1
|
Hoegen-Saßmannshausen P, Naumann P, Hoffmeister-Wittmann P, Ben Harrabi S, Seidensaal K, Weykamp F, Mielke T, Ellerbrock M, Habermehl D, Springfeld C, Dill MT, Longerich T, Schirmacher P, Mehrabi A, Chang DH, Hörner-Rieber J, Jäkel O, Haberer T, Combs SE, Debus J, Herfarth K, Liermann J. Carbon ion radiotherapy of hepatocellular carcinoma provides excellent local control: The prospective phase I PROMETHEUS trial. JHEP Rep 2024; 6:101063. [PMID: 38737600 PMCID: PMC11087711 DOI: 10.1016/j.jhepr.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 05/14/2024] Open
Abstract
Background & Aims Inoperable hepatocellular carcinoma (HCC) can be treated by stereotactic body radiotherapy. However, carbon ion radiotherapy (CIRT) is more effective for sparing non-tumorous liver. High linear energy transfer could promote therapy efficacy. Japanese and Chinese studies on hypofractionated CIRT have yielded excellent results. Because of different radiobiological models and the different etiological spectrum of HCC, applicability of these results to European cohorts and centers remains questionable. The aim of this prospective study was to assess safety and efficacy and to determine the optimal dose of CIRT with active raster scanning based on the local effect model (LEM) I. Methods CIRT was performed every other day in four fractions with relative biological effectiveness (RBE)-weighted fraction doses of 8.1-10.5 Gy (total doses 32.4-42.0 Gy [RBE]). Dose escalation was performed in five dose levels with at least three patients each. The primary endpoint was acute toxicity after 4 weeks. Results Twenty patients received CIRT (median age 74.7 years, n = 16 with liver cirrhosis, Child-Pugh scores [CP] A5 [n = 10], A6 [n = 4], B8 [n = 1], and B9 [n = 1]). Median follow up was 23 months. No dose-limiting toxicities and no toxicities exceeding grade II occurred, except one grade III gamma-glutamyltransferase elevation 12 months after CIRT, synchronous to out-of-field hepatic progression. During 12 months after CIRT, no CP elevation occurred. The highest dose level could be applied safely. No local recurrence developed during follow up. The objective response rate was 80%. Median overall survival was 30.8 months (1/2/3 years: 75%/64%/22%). Median progression-free survival was 20.9 months (1/2/3 years: 59%/43%/43%). Intrahepatic progression outside of the CIRT target volume was the most frequent pattern of progression. Conclusions CIRT of HCC yields excellent local control without dose-limiting toxicity. Impact and implications To date, safety and efficacy of carbon ion radiotherapy for hepatocellular carcinoma have only been evaluated prospectively in Japanese and Chinese studies. The optimal dose and fractionation when using the local effect model for radiotherapy planning are unknown. The results are of particular interest for European and American particle therapy centers, but also of relevance for all specialists involved in the treatment and care of patients with hepatocellular carcinoma, as we present the first prospective data on carbon ion radiotherapy in hepatocellular carcinoma outside of Asia. The excellent local control should encourage further use of carbon ion radiotherapy for hepatocellular carcinoma and design of randomized controlled trials. Clinical Trials Registration The study is registered at ClinicalTrials.gov (NCT01167374).
