1
|
Chen VL, Brady GF. Recent advances in MASLD genetics: Insights into disease mechanisms and the next frontiers in clinical application. Hepatol Commun 2025; 9:e0618. [PMID: 39774697 PMCID: PMC11717516 DOI: 10.1097/hc9.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the world and a growing cause of liver-related morbidity and mortality. Yet, at the same time, our understanding of the pathophysiology and genetic underpinnings of this increasingly common yet heterogeneous disease has increased dramatically over the last 2 decades, with the potential to lead to meaningful clinical interventions for patients. We have now seen the first pharmacologic therapy approved for the treatment of MASLD, and multiple other potential treatments are currently under investigation-including gene-targeted RNA therapies that directly extend from advances in MASLD genetics. Here we review recent advances in MASLD genetics, some of the key pathophysiologic insights that human genetics has provided, and the ways in which human genetics may inform our clinical practice in the field of MASLD in the near future.
Collapse
|
2
|
Prata TVG, Dantas BP, Manchiero C, Nunes AKDS, de Paula VG, Tengan FM, Magri MC. Haplotype testing of MTTP alleles on insulin resistance in patients with chronic hepatitis C. GENE REPORTS 2024; 36:101951. [DOI: 10.1016/j.genrep.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Dawood RM, Salum GM, Abd El-Meguid M, Fotouh BES. Molecular Insights of Nonalcoholic Fatty Liver Disease Pathogenesis. J Interferon Cytokine Res 2024; 44:111-123. [PMID: 38301145 DOI: 10.1089/jir.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent chronic liver disease. Many hepatic abnormalities are associated with NAFLD such as nonalcoholic steatohepatitis, progressive fibrosis, cirrhosis, and liver failure. Moreover, the pathogenesis of NAFLD has numerous etiologies and can be explained due to the existence of several of stimulus that act simultaneously on genetically susceptible patients. These stimuli include obesity, diabetes, and insulin resistance. In addition, identifying the role of gut microbiota on NAFLD progression has been illustrated. In this review, we clarified the several factors that lead to the development of NAFLD and identify those who are most at risk of developing liver end-stage disease. Highlighting the noninvasive diagnostic NAFLD markers could be helpful in the disease prevention and treatment approaches.
Collapse
Affiliation(s)
- Reham Mohammed Dawood
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Ghada Maher Salum
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Mai Abd El-Meguid
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Basma El-Sayed Fotouh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
4
|
Abstract
LINKED CONTENTThis article is linked to Schneider et al papers. To view these articles, visit https://doi.org/10.1111/apt.17566 and https://doi.org/10.1111/apt.17624
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zou Y, Guo Q, Chang Y, Zhong Y, Cheng L, Wei W. Alternative splicing affects synapses in the hippocampus of offspring after maternal fructose exposure during gestation and lactation. Chem Biol Interact 2023; 379:110518. [PMID: 37121297 DOI: 10.1016/j.cbi.2023.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Increased fructose over-intake is a global issue. Maternal fructose exposure during gestation and lactation can impair brain development in offspring. However, the effect on synapses is still unknown. For the diversification of RNA and biological functions, alternative splicing (AS) and alternative polyadenylation (APA) are essential. We constructed a maternal high-fructose diet model by administering 13% and 40% fructose water. The student's t-test analyzed the results of RT-qPCR. All other results were analyzed by one-way analysis of variance. The animal behavior experiment results revealed that conditioning and associative memory had been damaged. The proteins that form synapses were consistently low-expressed. In addition, compared with the control group, the Oxford Nanopore Technologies platform's full-length RNA-sequencing identified 298 different spliced genes (DSGs) and 51 differentially expressed alternative splicing (DEAS) genes in the 13% fructose group. 313 DSGs and 74 DEAS genes were in the 40% fructose group. Enrichment analysis based on these altered genes revealed some enlightening items and pathways. Our findings demonstrated the transcriptome mechanism underlying maternal fructose exposure during gestation and lactation and impaired synapse function during the transcripts' editing.
Collapse
Affiliation(s)
- Yuchen Zou
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Qing Guo
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yidan Chang
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yongyong Zhong
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Lin Cheng
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Wei Wei
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.
| |
Collapse
|
6
|
Ren Z, Simons PIHG, Wesselius A, Stehouwer CDA, Brouwers MCGJ. Relationship between NAFLD and coronary artery disease: A Mendelian randomization study. Hepatology 2023; 77:230-238. [PMID: 35441719 PMCID: PMC9970021 DOI: 10.1002/hep.32534] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS There is an ongoing debate on whether NAFLD is an active contributor or an innocent bystander in the pathogenesis of coronary artery disease (CAD). The aim of the present study was to assess the causal relationship between NAFLD and CAD. APPROACH AND RESULTS We performed two-sample Mendelian randomization (MR) analyses using summary-level data to assess the association between genetically predicted NAFLD (i.e., chronically elevated serum alanine aminotransferase levels [cALT], imaging-based and biopsy-confirmed NAFLD) and risk of CAD. Analyses were repeated after exclusion of NAFLD susceptibility genes that are associated with impaired VLDL secretion.Inverse-variance weighted MR analyses showed a statistically significant association between genetically predicted cALT and risk of CAD (OR: 1.116, 95% CI: 1.039, 1.199), but not for the other NAFLD-related traits (OR: 1.046, 95% CI: 0.764, 1.433 and OR: 1.014, 95% CI: 0.968, 1.062 for imaging-based and biopsy-confirmed NAFLD, respectively). MR-Egger regression revealed a statistically significant intercept, indicative of directional pleiotropy, for all traits. Repeat analyses after exclusion of genes associated with impaired VLDL secretion showed consistent associations between genetically predicted NAFLD and CAD for all traits (i.e., cALT [OR: 1.203, 95% CI: 1.113, 1.300]), imaging-based (OR: 2.149, 95% CI: 1.276, 3.620) and biopsy-confirmed NAFLD (OR: 1.113, 95% CI: 1.041, 1.189), which persisted when more stringent biopsy-confirmed NAFLD criteria were used (OR: 1.154, 95% CI: 1.043, 1.278) or when more stringent MR methods were applied. MR-Egger regression did not show a statistically significant intercept. CONCLUSION The two-sample MR analyses showed a robust association between genetically predicted NAFLD and CAD after exclusion of genetic variants that are implicated in impaired VLDL secretion.
