1
|
Sotohy SA, Elnaker YF, Omar AM, Alm Eldin NK, Diab MS. Prevalence, antibiogram and molecular characterization of Listeria monocytogenes from ruminants and humans in New Valley and Beheira Governorates, Egypt. BMC Vet Res 2024; 20:297. [PMID: 38971767 PMCID: PMC11227151 DOI: 10.1186/s12917-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Listeriosis is a global health threat to both animals and humans, especially in developing countries. This study was designed to isolate Listeria monocytogenes from faeces; environmental samples; and cow, sheep and goat milk, as well as human stool, to study its molecular characteristics and antibiotic sensitivity in the New Valley and Beheira Governorates, Egypt. The isolation and identification of L. monocytogenes were carried out using traditional culture and biochemical methods, followed by antibiography, genus confirmation of some isolates and detection and sequencing of InlB genes via PCR. RESULTS Out of 2097 examined samples, the prevalence of L. monocytogenes was 13.4% in animals; the prevalence was 9.2%, 2.4%, 25.4%, 4%, 42.4%, and 6.4% in cattle faeces, cattle milk, sheep faeces, sheep milk, goat faeces, and goat milk, respectively. However, the prevalence of L. monocytogenes was 8.3% in human samples. Both animal and human isolates showed 100% resistance to trimethoprim-sulfamethoxazole, and the isolates showed the highest sensitivity to flumequine (100%), amikacin (99.2%), gentamicin (97.6%), and levofloxacin (94.6%). Multidrug resistance (MDR) was detected in 86.9% of the tested isolates. The 16 S rRNA and inlB genes were detected in 100% of the randomly selected L. monocytogenes isolates. Phylogenetic analysis of three isolates based on the inlB gene showed 100% identity between faecal, milk and human stool isolates. CONCLUSIONS Faeces and milk are major sources of listeriosis, and the high degree of genetic similarity between animal and human isolates suggests the possibility of zoonotic circulation. The high prevalence of MDR L. monocytogenes in both animal and human samples could negatively impact the success of prevention and treatments for animal and human diseases, thereby imposing serious risks to public health.
Collapse
Affiliation(s)
- Sotohy A Sotohy
- Department of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, 71515, Egypt
| | - Yasser F Elnaker
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, 1062001, New Valley, Egypt
| | - Aya M Omar
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, 1062001, New Valley, Egypt
| | - Nehal K Alm Eldin
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, Kharga Oasis, 1062001, New Valley, Egypt
| | - Mohamed Said Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, Kharga Oasis, 1062001, New Valley, Egypt.
| |
Collapse
|
2
|
Robi DT, Bogale A, Temteme S, Aleme M, Urge B. Using participatory epidemiology to investigate the causes of cattle abortion in Southwest Ethiopia. Heliyon 2024; 10:e25726. [PMID: 38390138 PMCID: PMC10881556 DOI: 10.1016/j.heliyon.2024.e25726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cattle abortion, stemming from both infectious and non-infectious causes, lead to notable financial setbacks in the cattle industry. Between October 2020 and October 2021, an epidemiological investigation took place in Southwest Ethiopia. The objective was to determine the magnitude and seasonal occurrence of the presumed causes of cattle abortion. Information for this research was collected through 30 group discussions, each involving 8-12 participants. Various participatory epidemiological tools, including semi-structured interviews, pairwise ranking, matrix scoring, proportional piling, and seasonal calendars, were employed in the designated areas. By employing the pairwise ranking approach, the relative significance of presumed causes contributing to cattle abortion was established. The identified major presumed causes of cattle abortion, listed in increasing order of importance, were blackleg, foot-and-mouth disease, pasteurellosis, lumpy skin disease, listeriosis, trypanosomosis, Q fever, leptospirosis, and brucellosis. Participants identified brucellosis (6.1%), leptospirosis (6.0%), and Q-fever (5.7%) as the primary presumed causes of abortion, determined through proportional piling. Matrix scoring analysis indicated a robust agreement (W = 0.464-0.989; P < 0.001) among different informant groups regarding both the presumed causes of abortion and the associated clinical signs. Brucellosis and Q-fever were perceived to be more prevalent during the dry season, while leptospirosis, listeriosis, and lumpy skin disease were associated with the wet, hot, and rainy seasons. However, Pasteurellosis, blackleg, and physical/mechanical factors were deemed to be consistently encountered causes of abortion throughout the year. The patterns of seasonal occurrence of suspected abortion causes were widely acknowledged across informant groups (W = 0.977-0.863; P < 0.001). Local practices involving herbal remedies and traditional methods were employed by participants to manage cattle abortion. Moreover, the results underscore the necessity for additional laboratory research to pinpoint the exact causes of abortion in the study areas.