Collapse
Affiliation(s)
- Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Xcare Praxis für Strahlentherapie, Saarbrücken, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Mielke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Malte Ellerbrock
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Habermehl
- Wilhelm-Conrad-Röntgen-Klinik Gießen, Universitätsklinikum Gießen und Marburg GmbH, Gießen, Germany
| | - Christoph Springfeld
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
| | - Michael T. Dill
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases, Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- Experimental Hepatology, Inflammation and Cancer Research Group, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of General, Visceral & Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - De-Hua Chang
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Hayashi K, Suzuki O, Wakisaka Y, Ichise K, Uchida H, Anzai M, Hasegawa A, Seo Y, Shimizu S, Ishii T, Teshima T, Fujimoto J, Ogawa K. Prognostic analysis of radiation-induced liver damage following carbon-ion radiotherapy for hepatocellular carcinoma. Radiat Oncol 2024; 19:51. [PMID: 38649902 PMCID: PMC11034055 DOI: 10.1186/s13014-024-02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Radiation-induced liver damage (RILD) occasionally occurs following carbon-ion radiotherapy (CIRT) for liver tumors, such as hepatocellular carcinoma (HCC), in patients with impaired liver function disease. However, the associated risk factors remain unknown. The present study aimed to determine the risk factors of RILD after CIRT. METHODS We retrospectively analyzed 108 patients with HCC treated with CIRT at the Osaka Heavy Ion Therapy Center between December 2018 and December 2022. RILD was defined as a worsening of two or more points in the Child-Pugh score within 12 months following CIRT. The median age of the patients was 76 years (range 47-95 years), and the median tumor diameter was 41 mm (range 5-160 mm). Based on the pretreatment liver function, 98 and 10 patients were categorized as Child-Pugh class A and B, respectively. We analyzed patients who received a radiation dose of 60 Gy (relative biological effectiveness [RBE]) in four fractions. The median follow-up period was 9.7 months (range 2.3-41.1 months), and RILD was observed in 11 patients (10.1%). RESULTS Multivariate analysis showed that pretreatment Child-Pugh score B (p = 0.003, hazard ratio [HR] = 6.90) and normal liver volume spared from < 30 Gy RBE (VS30 < 739 cm3) (p = 0.009, HR = 5.22) were significant risk factors for RILD. The one-year cumulative incidences of RILD stratified by Child-Pugh class A or B and VS30 < 739 cm3 or ≥ 739 cm3 were 10.3% or 51.8% and 39.6% or 9.2%, respectively. CONCLUSION In conclusion, the pretreatment Child-Pugh score and VS30 of the liver are significant risk factors for RILD following CIRT for HCC.
Collapse
Affiliation(s)
- Kazuhiko Hayashi
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan.
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamada-Oka, Suita, Osaka, Japan.
| | - Osamu Suzuki
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Yushi Wakisaka
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Koji Ichise
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Hirofumi Uchida
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Makoto Anzai
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Azusa Hasegawa
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamada-Oka, Suita, Osaka, Japan
| | - Shinichi Shimizu
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamada-Oka, Suita, Osaka, Japan
| | - Takayoshi Ishii
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Teruki Teshima
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Jiro Fujimoto
- Department of Radiology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamada-Oka, Suita, Osaka, Japan
| |
Collapse
|
3
|
Okazaki S, Shibuya K, Shiba S, Takura T, Ohno T. Cost-Effectiveness Comparison of Carbon-Ion Radiation Therapy and Transarterial Chemoembolization for Hepatocellular Carcinoma. Adv Radiat Oncol 2024; 9:101441. [PMID: 38778825 PMCID: PMC11110039 DOI: 10.1016/j.adro.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/25/2024] Open
Abstract
Purpose Carbon-ion radiation therapy (CIRT) is a treatment option for patients with hepatocellular carcinoma (HCC) that results in better outcomes with fewer side effects despite its high cost. This study aimed to evaluate the cost-effectiveness of CIRT for HCC from medical and economic perspectives by comparing CIRT and transarterial chemoembolization (TACE) in patients with localized HCC who were ineligible for surgery or radiofrequency ablation. Methods and Materials This study included 34 patients with HCC who underwent either CIRT or TACE at Gunma University between 2007 and 2016. Patient characteristics were employed to select each treatment group using the propensity score matching method. Life years were used as the outcome indicator. The CIRT technical fee was ¥3,140,000; however, a second CIRT treatment on the same organ within 2 years was performed for free. Results Our study showed that CIRT was dominant over TACE, as the CIRT group had a higher life year (point estimate, 2.75 vs 2.41) and lower total cost (mean, ¥4,974,278 vs ¥5,284,524). We conducted a sensitivity analysis to validate the results because of the higher variance in medical costs in the TACE group, which demonstrated that CIRT maintained its cost effectiveness with a high acceptability rate. Conclusions CIRT is a cost-effective treatment option for localized HCC cases unsuitable for surgical resection.