Collapse
Affiliation(s)
- Zhewen Ren
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Pomme I. H. G. Simons
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Anke Wesselius
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - Coen D. A. Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn C. G. J. Brouwers
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
8
|
Prata TVG, Manchiero C, Dantas BP, Nunes AKDS, Tengan FM, Magri MC. Effect of MTTP -493G/T, I128T, Q95H and Q244E polymorphisms on hepatic steatosis in patients with chronic hepatitis. Clinics (Sao Paulo) 2022; 77:100094. [PMID: 36027755 PMCID: PMC9424342 DOI: 10.1016/j.clinsp.2022.100094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic hepatitis C is characterized by a progressive deterioration of liver function and is involved in metabolic complications, such as hepatic steatosis. OBJECTIVE The aim of this study was to investigate the role of host and viral characteristics associated with -493G/T (rs1800591), I128T (rs3816873), Q95H (rs61733139), and Q244E (rs17599091) Single Nucleotide Polymorphisms (SNPs) in the Microsomal Triglyceride Transfer Protein (MTTP) gene on hepatic steatosis in chronic hepatitis C. METHODS SNPs were genotyped by PCR-RFLP and analyzed in combination with host and viral characteristics by multiple logistic regression in different genetic models of inheritance. RESULTS The authors analyzed 236 patients with chronic hepatitis C, and 53% had hepatic steatosis. The mutated allele frequencies were > 5%, and the genotypes were in Hardy-Weinberg equilibrium (p ≥ 0.05). It was observed that patients with HCV genotype 3 infection (OR = 2.74, 95% CI 1.24‒6.06, p = 0.013), female sex (OR = 2.28, 95% CI 1.21‒4.28, p = 0.011) and moderate- and high-intensity liver inflammatory activity (A2-A3) (OR = 3.61, 95% CI 1.86‒7.01, p < 0.001) alone exhibited a higher risk of steatosis. The results of multiple logistic regression analysis for interaction showed that for the -493G/T SNP, when the GT/TT genotype (dominant model) and the GT genotype (codominant model) were each combined with HCV genotype 3 infection, an 11.51-fold (95% CI 2.08‒63.59, p = 0.005) and a 15.69-fold (95% CI 2.46‒99.85, p = 0.004) increased risk of steatosis, respectively, was observed. For the I128T SNP, when both the IT/TT genotype (dominant model) and the IT genotype (codominant model) were combined with HCV genotype 3 infection, an 8.51-fold (95% CI 1.59‒45.54, p = 0.012) and an 8.40 fold (95% CI 1.51‒46.91, p = 0.015) increased risk of steatosis, respectively, was observed. CONCLUSION The present study showed that the viral genotype combined with the -493G/T and I128T SNPs in the MTTP gene influences hepatic steatosis.
Collapse
Affiliation(s)
- Thamiris Vaz Gago Prata
- Laboratorio de Investigacao Médica em Hepatologia por Virus (LIM-47), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Caroline Manchiero
- Laboratorio de Investigacao Médica em Hepatologia por Virus (LIM-47), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Bianca Peixoto Dantas
- Laboratorio de Investigacao Médica em Hepatologia por Virus (LIM-47), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Arielle Karen da Silva Nunes
- Laboratorio de Investigacao Médica em Hepatologia por Virus (LIM-47), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Fátima Mitiko Tengan
- Laboratorio de Investigacao Médica em Hepatologia por Virus (LIM-47), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Departamento de Molestias Infecciosas e Parasitarias, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Mariana Cavalheiro Magri
- Laboratorio de Investigacao Médica em Hepatologia por Virus (LIM-47), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Wong WK, Chan WK. Nonalcoholic Fatty Liver Disease: A Global Perspective. Clin Ther 2021; 43:473-499. [PMID: 33526312 DOI: 10.1016/j.clinthera.2021.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing over the years and is now as high in Asia as in the Western world, so much so that it should no longer be considered a Western disease. In fact, China is expected to have the largest increase in the number of NAFLD cases in the coming years. The increase in prevalence of NAFLD in Asia lags behind that of the Western world; thus, there will be a lag in more severe liver disease in Asia despite a similar prevalence of the disease. NAFLD is more prevalent among patients with diabetes mellitus, which is also an important risk factor for more severe liver disease. Patients with diabetes mellitus thus represent an important target for screening for NAFLD and more severe liver disease. Although the PNPLA3 gene polymorphism is the most studied in NAFLD, it is increasingly clear that the cumulative effect of multiple genes likely predisposes to NAFLD and more severe liver disease in the different ethnic groups, and polygenic risk scores are emerging. Lean NAFLD has been largely reported in Asia but is increasingly recognized worldwide. Multiple risk factors have been identified for the disease that manifests in metabolically unhealthy normal weight individuals; however, it responds to lifestyle intervention, similar to the disease in obese individuals. Lastly, the newer term "metabolic dysfunction-associated fatty liver disease" provides a more accurate reflection of the disease, giving more focus to clinicians and researchers in tackling this increasingly common and challenging disease.
