal lines. Individual inbreeding coefficients were extracted from the additive relationship matrix. Horses underwent diagnosis based on observation of the basic symptoms (high frequency of coughing and excessive nasal discharge). Subsequently, some horses (28 individuals) were clinically examined to confirm the earlier observations. Generally, no significant effects of parentage line on heaves morbidity were identified by the use of logistic regression, although the Pearson’s chi-squared test had shown that individuals of some maternal and paternal lines had a predisposition to severe equine asthma. It was concluded that the individual inbreeding level is not associated with the incidence of EA, but a significant effect of the maternal inbreeding coefficient may be observed. It was also found that there is some variability in the incidence of this disease between studs.
Collapse
Affiliation(s)
- Alicja Borowska
- Division of Horse Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Daria Wolska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Artur Niedzwiedz
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland; (A.N.); (H.B.)
| | - Hieronim Borowicz
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland; (A.N.); (H.B.)
| | - Zbigniew Jaworski
- Department of Horse Breeding and Riding, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Marta Siemieniuch
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-243 Olsztyn, Poland;
- Research Station of the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, in Popielno, 12-222 Ruciane-Nida, Poland
| | - Tomasz Szwaczkowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland;
- Correspondence:
| |
Collapse
|
4
|
Studies of molecular pathways associated with blood neutrophil corticosteroid insensitivity in equine asthma. Vet Immunol Immunopathol 2021; 237:110265. [PMID: 33989854 DOI: 10.1016/j.vetimm.2021.110265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Severe equine asthma is characterized by airway hyperresponsiveness, neutrophilic inflammation and structural alterations of the lower airways. In asthmatic horses with neutrophilic inflammation, there is insensitivity to corticosteroids characterized by the persistence of neutrophils within the airways with therapy. We hypothesized that hypoxia or oxidative stress in the microenvironment of the lung contributes to this insensitivity of neutrophils to corticosteroids in asthmatic horses. Blood neutrophils isolated from horses with severe asthma (N = 8) and from healthy controls (N = 8) were incubated under different cell culture conditions simulating hypoxia and oxidative stress and, in the presence, or absence of dexamethasone. The pro-inflammatory gene and protein expression of neutrophils were studied. In both groups, pyocyanin-induced oxidative stress increased the mRNA expression of IL-8, IL-1β, and TNF-α. While IL-1β and TNF-α were downregulated by dexamethasone under these conditions, IL-8 was not. Simulated hypoxic conditions did not enhance pro-inflammatory gene expression in neutrophils from either group of horses. In conclusion, oxidative stress but not hypoxia may contribute to corticosteroid insensitivity via a selective gene regulation pathway. Equine neutrophil responses were similar in both heathy and asthmatic horses, indicating that it is not specific to asthmatic inflammation.
Collapse
|
5
|
Żak A, Siwińska N, Chełmecka E, Bażanów B, Romuk E, Adams A, Niedźwiedź A, Stygar D. Effects of Advanced Age, Pituitary Pars Intermedia Dysfunction and Insulin Dysregulation on Serum Antioxidant Markers in Horses. Antioxidants (Basel) 2020; 9:antiox9050444. [PMID: 32455574 PMCID: PMC7278619 DOI: 10.3390/antiox9050444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
The study aims to assess the impact of age, pituitary pars intermedia dysfunction (PPID) and insulin dysregulation (ID) in horses on selected oxidative stress markers. The study includes 32 horses, divided into three groups: “young” adult group (aged 8–16 years old) “geriatric” group (aged 18–24 years old) and the “PPID” group (aged 15–31 years old). The PPID group was further divided into two subgroups: PPID ID+ and PPID ID− based on presence or absence of ID. We measured serum antioxidant stress markers in all horses: total oxidant status (TOS), total antioxidant capacity (TAC), ceruloplasmin (CER), lipofuscin (LPS), malondialdehyde (MDA) and thiols concentrations (containing sulfhydryl group -SH) as well as enzymatic systems: total superoxide dismutase (SOD), cytoplasmic SOD (CuZnSOD), mitochondrial SOD activity (MnSOD). Total serum thiols were significantly lower in the geriatric group and in the PPID group compared to the young group. The MnSOD concentration was higher in the PPID ID+ group compared to the PPID ID−. LPS and MDA concentrations were lower in the PPID ID+ group compared to the PPID ID− group. In the selected study groups of horses, older age, the presence of PPID and ID in the case of PPID had no effect on the studied oxidative stress markers.
Collapse
Affiliation(s)
- Agnieszka Żak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland; (N.S.); (A.N.)
- Correspondence:
| | - Natalia Siwińska
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland; (N.S.); (A.N.)
