1
|
Brinkmann S, Schrader M, Meinen S, Kampen I, Kwade A, Dietzel A. Highly parallel bending tests for fungal hyphae enabled by two-photon polymerization of microfluidic mold. Front Bioeng Biotechnol 2024; 12:1449167. [PMID: 39553394 PMCID: PMC11563782 DOI: 10.3389/fbioe.2024.1449167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Filamentous microorganisms exhibit a complex macro-morphology constituted of branched and cross-linked hyphae. Fully resolved mechanical models of such mycelial compounds rely heavily on accurate input data for mechanical properties of individual hyphae. Due to their irregular shape and high adaptability to environmental factors, the measurement of these intrinsic properties remains challenging. To overcome previous shortcomings of microfluidic bending tests, a novel system for the precise measurement of the individual bending stiffness of fungal hyphae is presented in this study. Utilizing two-photon polymerization, microfluidic molds were fabricated with a multi-material approach, enabling the creation of 3D cell traps for spore immobilization. Unlike previous works applying the methodology of microfluidic bending tests, the hyphae were deflected in the vertical center of the microfluidic channel, eliminating the adverse influence of nearby walls on measurements. This lead to a significant increase in measurement yield compared to the conventional design. The accuracy and reproducibility of bending tests was ensured through validation of the measurement flow using micro-particle image velocimetry. Our results revealed that the bending stiffness of hyphae of Aspergillus niger is approximately three to four times higher than that reported for Candida albicans hyphae. At the same time, the derived longitudinal Young's Modulus of the hyphal cell wall yields a comparable value for both organisms. The methodology established in this study provides a powerful tool for studying the effects of cultivation conditions on the intrinsic mechanical properties of single hyphae. Applying the results to resolved numerical models of mycelial compounds promises to shed light on their response to hydrodynamic stresses in biotechnological cultivation, which influences their expressed macro-morphology and in turn, product yields.
Collapse
Affiliation(s)
- Steffen Brinkmann
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcel Schrader
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sven Meinen
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Kampen
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Institute of Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Overbeck A, Michel S, Kampen I, Kwade A. Temperature influence on the compression and breakage behaviour of yeast cells. Lett Appl Microbiol 2023; 76:ovad089. [PMID: 37528062 DOI: 10.1093/lambio/ovad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Industrial biotechnology uses microbial cells to produce a wide range of products. While the genetic and molecular properties of these organisms are well understood, less is known about their mechanical properties. Previous work has established a test procedure for single yeast cells using a nanoindentation instrument equipped with a flat-punch probe, which allows single cells (Saccharomyces cerevisiae) to be compressed between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and were used to determine characteristics such as burst force and burst energy. Other studies have investigated the influence of growth conditions and measurement conditions on the mechanical characteristics. The recent study examined the mechanical characteristics according to the temperature during compression. Temperature from 0°C to 25°C has no significant effect on the micromechanical properties. Increasing the temperature up to 35°C causes a reduction in the strength of the cells. At even higher temperatures, up to 50°C, the burst force and burst energy increase significantly. A deformation geometry model was used to calculate the cell wall tensile strength as a function of temperature. The results of these studies may facilitate the identification of efficient conditions for cell disruption and product recovery in downstream biotechnological processes.
Collapse
Affiliation(s)
- Achim Overbeck
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, D-38104 Braunschweig, Germany
| | - Stephanie Michel
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, D-38104 Braunschweig, Germany
| | - Ingo Kampen
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, D-38104 Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, D-38104 Braunschweig, Germany
| |
Collapse
|
3
|
Awada Z, Nedjar B. On a finite strain modeling of growth in budding yeast. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3710. [PMID: 37070287 DOI: 10.1002/cnm.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/05/2023] [Accepted: 04/02/2023] [Indexed: 06/07/2023]
Abstract
Cell's ability to proliferate constitutes one of the most defining features of life. The proliferation occurs through a succession of events; the cell cycle, whereby the cell grows and divides. In this paper, focus is made on the growth step and we deal specifically with Saccharomyces cerevisiae yeast that reproduces by budding. For this, we develop a theoretical model to predict the growth powered by the turgor pressure. This cell is herein considered as a thin-walled structure with almost axisymmetrical shape. Due to its soft nature, the large deformation range is a priori assumed through a finite growth modeling framework. The used kinematics is based on the multiplicative decomposition of the deformation gradient into an elastically reversible part and a growth part. Constitutive equations are proposed where use is made of hyperelasticity together with a local evolution equation, this latter to describe the way growth takes place. In particular, two essential parameters are involved: a stress-like threshold, and a characteristic time. The developed model is extended to a shell approach as well. In a finite element context, representative numerical simulations examining stress-dependent growth are given and a parametric study is conducted to show the sensitivity with respect to the above mentioned parameters. Finally, a suggestion for natural contractile ring modeling closes this study.
Collapse
Affiliation(s)
- Zeinab Awada
- MAST (MAterial and STructures), EMGCU (Expérimenation en Modélisation pour le Génic Civil et Urdain), Université Gustave Eiffel, Marne-la-Vallée cedex 2, France
| | - Boumediene Nedjar
- MAST (MAterial and STructures), EMGCU (Expérimenation en Modélisation pour le Génic Civil et Urdain), Université Gustave Eiffel, Marne-la-Vallée cedex 2, France
| |
Collapse
|
4
|
von Petersdorff-Campen K, Schmid Daners M. Hemolysis Testing In Vitro: A Review of Challenges and Potential Improvements. ASAIO J 2022; 68:3-13. [PMID: 33989208 DOI: 10.1097/mat.0000000000001454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many medical devices such as cardiopulmonary bypass systems, mechanical heart valves, or ventricular assist devices are intended to come into contact with blood flow during use. In vitro hemolysis testing can provide valuable information about the hemocompatibility of prototypes and thus help reduce the number of animal experiments required. Such tests play an important role as research and development tools for objective comparisons of prototypes and devices as well as for the extrapolation of their results to clinical outcomes. Therefore, it is important to explore and provide new ways to improve current practices. In this article, the main challenges of hemolysis testing are described, namely the difficult blood sourcing, the high experimental workload, and the low reproducibility of test results. Several approaches to address the challenges identified are proposed and the respective literature is reviewed. These include the replacement of blood as the "shear-sensitive fluid" by alternative test fluids, the replacement of sparse, manual sampling and blood damage assessment by a continuous and automated monitoring, as well as an analysis of categories and causes of variability in hemolysis test results that may serve as a structural template for future studies.
Collapse
Affiliation(s)
- Kai von Petersdorff-Campen
- From the Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
6
|
Predicting effects of operating condition variations on breakage rates in stirred media mills. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Overbeck A, Günther S, Kampen I, Kwade A. Compression Testing and Modeling of Spherical Cells - Comparison of Yeast and Algae. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Achim Overbeck
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Steffi Günther
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Ingo Kampen
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| | - Arno Kwade
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| |
Collapse
|
8
|
Rad MA, Tijjani AS, Ahmad MR, Auwal SM. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles. SENSORS 2016; 17:s17010014. [PMID: 28025571 PMCID: PMC5298587 DOI: 10.3390/s17010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
Collapse
Affiliation(s)
- Maryam Alsadat Rad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Auwal Shehu Tijjani
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Shehu Muhammad Auwal
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
9
|
Overbeck A, Michel S, Kampen I, Kwade A. Einfluss der Temperatur auf das Berstverhalten von Hefezellen. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201650190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|