Collapse
Affiliation(s)
- Wei-Kei Wong
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Yang S, Chen R, Zhang L, Sun Q, Li R, Gu W, Zhong M, Liu Y, Chen LC, Sun Q, Liu C. Lipid metabolic adaption to long-term ambient PM 2.5 exposure in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116193. [PMID: 33302088 DOI: 10.1016/j.envpol.2020.116193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Emerging evidence has demonstrated that exposure to fine particulate matter (PM2.5) is a risk factor for lipid metabolic disorders in the liver. However, the effects of PM2.5 exposure time duration on hepatic lipid metabolism remain unknown. In this study, C57BL/6 mice were randomly divided into ambient PM2.5 (PM) or filtered air (FA) exposure chamber for short-term (4 weeks) or long-term (24 weeks) exposure via a whole body exposure system. We measured hepatic triglyceride and free fatty acid levels and analyzed the alteration of lipometabolism-related molecules in the liver. We found that triglyceride levels were significantly elevated in both short-term and long-term PM2.5-exposed mice and free fatty acid levels were increased after long-term PM2.5 exposure. Besides, enzymes for lipolysis and fatty acid oxidation in the liver were inhibited after short-term PM2.5 exposure but adaptively enhanced after long-term PM2.5 exposure. Furthermore, molecules for fatty acid uptake were down-regulated in the short-term PM2.5-exposed mice whereas molecules for lipid export were induced after long-term PM2.5 exposure. Therefore, ambient PM2.5 exposure disturbed hepatic lipid metabolism and the effects varied in different exposure duration. These findings in mice provide new insight into the biological basis of PM2.5-induced human metabolic dysfunction and specific strategies may be applied based on different exposure time periods.
Collapse
Affiliation(s)
- Sijia Yang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Sun
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ran Li
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mianhua Zhong
- Department of Environmental Medicine, New York University of School of Medicine, New York, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University of School of Medicine, New York, USA
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
11
|
Tan J, Zhang J, Zhao Z, Zhang J, Dong M, Ma X, Liu S, Xin Y. The association between SNPs rs1800591 and rs3816873 of the MTTP gene and nonalcoholic fatty liver disease: A meta-analysis. Saudi J Gastroenterol 2020; 26:290535. [PMID: 32719241 PMCID: PMC7580732 DOI: 10.4103/sjg.sjg_201_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/20/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS : The role of two polymorphisms rs1800591 and rs3816873 of the microsomal triglyceride transfer protein (MTTP) gene in the development of nonalcoholic fatty liver disease (NAFLD) remains controversial. A meta-analysis was conducted to determine the correlation between these MTTP polymorphisms and NAFLD. MATERIALS AND METHODS : A systematic search was carried out using PubMed, Embase, and Cochrane Library to retrieve English studies that reported the relationship between MTTP polymorphisms (rs1800591 and rs3816873) and NAFLD published before February 18, 2020. Odds ratio (OR) and 95% confidence interval (CI) were used to appraise the risk of MTTP polymorphism in NAFLD. RESULTS : A total of 10 case-control studies, including 1388 cases and 1690 healthy subjects, were included. No significant correlation between the rs1800591 (G vs. T: OR = 1.08, 95% CI = 0.68-1.70, P = 0.76) and rs3816873 (CT + CC vs. TT: OR = 1.23, 95% CI = 0.76-2.01, P = 0.398) polymorphisms of MTTP and NAFLD was found in any of the models. However, when NASH patients confirmed by liver biopsy were extracted alone for rs1800591 polymorphism analysis, it was found that the G allele significantly increased the risk of NASH under the heterozygote model (GT vs. TT: OR = 3.16, 95% CI = 1.13-8.83, P = 0.028) and dominant model (GT + GG vs. TT: OR = 3.03, 95% CI = 1.13-8.09, P = 0.027). CONCLUSION The present meta-analysis revealed that the rs1800591 and rs3816873 polymorphisms of the MTTP gene are uncommon in NAFLD. However, the G allele of rs1800591 was more likely to be correlated to NASH susceptibility.
Collapse
Affiliation(s)
- Jie Tan
- Weifang Medical University, Weifang, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Jian Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Zhenzhen Zhao
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| | - Jie Zhang
- Medical College of Qingdao University, Qingdao, China
| | - Mengzhen Dong
- Medical College of Qingdao University, Qingdao, China
| | - Xuefeng Ma
- Medical College of Qingdao University, Qingdao, China
| | - Shousheng Liu
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| |
Collapse
|
12
|
Gao Y, Zhang S, Li J, Zhao J, Xiao Q, Zhu Y, Zhang J, Huang W. Effect and mechanism of ginsenoside Rg1-regulating hepatic steatosis in HepG2 cells induced by free fatty acid. Biosci Biotechnol Biochem 2020; 84:2228-2240. [PMID: 32654591 DOI: 10.1080/09168451.2020.1793293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ginsenoside Rg1 (G-Rg1) is a bioactive phytochemical that has been found to be beneficial for the treatment of several diseases including nonalcoholic fatty liver disease (NAFLD). But there is a lack of literature reporting the effect of G-Rg1 on lipid metabolism balance in NAFLD. We investigated the effect and mechanism of G-Rg1 on lipid metabolism in vitro. We found that G-Rg1 decreased the levels of TG, TC, and MDA, and increased activity of SOD. Results of RT-PCR and western blotting showed that supplementation with G-Rg1 downregulated the expression of PPAR γ, FABP1, FATP2/5, CD36, SREBP1 c, and FASN, while the expression of PPAR ɑ, CPT1, ACOX1, MTTP, and ApoB100 was upregulated, after induction by a free fatty acid. Taken together, we conclude that G-Rg1 inhibits lipid synthesis and lipid uptake, and enhances lipid oxidation and lipid export to reduce hepatic steatosis of HepG2 cells by regulating PPAR ɑ and PPAR γ expression.