Collapse
Affiliation(s)
- Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Radiology, Gunma Prefectural Cancer Center, Ota, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tomoyuki Takura
- Department of Health Care Services Management, Nihon University School of Medicine, Tokyo, Japan
- Department of Healthcare Economics and Health Policy, University of Tokyo, Tokyo, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Japan
| |
Collapse
|
4
|
Kaneko T, Makishima H, Wakatsuki M, Hiroshima Y, Matsui T, Yasuda S, Okada NN, Nemoto K, Tsuji H, Yamada S, Miyazaki M. Carbon-ion radiotherapy for hepatocellular carcinoma with major vascular invasion: a retrospective cohort study. BMC Cancer 2024; 24:383. [PMID: 38532338 DOI: 10.1186/s12885-024-12154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Macroscopic vascular invasion (MVI) significantly impacts survival in patients with hepatocellular carcinoma (HCC), warranting systemic therapy over locoregional therapy. Despite novel approaches, HCC with MVI has a poor prognosis compared to early-to intermediate-stage HCC. This study aimed to evaluate the safety and efficacy of carbon-ion radiotherapy (C-ion RT) for HCC characterized by MVI. METHODS This retrospective cohort study evaluated HCC patients with MVI treated using C-ion RT with a dose of 45.0-48.0 Gy/2 fractions or 52.8-60.0 Gy/4 fractions between 1995 and 2020 at our institution in Japan. We analyzed the prognostic factors and rates of local recurrence, survival, and adverse events. The local recurrence rate was determined using the cumulative incidence function, with death as a competing event. Survival rates were determined using the Kaplan-Meier method. The log-rank test for univariate analysis and the Cox proportional hazards model for multivariate analysis were used to compare subgroups. RESULTS In total, 76 patients with a median age of 71 years (range, 45-86 years) were evaluated. Among them, 68 had Child-Pugh grade A while eight had grade B disease. In 17 patients, the vascular tumor thrombus reached the inferior vena cava or main trunk of the portal vein. Over a median follow-up period of 27.9 months (range, 1.5-180.4 months), the 2-year overall survival, progression-free survival, and local recurrence rates were 70.0% (95% confidence interval [CI]: 57.7-79.4%), 32.7% (95% CI: 22.0-43.8%), and 8.9% (95% CI: 1.7-23.5%), respectively. A naïve tumor and a single lesion were significant prognostic factors for overall survival in the univariate analysis. Albumin-bilirubin grade 1 and a single lesion were independent prognostic factors in the multivariate analysis. Overall, four patients (5%) experienced grade 3 late adverse events, with no observed grade 4 or 5 acute or late adverse events. CONCLUSIONS C-ion RT for HCC with MVI showed favorable local control and survival benefits with minimal toxicity.
Collapse
Affiliation(s)
- Takashi Kaneko
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- Department of Radiology, Division of Radiation Oncology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Hirokazu Makishima
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| | - Yuichi Hiroshima
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, Ibaraki Cancer Center, Kasama, Japan
| | - Toshiaki Matsui
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- Department of Radiation Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shigeo Yasuda
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- Department of Radiation Oncology, Chiba Rosai Hospital, Chiba, Japan
| | - Naomi Nagatake Okada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Kenji Nemoto
- Department of Radiology, Division of Radiation Oncology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Masaru Miyazaki
- Mita Hospital, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
5
|
Zhang W, Cai X, Sun J, Wang W, Zhao J, Zhang Q, Jiang G, Wang Z. Pencil Beam Scanning Carbon Ion Radiotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2397-2409. [PMID: 38169909 PMCID: PMC10759913 DOI: 10.2147/jhc.s429186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Carbon ion radiotherapy (CIRT) has emerged as a promising treatment modality for hepatocellular carcinoma (HCC). However, evidence of using the pencil beam scanning (PBS) technique to treat moving liver tumors remains lacking. The present study investigated the efficacy and toxicity of PBS CIRT in patients with HCC. Methods Between January 2016 and October 2021, 90 consecutive HCC patients treated with definitive CIRT in our center were retrospectively analyzed. Fifty-eight patients received relative biological effectiveness-weighted doses of 50-70 Gy in 10 fractions, and 32 received 60-67.5 Gy in 15 fractions, which were determined by the tumor location and normal tissue constraints. Active motion-management techniques and necessary strategies were adopted to mitigate interplay effects efficiently. Oncologic outcomes and toxicities were evaluated. Results The median follow-up