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, 40-055 Katowice, Poland;
| | - Barbara Bażanów
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Amanda Adams
- Department of Veterinary Science, MH Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA;
| | - Artur Niedźwiedź
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland; (N.S.); (A.N.)
| | - Dominika Stygar
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| |
Collapse
|
6
|
Changes in the SID Actual and SID Effective Values in the Course of Respiratory Acidosis in Horses With Symptomatic Severe Equine Asthma-An Experimental Study. J Equine Vet Sci 2019; 78:107-111. [PMID: 31203972 DOI: 10.1016/j.jevs.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/20/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022]
Abstract
Equine asthma syndrome is an allergic, inflammatory airway disease that usually affects older horses. Respiratory acidosis is an acid-base imbalance caused by alveolar hypoventilation. The acid-base balance may be assessed using the Henderson-Hasselbalch equation as well as the Stewart model. The authors hypothesized that systemic respiratory acidosis changes the ionic concentrations affecting water dissociation. The study group included 16 Warmblood, mixed breed horses of both sexes with a history of severe equine asthma, and 10 healthy horses were used as controls. Arterial and venous blood were collected from all the horses. The pH, pO2, and pCO2 and HCO3- were assessed in the arterial blood. Na, K, Cl, albumin, and Pinorganic (Pi) were assessed in the venous blood. The obtained results were used to calculate the anion gap (AG), modified AG, actual strong ion difference (SIDa), weak non-volatile acids, and effective strong ion difference (SIDe) values for all the horses. A systemic, compensatory respiratory acidosis was diagnosed in the study group. The concentration of Na in the blood serum in the study group was significantly higher, whereas the concentration of Cl was significantly lower than the values in the control group. The SIDa and SIDe values calculated in the horses from the study group were significantly higher than those in the control group. Significantly higher SIDa and SIDe values confirm the presence of ionic changes that affect water dissociation in the course of respiratory acidosis in horses. The SIDa and SIDe values may be useful in the diagnosis and treatment of respiratory acidosis in horses, which warrant further investigation.
Collapse
|
7
|
Contribution of lung function tests to the staging of severe equine asthma syndrome in the field. Res Vet Sci 2018; 123:112-117. [PMID: 30616173 DOI: 10.1016/j.rvsc.2018.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/10/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Staging methods are useful tools for monitoring disease and response to treatment, and because Severe Equine Asthma Syndrome (SEAS) has a high prevalence in the equine population, a clinical staging method can provide important information to optimize equine care. Our team has previously developed and published a clinical staging method for SEAS and in the present study we further evaluated information provided by lung function tests, in order to determine their contribution to disease staging. Using discriminant analysis we set out to produce a new staging method with applicability in the field. Differences between group means (P < .05) were observed for clinical score, bronchoalveolar lavage fluid neutrophil percentage, pleural pressure (ΔPpl), PaO2 and histamine concentration and the linear functions obtained explained 99.3% of the data variability, with 94.7% of cases grouped correctly and a cross-validation of 86.8%. Thus this staging model showed very good results and the discriminant linear functions may be used to identify and stage SEAS. This method can be used in the field and also in diagnostic and research centres.
Collapse
|
8
|
Bazzano M, Laghi L, Zhu C, Magi GE, Serri E, Spaterna A, Tesei B, Laus F. Metabolomics of tracheal wash samples and exhaled breath condensates in healthy horses and horses affected by equine asthma. J Breath Res 2018; 12:046015. [PMID: 30168442 DOI: 10.1088/1752-7163/aade13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present work characterized the metabolomic profile of tracheal wash (TW) and exhaled breath condensate (EBC) in healthy horses and horses with respiratory disease. Six asthma-affected horses (group A) and six healthy controls (group H) underwent clinical, endoscopic and cytologic examinations of upper airways to confirm the active phase of asthma. TW and EBC samples were collected from each animal and investigated by proton nuclear magnetic resonance (1H-NMR) metabolomic analysis. A total of ten out of 38 metabolites found in the TW were significantly different between the groups (p < 0.05). Higher concentrations of histamine and oxidant agents, such as glutamate, valine, leucine and isoleucine, as well as lower levels of ascorbate, methylamine, dimethylamine and O-phosphocholine, were found in group A compared to group H. Eight metabolites were found in equine EBC, namely methanol, ethanol, formate, trimethylamine, acetone, acetate, lactate and butanone, previously observed also in human EBC. Despite the fact that this was a pilot study, the results showed that the metabolomic analysis of TW and EBC has the potentiality to serve as a basis for diagnostic tools in horses with asthma.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Neutrophilic bronchiolitis is the primary lesion in asthma-affected horses. Neutrophils are key actors in host defense, migrating toward sites of inflammation and infection, where they act as early responder cells toward external insults. However, neutrophils can also mediate tissue damage in various non-infectious inflammatory processes. Within the airways, these cells likely contribute to bronchoconstriction, mucus hypersecretion, and pulmonary remodeling by releasing pro-inflammatory mediators, including the cytokines interleukin (IL)-8 and IL-17, neutrophil elastase, reactive oxygen species (ROS), and neutrophil extracellular traps (NETs). The mechanisms that regulate neutrophil functions in the tissues are complex and incompletely understood. Therefore, the inflammatory activity of neutrophils must be regulated with exquisite precision and timing, a task achieved through a complex network of mechanisms that regulates neutrophil survival. The discovery and development of compounds that can help regulate ROS, NET formation, cytokine release, and clearance would be highly beneficial in the design of therapies for this disease in horses. In this review, neutrophil functions during inflammation will be discussed followed by a discussion of their contribution to airway tissue injury in equine asthma.