Collapse
Affiliation(s)
- Yue Gao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jiajun Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jinqiu Zhao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Qing Xiao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yali Zhu
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jia Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
13
|
Frías M, Rivero-Juárez A, Machuca I, Camacho Á, Rivero A. The outlook for precision medicine for the treatment of chronic hepatitis C infection: challenges and opportunities. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1764346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mario Frías
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Antonio Rivero-Juárez
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Isabel Machuca
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Ángela Camacho
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Antonio Rivero
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| |
Collapse
|
14
|
Saki S, Saki N, Poustchi H, Malekzadeh R. Assessment of Genetic Aspects of Non-alcoholic Fatty Liver and Premature Cardiovascular Events. Middle East J Dig Dis 2020; 12:65-88. [PMID: 32626560 PMCID: PMC7320986 DOI: 10.34172/mejdd.2020.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has demonstrated a strong interplay and multifaceted relationship between non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). CVD is the major cause of death in patients with NAFLD. NAFLD also has strong associations with diabetes and metabolic syndrome. In this comprehensive review, we aimed to overview the primary environmental and genetic risk factors of NAFLD, and CVD and also focus on the genetic aspects of these two disorders. NAFLD and CVD are both heterogeneous diseases with common genetic and molecular pathways. We have searched for the latest published articles regarding this matter and tried to provide an overview of recent insights into the genetic aspects of NAFLD and CVD. The common genetic and molecular pathways involved in NAFLD and CVD are insulin resistance (IR), subclinical inflammation, oxidative stress, and atherogenic dyslipidemia. According to an investigation, the exact associations between genomic characteristics of NAFLD and CVD and casual relationships are not fully determined. Different gene polymorphisms have been identified as the genetic components of the NAFLDCVD association. Some of the most documented ones of these gene polymorphisms are patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), adiponectin-encoding gene (ADIPOQ), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), leptin receptor (LEPR), sterol regulatory element-binding proteins (SREBP), tumor necrosis factor-alpha (TNF-α), microsomal triglyceride transfer protein (MTTP), manganese superoxide dismutase (MnSOD), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), and mutation in DYRK1B that substitutes cysteine for arginine at position 102 in kinase-like domain. Further cohort studies with a significant sample size using advanced genomic assessments and next-generation sequencing techniques are needed to shed more light on genetic associations between NAFLD and CVD.
Collapse
Affiliation(s)
- Sara Saki
- Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Saki
- Hoveizeh Cohort Study, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
MTTP polymorphisms and hepatic steatosis in individuals chronically infected with hepatitis C virus. Arch Virol 2019; 164:2559-2563. [PMID: 31321587 DOI: 10.1007/s00705-019-04352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Polymorphisms in the microsomal triglyceride transfer protein (MTTP) gene were genotyped in individuals who were chronically infected with hepatitis C virus (HCV). In the 236 patients, the frequencies of risk alleles of the -164T/C (rs1800804), -400A/T (rs1800803) and H297Q (rs2306985) polymorphisms were 0.30, 0.41 and 0.50, respectively. A significant association between the risk alleles of the -164T/C and -400A/T polymorphisms combined with HCV genotype 3 infection and the occurrence of steatosis was detected (p = 0.004 and p = 0.032), suggesting that a combination of host and viral factors can potentially be used to predict hepatic steatosis.
Collapse
|
16
|
Independent and combined effects of dietary iron composition and selected risk factors on the risk of NAFLD in a Chinese population. Sci Rep 2019; 9:4069. [PMID: 30858480 PMCID: PMC6411980 DOI: 10.1038/s41598-019-40449-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential mineral required for most forms of life. However, very little is known in relation to the different forms of dietary iron on the development of NAFLD. The aims of this study were to investigate the effects of iron intake from different food types on risk of NAFLD and whether this effect may be modified by other factors. We conducted a hospital-based case–control study including 1,273 NAFLD cases and 1,273 gender and age-matched controls. We conducted in-person interviews while participants completed a questionnaire on food habits. We assessed animal- and plant-derived intake of iron and fat. We observed that animal-derived iron intake (>4.16 mg/day) was positively associated with augmented NAFLD risk in a Chinese population (ORadjusted = 1.66 in the highest quartile compared with the lowest, 95% confidence interval [CI] = 1.01–2.73). In contrast, a high consumption of iron (>16.87 mg/day) from plant-based foods was associated with a decreased NAFLD risk (ORadjusted = 0.61 in the highest quartile compared with the lowest; 95% CI = 0.40–0.935). In addition, high intake of fat or being overweight may exacerbate this effect. Reduced consumption of iron and fat from animal sources could reduce NAFLD risk, as would weight loss.