time was 28.6 months (range 5.7-74.6 months). The objective response rate was 75.0% for all 90 patients with 100 treated lesions. The overall survival rates at 1-, 2- and 3-years were 97.8%, 83.3% and 75.4%, respectively. The local control rates at 1-, 2- and 3-years were 96.4%, 96.4% and 93.1%, respectively. Radiation-induced liver disease was not documented, and 4 patients (4.4%) had their Child-Pugh score elevated by 1 point after CIRT. No grade 3 or higher acute non-hematological toxicities were observed. Six patients (6.7%) experienced grade 3 or higher late toxicities. Conclusion The active scanning technique was clinically feasible to treat HCC by applying necessary mitigation measures for interplay effects. The desirable oncologic outcomes as well as favorable toxicity profiles presented in this study will be a valuable reference for other carbon-ion centers using the PBS technique and local effect model-based system, and add to a growing body of evidence about the role of CIRT in the management of HCC.
Collapse
Affiliation(s)
- Wenna Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
| | - Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
| | - Jiayao Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
| | - Jingfang Zhao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Nachankar A, Schafasand M, Carlino A, Hug E, Stock M, Góra J, Fossati P. Planning Strategy to Optimize the Dose-Averaged LET Distribution in Large Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2023; 15:4903. [PMID: 37835598 PMCID: PMC10571585 DOI: 10.3390/cancers15194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
To improve outcomes in large sarcomas/chordomas treated with CIRT, there has been recent interest in LET optimization. We evaluated 22 pelvic sarcoma/chordoma patients treated with CIRT [large: HD-CTV ≥ 250 cm3 (n = 9), small: HD-CTV < 250 cm3 (n = 13)], DRBE|LEM-I = 73.6 (70.4-73.6) Gy (RBE)/16 fractions, using the local effect model-I (LEM-I) optimization and modified-microdosimetric kinetic model (mMKM) recomputation. We observed that to improve high-LETd distribution in large tumors, at least 27 cm3 (low-LETd region) of HD-CTV should receive LETd of ≥33 keV/µm (p < 0.05). Hence, LETd optimization using 'distal patching' was explored in a treatment planning setting (not implemented clinically yet). Distal-patching structures were created to stop beams 1-2 cm beyond the HD-PTV-midplane. These plans were reoptimized and DRBE|LEM-I, DRBE|mMKM, and LETd were recomputed. Distal patching increased (a) LETd50% in HD-CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm), (b) LETdmin in low-LETd regions of the HD-CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), (c) the GTV fraction receiving LETd of ≥50 keV/µm, (from <10% to >50%) and (d) the high-LETd component in the central region of the GTV, without significant compromise in DRBE distribution. However, distal patching is sensitive to setup/range uncertainties, and efforts to ascertain robustness are underway, before routine clinical implementation.
Collapse
Affiliation(s)
- Ankita Nachankar
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
| | - Mansure Schafasand
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Antonio Carlino
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Markus Stock
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Piero Fossati
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
7
|
Byun HK, Kim C, Seong J. Carbon Ion Radiotherapy in the Treatment of Hepatocellular Carcinoma. Clin Mol Hepatol 2023; 29:945-957. [PMID: 37583055 PMCID: PMC10577350 DOI: 10.3350/cmh.2023.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer with limited treatment options and poor prognosis. Carbon ion radiotherapy (CIRT) has emerged as a promising treatment modality for HCC due to its unique physical and biological properties. CIRT uses carbon ions to target and destroy cancer cells with a high precision and efficacy. The Bragg Peak phenomenon allows precise dose delivery to the tumor while minimizing damage to healthy tissues. In addition, the high relative biological effectiveness of carbon ions can be shown against radioresistant and hypoxic tumor areas. CIRT also offers a shorter treatment schedule than conventional radiotherapy, which increases patient convenience and compliance. The clinical outcomes of CIRT for HCC have shown excellent local control rates with minimal side effects. Considering its physical and biological properties, CIRT may be a viable option for complex clinical scenarios such as patients with poor liver function, large tumors, re-irradiation cases, and tumors close to critical organs. Further research and larger studies are needed to establish definitive indications for CIRT and to compare its efficacy with that of other treatment modalities. Nevertheless, CIRT offers a potential breakthrough in HCC management, providing hope for improved therapeutic outcomes and reduced treatment-related toxicities.