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Beksisa Urge
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| |
Collapse
|
3
|
Gana J, Gcebe N, Moerane R, Ngoshe YB, Tshuma T, Moabelo K, Adesiyun AA. A comparative study on the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. Trop Anim Health Prod 2024; 56:88. [PMID: 38409615 PMCID: PMC10896870 DOI: 10.1007/s11250-024-03934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
These cross-sectional studies reported the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. A total of 328 samples (faeces, feeds, silage, and drinking water) were collected from 23 cattle farms (communal, cow-calf, and feedlot), and 262 samples (faeces, carcass swabs, and effluents) from 8 beef abattoirs (low throughput and high throughput) were processed using standard bacteriological and molecular methods to detect Listeria species. The factors associated with the prevalence of Listeria species were investigated, and multiplex polymerase chain reaction (mPCR) was used to determine Listeria species, the pathogenic serogroups, and the carriage of eight virulence-associated genes by Listeria monocytogenes. The overall prevalence of Listeria species in cattle farms was 14.6%, comprising Listeria innocua (11.3%), Listeria monocytogenes (3.4%), Listeria welshimeri (0.0%) compared with 11.1%, comprising Listeria innocua (5.7%), Listeria monocytogenes (4.6%), Listeria welshimeri (0.8%) for beef abattoirs. Of the three variables (area, type of farm/abattoir, and sample type) investigated, only the sample types at abattoirs had a significant (P < 0.001) effect on the prevalence of L. innocua and L. welshimeri. The frequency of distribution of the serogroups based on 11 L. monocytogenes isolated from farms was 72.7% and 27.3% for the serogroup 1/2a-3a and 4b-4d-4e, respectively, while for the 12 L. monocytogenes isolates recovered from abattoirs, it was 25%, 8.3%, 50% and 16.7% for the serogroup 1/2a-3a, 1/2b-3b, 1/2c-3c, and 4b-4d-4e respectively (P < 0.05). All (100%) isolates of L. monocytogenes from the farms and abattoirs were positive for seven virulence genes (hlyA, inlB, plcA, iap, inlA, inlC, and inlJ). The clinical and food safety significance of the findings cannot be ignored.
Collapse
Affiliation(s)
- J Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
- Department of Agricultural Education, Federal College of Education, P.M.B. 39, Kontagora, Niger State, Nigeria
| | - N Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria, South Africa
| | - R Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Y B Ngoshe
- Epidemiology Section, Department of Production Animal Studies, Epidemiology Section, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - T Tshuma
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - K Moabelo
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - A A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
- Department of Paraclinical Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
4
|
Schoder D, Guldimann C, Märtlbauer E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022; 11:3472. [PMID: 36360084 PMCID: PMC9654558 DOI: 10.3390/foods11213472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Humans and animals can become asymptomatic carriers of Listeria monocytogenes and introduce the pathogen into their environment with their feces. In turn, this environmental contamination can become the source of food- and feed-borne illnesses in humans and animals, with the food production chain representing a continuum between the farm environment and human populations that are susceptible to listeriosis. Here, we update a review from 2012 and summarize the current knowledge on the asymptomatic carrier statuses in humans and animals. The data on fecal shedding by species with an impact on the food chain are summarized, and the ways by which asymptomatic carriers contribute to the risk of listeriosis in humans and animals are reviewed.