Collapse
|
17
|
Kumar A, Shalimar, Walia GK, Gupta V, Sachdeva MP. Genetics of nonalcoholic fatty liver disease in Asian populations. J Genet 2019. [DOI: 10.1007/s12041-019-1071-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Di Filippo M, Varret M, Boehm V, Rabès JP, Ferkdadji L, Abramowitz L, Dumont S, Lenaerts C, Boileau C, Joly F, Schmitz J, Samson-Bouma ME, Bonnefont-Rousselot D. Postprandial lipid absorption in seven heterozygous carriers of deleterious variants of MTTP in two abetalipoproteinemic families. J Clin Lipidol 2018; 13:201-212. [PMID: 30522860 DOI: 10.1016/j.jacl.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver. OBJECTIVE To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported. RESULTS Both patients are compound heterozygotes for p.(Arg540His) and either c.708_709del p.(His236Glnfs*11) or c.1344+3_1344+6del on the MTTP gene. The previously undescribed patient has been followed for 22 years with ultrastructure analyses of both the intestine and the liver. In these 2 families, 5 relatives were heterozygous for p.(Arg540His), 1 for p.(His236Glnfs*11) and 1 for c.1344+3_1344+6del. In 4 heterozygous relatives, the lipid absorption was normal independent of the MTTP variant. In contrast, in 3 of them, the increase in triglyceride levels after fat load was abnormal. These subjects were additionally heterozygous carriers of Asp2213 APOB in-frame deletion, near the cytidine mRNA editing site, which is essential for intestinal apoB48 production. Liver function appeared to be normal in all the heterozygotes except for one who exhibited liver steatosis for unexplained reasons. CONCLUSION Our study suggests that a single copy of the MTTP gene may be sufficient for human normal lipid absorption, except when associated with an additional APOB gene alteration. The hepatic steatosis reported in 1 patient emphasizes the need for liver function tests in all heterozygotes until the level of risk is established.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- UF Dyslipidemies, Service de Biochimie et Biologie moléculaire Grand Est, GHE, Hospices Civils de Lyon, Bron Cedex, France; Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| | - Mathilde Varret
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France
| | - Vanessa Boehm
- Service de gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Hopital Beaujon (AP-HP), Université Paris VII, Paris, France. INSERM UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), Paris, France
| | - Jean-Pierre Rabès
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France; AP-HP, HUPIFO, Hôpital Ambroise Paré, Laboratoire de Biochimie et Génétique Moléculaire & UVSQ, UFR des Sciences de la Santé Simone Veil, Montigny-Le-Bretonneux, France
| | - Latifa Ferkdadji
- Service d'anatomie et de cytologie pathologiques, Hôpital Robert Debré, Université Paris 7, Paris, France
| | - Laurent Abramowitz
- Service d'Hépato-Gastroentérologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cedex 18, France
| | - Sabrina Dumont
- UF Dyslipidemies, Service de Biochimie et Biologie moléculaire Grand Est, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | | | - Catherine Boileau
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France
| | - Francisca Joly
- Service de gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Hopital Beaujon (AP-HP), Université Paris VII, Paris, France. INSERM UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), Paris, France
| | - Jacques Schmitz
- Département de Gastroentérologie pédiatrique, Hopital Necker-Enfants Malades, Paris, France
| | | | - Dominique Bonnefont-Rousselot
- Service de Biochimie métabolique, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix (AP-HP), Paris, France; Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, U 1022 INSERM, UMR 8258 CNRS, Paris, France
| |
Collapse
|
19
|
Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J Gastroenterol 2018; 24:2974-2983. [PMID: 30038464 PMCID: PMC6054950 DOI: 10.3748/wjg.v24.i27.2974] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/26/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the dominant form of chronic liver disease in children and adolescents with the increasing prevalence of obesity worldwide. NAFLD represents a wide spectrum of conditions, ranging from fatty liver - which generally follows a benign, non-progressive clinical course - to non-alcoholic steatohepatitis, a subset of NAFLD that may progress to cirrhosis and end-stage liver disease or liver carcinoma. The underlying pathophysiological mechanism of “pediatric” NAFLD remains unclear, although it is strongly associated with obesity and insulin resistance. In this review we provide a general overview on the current understanding of NAFLD in children and adolescents, which underpins practice, enabling early diagnosis and appropriate therapeutic intervention for this life-threatening liver disease.
Collapse
Affiliation(s)
- Yan-Lan Fang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong Chen
- College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chun-Lin Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
20
|
Gouda W, Ashour E, Shaker Y, Ezzat W. MTP genetic variants associated with non-alcoholic fatty liver in metabolic syndrome patients. Genes Dis 2017; 4:222-228. [PMID: 30258926 PMCID: PMC6147179 DOI: 10.1016/j.gendis.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 02/08/2023] Open
Abstract
This study was performed for investigation the relationship between variants of MTP gene polymorphism and the development of NAFLD in patients with and without MS. The study was included 174 NAFLD patients (106 with MS and 68 without MS), and 141 healthy control subjects. The 493 G/T polymorphism of MTP gene was evaluated by PCR-RFLP method. The frequency of MTP TT genotype and T allele were significantly higher in NAFLD patients when compared to healthy controls. Moreover, a significant association in MTP gene polymorphism was observed in NAFLD patients with MS compared to NAFLD patients without MS and controls. Our study suggested that MTP 493 G/T gene polymorphism may act as susceptibility biomarker for NAFLD and MS.
Collapse
Affiliation(s)
- Weaam Gouda
- Biochemistry Dept., National Research Center, Dokki, Giza, Egypt
| | - Esmat Ashour
- Biochemistry Dept., National Research Center, Dokki, Giza, Egypt
| | - Yehia Shaker
- Biochemistry Dept., National Research Center, Dokki, Giza, Egypt
| | - Wafaa Ezzat
- Internal Medicine Dept., National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
21
|
Dai D, Wen F, Zhou S, Su Z, Liu G, Wang M, Zhou J, He F. Association of MTTP gene variants with pediatric NAFLD: A candidate-gene-based analysis of single nucleotide variations in obese children. PLoS One 2017; 12:e0185396. [PMID: 28953935 PMCID: PMC5617203 DOI: 10.1371/journal.pone.0185396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective We used targeted next-generation sequencing to investigate whether genetic variants of lipid metabolism-related genes are associated with increased susceptibility to nonalcoholic fatty liver disease (NAFLD) in obese children. Methods A cohort of 100 obese children aged 6 to 18 years were divided into NAFLD and non-NAFLD groups and subjected to hepatic ultrasound, anthropometric, and biochemical analyses. We evaluated the association of genetic variants with NAFLD susceptibility by investigating the single nucleotide polymorphisms in each of 36 lipid-metabolism-related genes. The panel genes were assembled for target region sequencing. Correlations between single nucleotide variations, biochemical markers, and clinical phenotypes were analyzed. Results 97 variants in the 36 target genes per child were uncovered. Twenty-six variants in 16 genes were more prevalent in NAFLD subjects than in in-house controls. The mutation rate of MTTP rs2306986 and SLC6A2 rs3743788 was significantly higher in NAFLD subjects than in non-NAFLD subjects (OR: 3.879; P = 0.004; OR: 6.667, P = 0.005). Logistic regression analysis indicated the MTTP variant rs2306986 was an independent risk factor for NAFLD (OR: 23.468, P = 0.044). Conclusions The results of this study, examining a cohort of obese children, suggest that the genetic variation at MTTP rs2306986 was associated with higher susceptibility to NAFLD. This may contribute to the altered lipid metabolism by disruption of assembly and secretion of lipoprotein, leading to reducing fat export from the involved hepatocytes.