Collapse
Affiliation(s)
- Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Hong Z, Zhang W, Cai X, Yu Z, Sun J, Wang W, Lin L, Zhao J, Cheng J, Zhang G, Zhang Q, Jiang G, Wang Z. Carbon ion radiotherapy with pencil beam scanning for hepatocellular carcinoma: Long-term outcomes from a phase I trial. Cancer Sci 2023; 114:976-983. [PMID: 36310409 PMCID: PMC9986066 DOI: 10.1111/cas.15633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the feasibility of the pencil beam scanning technique of carbon ion radiotherapy (CIRT) in the setting of hepatocellular carcinoma (HCC) and establishes the maximum tolerated dose (MTD) calculated by the Local Effect Model version I (LEM-I) with a dose escalation plan. The escalated relative biological effectiveness-weighted dose levels included 55, 60, 65, and 70 Gy in 10 fractions. Active motion management techniques were employed, and several measures were applied to mitigate the interplay effect induced by a moving target. CIRT was planned with the LEM-I-based treatment planning system and delivered by raster scanning. Offline PET/CT imaging was used to verify the beam range. Offline adaptive replanning was performed whenever required. Twenty-three patients with a median tumor size of 4.3 cm (range, 1.7-8.5 cm) were enrolled in the present study. The median follow-up time was 56.1 months (range, 5.7-74.4 months). No dose limiting toxicity was observed until 70 Gy, and MTD had not been reached. No patients experienced radiation-induced liver disease within 6 months after the completion of CIRT. The overall survival rates at 1, 3, and 5 years were 91.3%, 81.9%, and 67.1% after CIRT, respectively. The local progression-free survival and progression-free survival rates at 1, 3 and 5 years were 100%, 94.4%, and 94.4% and 73.6%, 59.2%, and 37.0%, respectively. The raster scanning technique could be used to treat HCC. However, caution should be exercised to mitigate the interplay effect. CIRT up to 70 Gy in 10 fractions over 2 weeks was safe and effective for HCC.
Collapse
Affiliation(s)
- Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Wenna Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xin Cai
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhan Yu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiayao Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weiwei Wang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lienchun Lin
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingfang Zhao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jingyi Cheng
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Guangyuan Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Zheng Wang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| |
Collapse
|
9
|
Guo Y, Shen R, Wang F, Wang Y, Xia P, Wu R, Liu X, Ye W, Tian Y, Wang D. Carbon ion irradiation induces DNA damage in melanoma and optimizes the tumor microenvironment based on the cGAS-STING pathway. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04577-6. [PMID: 36745223 DOI: 10.1007/s00432-023-04577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
PURPOSES Increased number of studies reveal the crucial role of the Cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway in anti-tumor immunity. In this study, we aim to explore the effect of cGAS/STING on tumor immune microenvironment of melanoma after carbon ion radiotherapy (CIRT) and the underlying mechanism. METHODS C57BL/6 mouse tumor models were used to evaluate the efficacy of different treatments (X-ray, carbon ion, PD-L1 inhibitor and combination therapies) on tumor growth and process. Mass cytometry was performed to assess tumor-infiltrating lymphocytes (TILs). DNA damage response (DDR) and cGAS/STING pathway were investigated by immunofluorescence-co-localization assays, γ-H2AX, P53-binding protein 1 (53BP1), Breast Cancer 1 (BRCA1), and cGAS measurements. RESULTS Carbon ion irradiation caused more DNA damages and cGAS-STING pathway activation compared with X-ray irradiation, and the former slowed the melanoma growth in syngeneic model. Although X-ray irradiation is not sensitive for melanoma treatment, carbon ion irradiation showed a significant anti-tumor effect for melanoma treatment. TILs analysis revealed that CIRT boosted the infiltration