Collapse
Affiliation(s)
- Dagmar Schoder
- Department of Veterinary Public Health and Food Science, Institute of Food Safety, University of Veterinary Medicine, 1210 Vienna, Austria
- Veterinarians without Borders Austria, 1210 Vienna, Austria
| | - Claudia Guldimann
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Food Safety and Analytics, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Milk Hygiene, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Prevalence and Antimicrobial Resistance of Virulent Listeria monocytogenes and Cronobacter sakazakii in Dairy Cattle, the Environment, and Dried Milk with the In Vitro Application of Natural Alternative Control. Antibiotics (Basel) 2022; 11:antibiotics11081087. [PMID: 36009957 PMCID: PMC9405507 DOI: 10.3390/antibiotics11081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to detect the prevalence and antimicrobial resistance of Listeria monocytogenes and Cronobacter sakazakii in three dairy households and dried milk from different suppliers, and evaluate the antimicrobial effect of rose water, rose, and orange essential oils. In total, 360 samples were collected from cattle, the environment, and dried milk (n = 30). Antimicrobial activity was evaluated with twofold microtube dilution and the time-kill method. L. monocytogenes was identified in all households (13.3%) with a prevalence in the range of 5.8–17.5%, while C. sakazakii was identified in one household (5.3%). The former and latter pathogens were highly isolated from the feces at 20% and 2.5% and bedding at 12.5% and 1.6%, respectively. L. monocytogenes was isolated only from milk at 7.5%, but C. sakazakii was not detected in either milk or dried milk. L. monocytogenes strains were screened for virulence genes (iap, hylA, and actA). All strains were positive for the iap gene, while for hlyA and actA, the percentages were (35.4% 16.6%, respectively). L. monocytogenes strains showed high resistance against sulfamethoxazole–trimethoprim (100%), followed by gentamicin, penicillin, and imipenem (95.8%, 95.8%, and 91.6%, respectively). All C. sakazakii strains were susceptible to all tested antibiotics. The bactericidal activity of orange oil was the strongest, appeared after 1 h for both pathogens, followed by rose oil and then rose water.
Collapse
|
6
|
Elsayed MM, Elkenany RM, Zakaria AI, Badawy BM. Epidemiological study on Listeria monocytogenes in Egyptian dairy cattle farms' insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54359-54377. [PMID: 35298798 PMCID: PMC9356925 DOI: 10.1007/s11356-022-19495-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/24/2022] [Indexed: 05/15/2023]
Abstract
Listeria monocytogenes (L. monocytogenes) is frequently detected in ruminants, especially dairy cattle, and associated with the sporadic and epidemic outbreak of listeriosis in farms. In this epidemiological study, the prevalence, virulence, antibiotic resistance profiles, and genetic diversity of L. monocytogenes in three Egyptian dairy cattle farms were investigated. The risk factors associated with the fecal shedding of L. monocytogenes were analyzed. The L. monocytogenes strains from the three farms were categorized into distinct genotypes based on sampling site and sample type through enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). A total of 1896 samples were collected from animals, environments, and milking equipment in the three farms. Results revealed that 137 (7.23%) of these samples were L. monocytogenes positive. The prevalence of L. monocytogenes in the animal samples was high (32.1%), and the main environmental source of prevalent genotypes in the three farms was silage. For all sample types, L. monocytogenes was more prevalent in farm I than in farms II and III. Risk factor analysis showed seasonal variation in production hygiene. For all sample types, L. monocytogenes was significantly more prevalent in winter than in spring and summer. The level of L. monocytogenes fecal shedding was high likely because of increasing age, number of parities, and milk yield in dairy cattle. Two virulence genes, namely, hlyA & prfA, were also detected in 93 strains, whereas only one of these genes was found in 44 residual strains. Conversely, iap was completely absent in