Collapse
Affiliation(s)
- Dongling Dai
- Shenzhen Children's Hospital, Shenzhen, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Shaoming Zhou
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Zhe Su
- Shenzhen Children's Hospital, Shenzhen, China
| | - Guosheng Liu
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingbang Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| | - Jianli Zhou
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fusheng He
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| |
Collapse
|
22
|
Wang C, Gong J, Wu H. Development of gene polymorphisms in meditators of nonalcoholic fatty liver disease. Biomed Rep 2017; 7:95-104. [PMID: 28804621 DOI: 10.3892/br.2017.926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, the morbidity of which closely correlates with diversity of ethnicity, minority, family and location. Its histology spans from simple steatosis, to nonalcoholic steatohepatitis, which ultimately results in fibrosis, cirrhosis and hepatocellular carcinoma. The accelerating prevalence of NAFLD is due to an incremental incidence of metabolic syndrome that is distinguished by dyslipidemia, glucose impairment, obesity, excessive oxidative stress and adipocytokine impairment. Additionally, the pathogenesis of NAFLD is thought to be a multifactorial and complicated disease associated with lifestyle habits, nutritional factors and genetics. However, the pathogenesis and underlying mechanism in the development of NAFLD caused by genetics remains unclear. People have been increasingly emphasizing on the relationship between NAFLD and gene polymorphisms in recent years, with the aim of having a comprehensive elucidation of associated gene polymorphisms influencing the pathogenesis of the disease. In the current article, the authors attempted to critically summarize the most recently identified gene polymorphisms from the facets of glucose metabolism, fatty acid metabolism, oxidative stress and related cytokines in NAFLD that contribute to promoting the progression of the disease.
Collapse
Affiliation(s)
- Chun Wang
- Department of General Surgery, Yongchuan Hospital of Traditional Chinese Medicine, Chongqing 402161, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
23
|
Miyaaki H, Nakao K. Significance of genetic polymorphisms in patients with nonalcoholic fatty liver disease. Clin J Gastroenterol 2017; 10:201-207. [PMID: 28290069 DOI: 10.1007/s12328-017-0732-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Because of recent advances in genetic research such as genome-wide association studies, the underlying genetic mechanisms of nonalcoholic fatty liver disease (NAFLD) pathophysiology have been elucidated. Here, we present a review of the current literature on the impact of genetic polymorphisms in patients with NAFLD. These genetic polymorphisms, which regulate lipid metabolism, glucose metabolism, and the renin-angiotensin system, are involved in NAFLD onset, steatosis, inflammation, fibrosis, and hepatocellular carcinoma (HCC). Among these genetic polymorphisms, many studies and meta-analyses have demonstrated that position 148 (rs738409 C/G) of the patatin-like phospholipase domain-containing protein (PNPLA3) is a genetic factor associated with NAFLD pathophysiological features, such as hepatic fat level, hepatic inflammation, fibrosis, and HCC. However, the impact of genetic polymorphisms on NAFLD pathophysiology appears to differ among ethnic groups. Therefore, further studies with larger sample sizes are needed for each ethnic group.
Collapse
Affiliation(s)
- Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
24
|
Li XL, Sui JQ, Lu LL, Zhang NN, Xu X, Dong QY, Xin YN, Xuan SY. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis 2016; 15:53. [PMID: 26965314 PMCID: PMC4785616 DOI: 10.1186/s12944-016-0221-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease which represents a wide spectrum of hepatic damage. Several studies have reported that NAFLD is a strong independent risk factor for coronary artery disease (CAD). And patients with NAFLD are at higher risk and suggested undergoperiodic cardiovascular risk assessment. Cardiovascular disease (CVD) is responsible for the main cause of death in patients with NAFLD, and is mostly influenced by genetic factors. Both NAFLD and CAD are heterogeneous disease. Common pathways involved in the pathogenesis of NAFLD and CAD includes insulin resistance (IR), atherogenic dyslipidemia, subclinical inflammation, oxidative stress, etc. Genomic characteristics of these two diseases have been widely studied, further research about the association of these two diseases draws attention. The gene polymorphisms of adiponectin-encoding gene (ADIPOQ), leptin receptor (LEPR), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), sterol regulatory elementbinding proteins (SREBP), transmembrane 6 superfamily member 2 (TM6SF2), microsomal triglyceride transfer protein (MTTP), tumor necrosis factors-alpha (TNF-α) and manganese superoxide dismutase (MnSOD) have been reported to be related to NAFLD and CAD. In this review, we aimed to provide an overview of recent insights into the genetic basis of NAFLD and CAD.
Collapse
Affiliation(s)
- Xiao-Lin Li
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Jian-Qing Sui
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Lin-Lin Lu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.,Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Nan-Nan Zhang
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Xin Xu
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Quan-Yong Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Yong-Ning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
25
|
Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 2015; 21:11088-11111. [PMID: 26494964 PMCID: PMC4607907 DOI: 10.3748/wjg.v21.i39.11088] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease.
