1
|
Santoro D, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Hensel P, Pucheu-Haston C. Update on the skin barrier, cutaneous microbiome and host defence peptides in canine atopic dermatitis. Vet Dermatol 2024; 35:5-14. [PMID: 37990608 DOI: 10.1111/vde.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Canine atopic dermatitis (AD) is a complex inflammatory skin disease associated with cutaneous microbiome, immunological and skin barrier alterations. This review summarises the current evidence on skin barrier defects and on cutaneous microbiome dysfunction in canine AD. OBJECTIVE To this aim, online citation databases, abstracts and proceedings from international meetings on skin barrier and cutaneous microbiome published between 2015 and 2023 were reviewed. RESULTS Since the last update on the pathogenesis of canine AD, published by the International Committee on Allergic Diseases of Animals in 2015, 49 articles have been published on skin barrier function, cutaneous/aural innate immunity and the cutaneous/aural microbiome in atopic dogs. Skin barrier dysfunction and cutaneous microbial dysbiosis are essential players in the pathogenesis of canine AD. It is still unclear if such alterations are primary or secondary to cutaneous inflammation, although some evidence supports their primary involvement in the pathogenesis of canine AD. CONCLUSION AND CLINICAL RELEVANCE Although many studies have been published since 2015, the understanding of the cutaneous host-microbe interaction is still unclear, as is the role that cutaneous dysbiosis plays in the development and/or worsening of canine AD. More studies are needed aiming to design new therapeutic approaches to restore the skin barrier, to increase and optimise the cutaneous natural defences, and to rebalance the cutaneous microbiome.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
2
|
Tate DE, Tanprasertsuk J, Jones RB, Maughan H, Chakrabarti A, Khafipour E, Norton SA, Shmalberg J, Honaker RW. A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals (Basel) 2024; 14:453. [PMID: 38338095 PMCID: PMC10854619 DOI: 10.3390/ani14030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Pruritic dermatitis (PD) is a common presentation of canine allergic skin diseases, with diversity in severity and treatment response due to complex etiopathogenesis. Evidence suggests the gut microbiota (GM) may contribute to the development of canine allergies. A 10-week double-blind randomized controlled trial evaluated a novel probiotic and nutraceutical blend (PNB) on clinical signs of skin allergy, health measures, and the GM of privately owned self-reported pruritic dogs. A total of 105 dogs were enrolled, with 62 included in pruritus and health analysis and 50 in microbiome analysis. The PNB supported greater improvement of owner-assessed clinical signs of PD at week 2 than the placebo (PBO). More dogs that received the PNB shifted to normal pruritus (digital PVAS10-N: <2) by week 4, compared to week 7 for the PBO. While a placebo effect was identified, clinical differences were supported by changes in the GM. The PNB enriched three probiotic bacteria and reduced abundances of species associated with negative effects. The PBO group demonstrated increased abundances of pathogenic species and reduced abundances of several beneficial species. This trial supports the potential of the PNB as a supplemental intervention in the treatment of PD; however, further investigation is warranted, with stricter diagnostic criteria, disease biomarkers and direct veterinary examination.
Collapse
Affiliation(s)
- Devon E. Tate
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | - Roshonda B. Jones
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | | | - Ehsan Khafipour
- Cargill Inc., Wayzata, MN 55391, USA; (A.C.); (E.K.); (S.A.N.)
| | | | - Justin Shmalberg
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ryan W. Honaker
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| |
Collapse
|
3
|
Thomsen M, Künstner A, Wohlers I, Olbrich M, Lenfers T, Osumi T, Shimazaki Y, Nishifuji K, Ibrahim SM, Watson A, Busch H, Hirose M. A comprehensive analysis of gut and skin microbiota in canine atopic dermatitis in Shiba Inu dogs. MICROBIOME 2023; 11:232. [PMID: 37864204 PMCID: PMC10590023 DOI: 10.1186/s40168-023-01671-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Like its human counterpart, canine atopic dermatitis (cAD) is a chronic relapsing condition; thus, most cAD-affected dogs will require lifelong treatment to maintain an acceptable quality of life. A potential intervention is modulation of the composition of gut microbiota, and in fact, probiotic treatment has been proposed and tried in human atopic dermatitis (AD) patients. Since dogs are currently receiving intensive medical care, this will be the same option for dogs, while evidence of gut dysbiosis in cAD is still missing, although skin microbial profiling in cAD has been conducted in several studies. Therefore, we conducted a comprehensive analysis of both gut and skin microbiota in cAD in one specific cAD-predisposed breed, Shiba Inu. Additionally, we evaluated the impact of commonly used medical management on cAD (Janus kinase; JAK inhibitor, oclacitinib) on the gut and skin microbiota. Furthermore, we genotyped the Shiba Inu dogs according to the mitochondrial DNA haplogroup and assessed its association with the composition of the gut microbiota. RESULTS Staphylococcus was the most predominant bacterial genus observed in the skin; Escherichia/Shigella and Clostridium sensu stricto were highly abundant in the gut of cAD-affected dogs. In the gut microbiota, Fusobacteria and Megamonas were highly abundant in healthy dogs but significantly reduced in cAD-affected dogs. The abundance of these bacterial taxa was positively correlated with the effect of the treatment and state of the disease. Oclacitinib treatment on cAD-affected dogs shifted the composition of microbiota towards that in healthy dogs, and the latter brought it much closer to healthy microbiota, particularly in the gut. Additionally, even within the same dog breed, the mtDNA haplogroup varied, and there was an association between the mtDNA haplogroup and microbial composition in the gut and skin. CONCLUSIONS Dysbiosis of both the skin and the gut was observed in cAD in Shiba Inu dogs. Our findings provide a basis for the potential treatment of cAD by manipulating the gut microbiota as well as the skin microbiota. Video Abstract.