all strains. The strains exhibited phenotypic resistance to most of the tested antibiotics, but none of them was resistant to netilmicin or vancomycin. According to sample type, the strains from the animal samples were extremely resistant to amoxicillin (95.2%, 80/84) and cloxacillin (92.9%, 78/84). By comparison, the strains from the environmental samples were highly resistant to cefotaxime (86.95%, 20/23). Furthermore, 25 multi-antibiotic resistance (MAR) patterns were observed in L. monocytogenes strains. All strains had a MAR index of 0.22-0.78 and harbored antibiotic resistance genes, including extended-spectrum β-lactamase (blaCTX-M [92.7%] and blaDHA-1 [66.4%]), quinolones (qnrS [91.2%], qnrA [58.4%], parC [58.4%], and qnrB [51%]), macrolides (erm[B] [76.6%], erm(C) [1.5%], and msr(A) [27%]), trimethoprim (dfrD [65.7%]), and tetracyclines (tet(M) [41.6%], tet(S) [8%], and int-Tn [26.3%]). ERIC-PCR confirmed that the strains were genetically diverse and heterogeneous. A total of 137 isolated L. monocytogenes strains were classified into 22 distinct ERIC-PCR groups (A-V). Among them, ERIC E (10.2%) was the most prevalent group. These results indicated that environment and milking equipment served as reservoirs and potential transmission ways of virulent and multidrug-resistant L. monocytogenes to dairy animals, consequently posing threats to public health. Silage is the main environmental source of prevalent genotypes on all three farms. Therefore, hygienic measures at the farm level should be developed and implemented to reduce L. monocytogenes transmission inside dairy cattle farms.
Collapse
Affiliation(s)
- Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M Elkenany
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amira I Zakaria
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma M Badawy
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Šteingolde Ž, Meistere I, Avsejenko J, Ķibilds J, Bergšpica I, Streikiša M, Gradovska S, Alksne L, Roussel S, Terentjeva M, Bērziņš A. Characterization and Genetic Diversity of Listeria monocytogenes Isolated from Cattle Abortions in Latvia, 2013-2018. Vet Sci 2021; 8:195. [PMID: 34564589 PMCID: PMC8473131 DOI: 10.3390/vetsci8090195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023] Open
Abstract
Listeria monocytogenes can cause disease in humans and in a wide range of animal species, especially in farm ruminants. The aim of the study was to determine the prevalence and genetic diversity of L. monocytogenes related to 1185 cattle abortion cases in Latvia during 2013-2018. The prevalence of L. monocytogenes among cattle abortions was 16.1% (191/1185). The seasonality of L. monocytogenes abortions was observed with significantly higher occurrence (p < 0.01) in spring (March-May). In 61.0% of the cases, the affected cattle were under four years of age. L. monocytogenes abortions were observed during the third (64.6%) and second (33.3%) trimesters of gestation. Overall, 27 different sequence types (ST) were detected, and four of them, ST29 (clonal complex, CC29), ST37 (CC37), ST451 (CC11) and ST7 (CC7), covered more than half of the L. monocytogenes isolates. Key virulence factors like the prfA-dependent virulence cluster and inlA, inlB were observed in all the analyzed isolates, but lntA, inlF, inlJ, vip were associated with individual sequence types. Our results confirmed that L. monocytogenes is the most important causative agent of cattle abortions in Latvia and more than 20 different STs were observed in L. monocytogenes abortions in cattle.
Collapse
Affiliation(s)
- Žanete Šteingolde
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Irēna Meistere
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Jeļena Avsejenko
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Ieva Bergšpica
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Madara Streikiša
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Silva Gradovska
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
| | - Sophie Roussel
- Maisons-Alfort Laboratory of Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health (ANSES), F-94701 Maisons-Alfort, France;
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.A.); (J.Ķ.); (I.B.); (M.S.); (S.G.); (L.A.); (A.B.)