Collapse
|
26
|
Hsiao PJ, Lee MY, Wang YT, Jiang HJ, Lin PC, Yang YHC, Kuo KK. MTTP-297H polymorphism reduced serum cholesterol but increased risk of non-alcoholic fatty liver disease-a cross-sectional study. BMC MEDICAL GENETICS 2015; 16:93. [PMID: 26458397 PMCID: PMC4603340 DOI: 10.1186/s12881-015-0242-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
Background Microsomal triglyceride transfer protein (MTP) works to lipidate and assemble the apoB-containing lipoproteins in liver. It closely links up the hepatic secretion of lipid to regulate serum lipid and atherosclerosis. Cases of MTTP gene mutation is characterized by abetalipoproteinemia and remarkable hepatic steatosis or cirrhosis. Several MTTP polymorphisms have been reported relating to metabolic syndrome, hyperlipidemia and steatohepatitis. We supposed the regulation of serum lipids and risk of non-alcoholic fatty liver disease (NAFLD) formation may be modified by individual susceptibility related to the MTTP polymorphisms. Methods and results A cross-sectional population of 1193 subjects, 1087 males and 106 females mean aged 45.9 ± 8.9 years, were enrolled without recognized secondary hyperlipidemia. Fasting serum lipid, insulin, and non-esterified fatty acid were assessed and transformed to insulin resistance index, HOMA-IR and Adipo-IR. After ruling out alcohol abuser, non-alcoholic fatty liver disease (NAFLD) was diagnosed by abdominal ultrasound. Five common MTTP polymorphisms (promoter -493G/T, E98D, I128T, N166S, and Q297H) were conducted by TaqMan assay. Multivariate regression analysis was used to estimate their impact on serum lipid and NAFLD risk. Assessment revealed a differential impact on LDL-C and non-HDL-C, which were sequentially determined by the Q297H polymorphism, insulin resistance, body mass index and age. Carriers of homozygous minor allele (297H) had significantly lower LDL-C and non-HDL-C but higher risk for NAFLD. Molecular modeling of the 297H variant demonstrated higher free energy, potentially referring to an unstable structure and functional sequence. Conclusion These results evidenced the MTTP polymorphisms could modulate the lipid homeostasis to determine the serum lipids and risk of NAFLD. The MTTP 297H polymorphism interacted with age, insulin resistance and BMI to decrease serum apoB containing lipoproteins (LDL-C and non-HDL-C) but increase the risk of NAFLD formation. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0242-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan.
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - He-Jiun Jiang
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yi-Hsin Connie Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Kung-Kai Kuo
- School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan. .,Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Edelman D, Kalia H, Delio M, Alani M, Krishnamurthy K, Abd M, Auton A, Wang T, Wolkoff AW, Morrow BE. Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population. Mol Genet Genomic Med 2015; 3:558-69. [PMID: 26740948 PMCID: PMC4694126 DOI: 10.1002/mgg3.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022] Open
Abstract
We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean–Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy‐proven NAFLD, 24 ethnically matched non‐NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single‐nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome‐wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean–Hispanic population is warranted.
Collapse
Affiliation(s)
- Deborah Edelman
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
| | - Harmit Kalia
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Maria Delio
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
- Marion Bessin Liver Research CenterAlbert Einstein College of MedicineBronxNew York10461
| | - Mustafa Alani
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Karthik Krishnamurthy
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Mortadha Abd
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Adam Auton
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
| | - Tao Wang
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew York10461
| | - Allan W. Wolkoff
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
- Marion Bessin Liver Research CenterAlbert Einstein College of MedicineBronxNew York10461
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew York10461
| | - Bernice E. Morrow
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew York10461
| |
Collapse
|
28
|
Association between the PNPLA3 I148M polymorphism and non-alcoholic fatty liver disease in the Uygur and Han ethnic groups of northwestern China. PLoS One 2014; 9:e108381. [PMID: 25290313 PMCID: PMC4188522 DOI: 10.1371/journal.pone.0108381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023] Open
Abstract
Objective Multiple common gene variants play a role in non-alcoholic fatty liver disease (NAFLD) susceptibility. Our goal was to investigate the association between variants polymorphisms and NAFLD in the Uygur and Han from Northwestern China. Methods Eight tag single nucleotide polymorphisms (tSNPs) previously reported to be associated with NAFLD were characterized in 396 NAFLD individuals and 399 controls. The association of variants with NAFLD in the Uygur and Han was assessed using the chi-squared (χ2) test in different gene models. Unconditional logistic regression analysis was performed to obtain the odds ratios (ORs) for risk of NAFLD and their 95% confidence intervals (CI), adjusted for confounding factors. Finally, stratified analysis was used to explore the potential gene-environment interactions on the risk of NAFLD. Results In a recessive model, we found a potential association between rs738409 and NAFLD in both ethnic groups: Chinese Han (OR = 1.84, 95% CI: 1.03–3.27, p = 0.036), Uygur (OR = 2.25, 95% CI: 1.23–4.09, p = 0.006). The multiple logistic regression revealed that PNPLA3 rs738409 GG genotype may increase the risk of NAFLD by adjusting some confounding factors: Han (OR = 5.22, 95% CI: 1.94–14.04, p = 0.001), Uygur (OR = 4.29, 95% CI: 1.60–11.48, p = 0.004). Stratified analysis found that rs738409 polymorphism appeared to have interaction with sex, smoking status in Uygur, and have interaction with sex, age, BMI stage, lifestyle in Han. Conclusion Our data suggest the PNPLA3 I148M polymorphism influences susceptibility to NAFLD in the Han and Uygur of Northwestern China.