Collapse
Affiliation(s)
- Mirja Thomsen
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Inken Wohlers
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Biomolecular Data Science in Pneumology, Research Center Borstel, Parkallee 1-40, 23845, Borstel, Germany
| | - Michael Olbrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center for Biotechnology, Khalifa University, Abu Dhabi, UAE
| | - Tim Lenfers
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Takafumi Osumi
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yotaro Shimazaki
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Koji Nishifuji
- Division of Animal Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- College of Medical and Health Sciences, Khalifa University of Science and Technology, Shakhbout Bin Sultan Street, Abu Dhabi, UAE
| | - Adrian Watson
- Royal Canin SAS, 650 avenue de la Petite Camargue, 30470, Aimargues, France
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
4
|
Yagisawa T, Uchiyama J, Takemura-Uchiyama I, Ando S, Ichii O, Murakami H, Matsushita O, Katagiri S. Metataxonomic Analysis of the Uterine Microbiota Associated with Low Fertility in Dairy Cows Using Endometrial Tissues Prior to First Artificial Insemination. Microbiol Spectr 2023; 11:e0476422. [PMID: 37098918 PMCID: PMC10269553 DOI: 10.1128/spectrum.04764-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/07/2023] [Indexed: 04/27/2023] Open
Abstract
The deterioration in reproductive performance in association with low fertility leads to significant economic losses on dairy farms. The uterine microbiota has begun to attract attention as a possible cause of unexplained low fertility. We analyzed the uterine microbiota associated with fertility by 16S rRNA gene amplicon sequencing in dairy cows. First, the alpha (Chao1 and Shannon) and beta (unweighted and weighted UniFrac) diversities of 69 cows at four dairy farms that had passed the voluntary waiting period before the first artificial insemination (AI) were analyzed with respect to factors including farm, housing style, feeding management, parity, and AI frequency to conception. Significant differences were observed in the farm, housing style, and feeding management, except parity and AI frequency to conception. The other diversity metrics did not show significant differences in the tested factors. Similar results were obtained for the predicted functional profile. Next, the microbial diversity analysis of 31 cows at a single farm using weighted UniFrac distance matrices revealed a correlation with AI frequency to conception but not with parity. In correlation with AI frequency to conception, the predicted function profile appeared to be slightly modified and a single bacterial taxon, Arcobacter, was detected. The bacterial associations related to fertility were estimated. Considering these, the uterine microbiota in dairy cows can be varied depending on the farm management practices and may become one of the measures for low fertility. IMPORTANCE We examined the uterine microbiota associated with low fertility in dairy cows derived from four commercial farms via a metataxonomic approach using endometrial tissues prior to the first artificial insemination. The present study provided two new insights into the relevance of uterine microbiota with respect to fertility. First, the uterine microbiota varied depending on housing style and feeding management. Next, a subtle change was observed in functional profile analysis: a formation of uterine microbiota was detected to be different in correlation with fertility in one farm studied. Considering these insights, an examination system on bovine uterine microbiota is hopefully established based on continuous research on this topic.
Collapse
Affiliation(s)
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Iyo Takemura-Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shun Ando
- Hokkaido Agriculture Mutual Aid Association, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Hironobu Murakami
- Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
5
|
Sinkko H, Lehtimäki J, Lohi H, Ruokolainen L, Hielm-Björkman A. Distinct healthy and atopic canine gut microbiota is influenced by diet and antibiotics. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221104. [PMID: 37122947 PMCID: PMC10130713 DOI: 10.1098/rsos.221104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The rising trend in non-communicable chronic inflammatory diseases coincides with changes in Western lifestyle. While changes in the human microbiota may play a central role in the development of chronic diseases, estimating the contribution of associated lifestyle factors remains challenging. We studied the influence of lifestyle-diet, antibiotic use, and residential environment with housing and family-on the gut microbiota of healthy and owner-reported atopic pet dogs, searching for associations between the lifestyle factors, atopy and microbiota. The results showed that atopic and healthy dogs had contrasting gut microbial composition. The gut microbiota also differed between two breeds, Labrador Retriever and Finnish Lapphund, selected for our study. Among all lifestyle factors studied, diet was most significantly associated with gut microbiota but only weakly with atopic symptoms. Thus, diet- and atopy-associated changes in the microbiota were not interrelated. Instead, the severity of symptoms was positively associated with the usage of antibiotics, which in turn was associated with the microbiota composition. Urban lifestyle was significantly associated with the increased prevalence of allergies but not with the gut microbiota. Our results from pet dogs supported previous evidence from humans, demonstrating that antibiotics, gut microbiota and atopic manifestation are interrelated. This congruence suggests that canine atopy might be a promising model for understanding the aetiology of human allergy.
Collapse
Affiliation(s)
- Hanna Sinkko
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, Human Microbiome Research (HUMI), University of Helsinki, Helsinki, Finland
| | - Jenni Lehtimäki
- Environmental Policy Centre, Finnish Environment Institute, 00790 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics and Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|