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| |
Collapse
|
8
|
Prevalence, Genetic Diversity and Factors Associated with Distribution of Listeria monocytogenes and Other Listeria spp. in Cattle Farms in Latvia. Pathogens 2021; 10:pathogens10070851. [PMID: 34358001 PMCID: PMC8308843 DOI: 10.3390/pathogens10070851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Listeria spp. is a diverse genus of Gram-positive bacteria commonly present in the environment while L. monocytogenes and L. ivanovii are well known human and ruminant pathogens. The aim of the present study was to reveal the prevalence and genetic diversity of L. monocytogenes and other Listeria spp. and to identify the factors related to the abundance of pathogen at cattle farms. A total of 521 animal and environmental samples from 27 meat and dairy cattle farms were investigated and the genetic diversity of L. monocytogenes isolates was studied with WGS. The prevalence of Listeria was 58.9%, while of L. monocytogenes it was −11%. The highest prevalence of L. monocytogenes was found in the environment—soil samples near to manure storage (93%), mixed feed from the feeding trough and hay (29%), water samples from farms drinking trough (28%) and cattle feces (28%). Clonal complexes (CC) of CC37 (30%), CC11 (20%) and CC18 (17%) (all IIa serogroup) were predominant L. monocytogenes clones. CC18, CC37 and CC8 were isolated from case farms and CC37, CC11 and CC18 from farms without listeriosis history. Only one hypervirulent CC4 (1%) was isolated from the case farm. Sequence types (STs) were not associated with the isolation source, except for ST7, which was significantly associated with soil (p < 0.05). The contamination of soil, feeding tables and troughs with L. monocytogenes was associated with an increased prevalence of L. monocytogenes at farms. Our study indicates the importance of hygienic practice in the prevention of the dissemination of L. monocytogenes in the cattle farm environment.
Collapse
|
9
|
Chow JTH, Gall AR, Johnson AK, Huynh TN. Characterization of Listeria monocytogenes isolates from lactating dairy cows in a Wisconsin farm: Antibiotic resistance, mammalian cell infection, and effects on the fecal microbiota. J Dairy Sci 2021; 104:4561-4574. [PMID: 33516554 DOI: 10.3168/jds.2020-18885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
Listeria monocytogenes is an invasive foodborne pathogen that is ubiquitously present in the dairy farm environment. Although cattle are a reservoir of L. monocytogenes, most adult animals do not exhibit clinical symptoms, suggesting a homeostasis between this pathogen and the bovine gastrointestinal ecosystem. Nevertheless, substantial prevalence of L. monocytogenes fecal shedding by dairy cattle has been reported in many studies, posing threats of transmission within the herd and contamination of the human food supply. Accordingly, understanding the L. monocytogenes ecology within the bovine gastrointestinal tract is important to prevent clinical illness in the animal host, reduce transmission, and guide intervention strategies. In this study, we conducted a longitudinal sampling of fecal samples from 20 lactating dairy cows in one Wisconsin farm over a 29-d period and found a strikingly high incidence of L. monocytogenes shedding, in 90% of sampled animals. The L. monocytogenes isolates were genetically diverse, representing all common serotypes previously identified from cattle. Additionally, most tested isolates were resistant to ampicillin, and a few were also resistant to gentamicin or trimethoprim/sulfamethoxazole. Most isolates effectively infected human epithelial cells (Caco-2) and murine fibroblasts (L2), suggesting that they are all capable of causing systemic infection if the intestinal barrier is breached. Finally, we investigated the effects of L. monocytogenes colonization on the gastrointestinal tract microbiota by analyzing the fecal bacterial communities of some shedding and nonshedding cows. Whereas L. monocytogenes did not affect the α and β diversity of tested animals, a subset of shedding cows exhibited different abundances of certain operational taxonomic units within the Bacteroidetes and Firmicutes phyla compared with nonshedding cows. Overall, our findings highlight the threat of antibiotic resistance among some L. monocytogenes isolates, emphasize the need for a strain-specific approach in listeriosis treatment, and suggest the potential negative influence of subclinical L. monocytogenes carriage on animal gut health.
Collapse
Affiliation(s)
- Justin T H Chow
- Department of Food Science, University of Wisconsin, Madison 53706
| | - Aaron R Gall
- Department of Food Science, University of Wisconsin, Madison 53706
| | | | - TuAnh N Huynh
- Department of Food Science, University of Wisconsin, Madison 53706.
| |
Collapse
|