Collapse
|
29
|
Di Filippo M, Moulin P, Roy P, Samson-Bouma ME, Collardeau-Frachon S, Chebel-Dumont S, Peretti N, Dumortier J, Zoulim F, Fontanges T, Parini R, Rigoldi M, Furlan F, Mancini G, Bonnefont-Rousselot D, Bruckert E, Schmitz J, Scoazec JY, Charrière S, Villar-Fimbel S, Gottrand F, Dubern B, Doummar D, Joly F, Liard-Meillon ME, Lachaux A, Sassolas A. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. J Hepatol 2014; 61:891-902. [PMID: 24842304 DOI: 10.1016/j.jhep.2014.05.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis leading to fibrosis occurs in patients with abetalipoproteinemia (ABL) and homozygous or compound heterozygous familial hypobetalipoproteinemia (Ho-FHBL). We wanted to establish if liver alterations were more frequent in one of both diseases and were influenced by comorbidities. METHODS We report genetic, clinical, histological and biological characteristics of new cases of ABL (n =7) and Ho-FHBL (n = 7), and compare them with all published ABL (51) and Ho-FHBL (22) probands. RESULTS ABL patients, diagnosed during infancy, presented mainly with diarrhea, neurological and ophthalmological impairments and remained lean, whereas Ho-FHBL were diagnosed later, with milder symptoms often becoming overweight in adulthood. Despite subtle differences in lipid phenotype, liver steatosis was observed in both groups with a high prevalence of severe fibrosis (5/27 for Ho-FHBL vs. 4/58 for ABL (n.s.)). Serum triglycerides concentration was higher in Ho-FHBL whereas total and HDL-cholesterol were similar in both groups. In Ho-FHBL liver alterations were found to be independent from the apoB truncation size and apoB concentrations. CONCLUSIONS Our findings provide evidence for major liver abnormalities in both diseases. While ABL and Ho-FHBL patients have subtle differences in lipid phenotype, carriers of APOB mutations are more frequently obese. These results raise the question of a complex causal link between apoB metabolism and obesity. They suggest that the genetic defect in VLDL assembly is critical for the occurrence of liver steatosis leading to fibrosis and shows that obesity and insulin resistance might contribute by increasing lipogenesis.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- UF Dyslipidémies Cardiobiologie, Département de Biochimie et de Biologie Moléculaire du GHE, Laboratoire de Biologie Médicale Multi Sites, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France.
| | - Philippe Moulin
- INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France; Fédération d'Endocrinologie, Maladies métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Pascal Roy
- Service de Biostatistique, Hospices Civils de Lyon, Lyon, France; Centre National de la Recherche Scientifique UMR5558, Univ Lyon-1, Villeurbanne, France
| | | | | | - Sabrina Chebel-Dumont
- UF Dyslipidémies Cardiobiologie, Département de Biochimie et de Biologie Moléculaire du GHE, Laboratoire de Biologie Médicale Multi Sites, Hospices Civils de Lyon, Lyon, France
| | - Noël Peretti
- Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Jérôme Dumortier
- Fédération des Spécialités Digestives, Hôpital Edouard Herriot, Hospices Civils, Lyon, France
| | - Fabien Zoulim
- Service d'Hépato-Gastro-Entérologie, Hôpital de la Croix Rousse, Hospices Civils, Lyon, France
| | - Thierry Fontanges
- Service d'Hépato-Gastro-Entérologie, Centre Hospitalier Pierre Oudot, Bourgoin Jallieu, France
| | - Rossella Parini
- Rare Metabolic Disease Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Miriam Rigoldi
- Rare Metabolic Disease Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Francesca Furlan
- Rare Metabolic Disease Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dominique Bonnefont-Rousselot
- Unité pédagogique de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; UPMC University Paris 6, UMR_S1166 Inserm ICAN, Paris, France; Service de Biochimie métabolique, Groupe hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Eric Bruckert
- Service d'Endocrinologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jacques Schmitz
- Service de Gastroentérologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jean Yves Scoazec
- Service d'anatomie pathologique, Hôpital Edouard Herriot, Hospices Civils, Lyon, France
| | - Sybil Charrière
- INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France; Fédération d'Endocrinologie, Maladies métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Sylvie Villar-Fimbel
- Fédération d'Endocrinologie, Maladies métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Frederic Gottrand
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Jeanne de Flandre university hospital, Lille, France
| | - Béatrice Dubern
- Nutrition et Gastroentérologie Pédiatriques, Hôpital Trousseau, AP-HP, Paris, France; Institut de Cardiométabolisme et Nutrition (ICAN), INSERM UMRS U872 (Eq7) Nutriomique, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Diane Doummar
- Service de Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - Francesca Joly
- Service de Gastroentérologie et d'Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | | | - Alain Lachaux
- Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; INSERM U 1111, Faculté de médecine Lyon Est, Université Lyon 1, Lyon, France
| | - Agnès Sassolas
- UF Dyslipidémies Cardiobiologie, Département de Biochimie et de Biologie Moléculaire du GHE, Laboratoire de Biologie Médicale Multi Sites, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France
| |
Collapse
|
30
|
Mehta R, Birerdinc A, Younossi ZM. Host genetic variants in obesity-related nonalcoholic fatty liver disease. Clin Liver Dis 2014; 18:249-67. [PMID: 24274878 DOI: 10.1016/j.cld.2013.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex disease. The considerable variability in the natural history of the disease suggests an important role for genetic variants in the disease development and progression. There is evidence based on genome-wide association studies and/or candidate gene studies that genetic polymorphisms underlying insulin signaling, lipid metabolism, oxidative stress, fibrogenesis, and inflammation can predispose individuals to NAFLD. This review highlights some of the genetic variants in NAFLD.
Collapse
Affiliation(s)
- Rohini Mehta
- Betty and Guy Beatty Center for Integrated Research, Center for Liver Disease, Inova Health System, Claude Moore Building, 3300 Gallows Road, Falls Church, VA 22042, USA
| | | | | |
Collapse
|