Collapse
|
10
|
Bullone M, Lavoie JP. The Contribution of Oxidative Stress and Inflamm-Aging in Human and Equine Asthma. Int J Mol Sci 2017; 18:ijms18122612. [PMID: 29206130 PMCID: PMC5751215 DOI: 10.3390/ijms18122612] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with a dysregulation of the immune system, leading to a general pro-inflammatory state of the organism, a process that has been named inflamm-aging. Oxidative stress has an important role in aging and in the regulation of immune responses, probably playing a role in the development of age-related diseases. The respiratory system function physiologically declines with the advancement of age. In elderly asthmatic patients, this may contribute to disease expression. In this review, we will focus on age-related changes affecting the immune system and in respiratory structure and function that could contribute to asthma occurrence, and/or clinical presentation in the elderly. Also, naturally occurring equine asthma will be discussed as a possible model for studying the importance of oxidative stress and immun-aging/inflamm-aging in humans.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Clinical and Biological Sciences, University of Turin, AUO San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
11
|
Niedźwiedź A, Borowicz H, Kubiak K, Nicpoń J, Skrzypczak P, Jaworski Z, Cegielski M, Nicpoń J. Evaluation of serum cytokine levels in recurrent airway obstruction. Pol J Vet Sci 2017; 19:785-791. [PMID: 28092612 DOI: 10.1515/pjvs-2016-0099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recurrent airway obstruction (RAO) represents a serious health problem and is traditionally classified as an allergic disease, where contact with an antigen can induce clinical airway inflammation, bronchial hyper-responsiveness and reversible airway obstruction. Previous studies have demonstrated the presence of the Th2 response in the lungs of human patients with asthma and horses with heaves. These cells are involved in the production of cytokines which regulate the synthesis of immunoglobulins. 40 horses were evaluated: 30 horses with RAO and 10 healthy animals. The expression levels of interferon-alpha 1 (IFN-α1), interferon-gamma (IFN-γ), interleukin-1β, (IL-1β), IL-2, IL-4, IL-13 and tumor necrosis factor alpha (TNF-α) were measured in the serum obtained from control and RAO-susceptible horses during crisis. In all the patients, serum cytokine levels were detected. Serum median IL-13 and IFN-γ levels were significantly higher in RAO-affected horses than in the healthy group (p < 0.001). The serum median IFN-α1, IL-1β, IL-2, IL-4, and TNF-α levels were similar in both groups. These results indicate a low variability of the levels of cytokines and a high frequency of their detection in serum samples from horses with RAO. Immune mechanisms involved in equine RAO are more complex than those defined by a simple Th1/Th2 dichotomy.
Collapse
|
12
|
Niedzwiedz A, Borowicz H, Januszewska L, Markiewicz-Gorka I, Jaworski Z. Serum 8-hydroxy-2-deoxyguanosine as a marker of DNA oxidative damage in horses with recurrent airway obstruction. Acta Vet Scand 2016; 58:38. [PMID: 27267076 PMCID: PMC4895991 DOI: 10.1186/s13028-016-0215-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background It has been reported that equine recurrent airway obstruction (RAO) is a state of oxidative stress. Oxidant-antioxidant imbalance is known to increase the conversion of deoxyguanosine to 8-hydroxy-2-deoxyguanosine (8-OHdG) in DNA. 8-OHdG can easily be measured using ELISA tests in serum or urine samples. In this study, we analysed serum 8-OHdG levels in horses with recurrent airway obstruction and in healthy controls. Results The study material consisted of seven healthy horses and seven horses with symptomatic RAO. All horses were exposed to moldy hay and straw for 48 h to induce clinical exacerbation of RAO. The serum 8-OHdG levels were determined using the ELISA Highly Sensitive 8-OHdG kit. The difference between the levels of 8-OHdG in healthy and RAO-affected horses was significant. The median level of 8-OHdG was 0.044 ng/ml in the healthy controls versus 0.498 ng/ml in RAO horses (P = 0.0021). Conclusions The results of the study strongly suggest that DNA damage coexists in the course of equine RAO. We therefore propose that future research should aim at the development of new drugs that target pro-inflammatory molecules, since DNA damage appears to be the result of chronic inflammation.
Collapse
|