of natural killer (NK), CD4+, and CD8+ T cells, meanwhile increased the number of immune checkpoint (programmed death-1, PD-1, lymphocyte activation gene 3, LAG-3 and T-cell immunoglobulin and mucin domain-containing protein 3, TIM-3). Moreover, CIRT increased PD-L1 exposure on cell surface compared with X-ray group. Furthermore, CIRT combined with PD-L1 inhibitor therapy increased the number of T cells and NK cells in melanoma, and slowed the growth of melanoma compared with other therapies. CONCLUSIONS Our findings showed that CIRT displayed biological effects by increasing DNA damages of tumor cells and improving immunity in melanoma, which indicated that CIRT might be a potential synergetic treatment for radiotherapy and radioimmunotherapy in melanoma patients. Our works put forward a new insight to provide an effective strategy for melanoma therapy. These findings may help in the design of strategies on melanoma in clinical studies.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Fang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.,Medical Experimental Centre, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Yutong Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rile Wu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Xiangwen Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.,Department of Internal Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, China.,Medical Experimental Centre, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
| | - Yingxia Tian
- Department of Internal Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China. .,Medical Experimental Centre, Lanzhou University, Lanzhou, 73000, Gansu, China.
| |
Collapse
|
10
|
Fujita N, Kanogawa N, Makishima H, Ogasawara S, Maruta S, Iino Y, Shiko Y, Kanzaki H, Koroki K, Kobayashi K, Kiyono S, Nakamura M, Kondo T, Nakamoto S, Chiba T, Wakatsuki M, Itobayashi E, Obu M, Koma Y, Azemoto R, Kawasaki Y, Kato J, Tsuji H, Kato N. Carbon-ion radiotherapy versus radiofrequency ablation as initial treatment for early-stage hepatocellular carcinoma. Hepatol Res 2022; 52:1060-1071. [PMID: 35951438 DOI: 10.1111/hepr.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
AIM Carbon-ion radiotherapy (C-ion RT) has shown potential as a curative treatment for patients with hepatocellular carcinoma (HCC). However, no reports have compared the effectiveness of C-ion RT and radiofrequency ablation (RFA). This study aimed to compare clinical outcomes between C-ion RT and RFA for patients with early-stage HCC. METHODS Medical records of consecutive patients with HCC (single lesion ≤5 cm or two to three lesions ≤3 cm) who received either C-ion RT or RFA as initial treatment were retrospectively reviewed. Propensity score matching (PSM) was used to adjust for clinical factors between both groups. RESULTS A total of 560 patients were included, among whom 69 and 491 received C-ion RT and RFA, respectively. After PSM (C-ion RT, 54 patients; RFA, 95 patients), both groups were well balanced. Carbon-ion radiotherapy had significantly lower cumulative intrasubsegmental recurrence rate after PSM compared to RFA (p = 0.004) (2-year, 12.6% vs. 31.7%; 5-year, 15.5% vs. 49.6%, respectively). However, no significant difference in cumulative local recurrence rate, stage progression-free survival, or overall survival (OS) was observed between both groups. In the RFA group, 6 of 491 patients (1.2%) showed grade 3 adverse events, whereas no grade 3 or higher adverse events were observed in the C-ion RT group. CONCLUSION Carbon-ion radiotherapy provided a lower cumulative intrasubsegmental recurrence rate, but a comparable cumulative local recurrence rate, stage progression-free survival, and OS compared to RFA. Thus, C-ion RT appears to be one of the effective treatment options for early-stage HCC when RFA is deemed not indicated.
Collapse
Affiliation(s)
- Naoto Fujita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Makishima
- National Institutes for Quantum Science and Technology, QST Hospital, Chiba, Japan.,Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Susumu Maruta
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Yotaro Iino
- Department of Gastroenterology, Kimitsu Chuo Hospital, Kisarazu, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaru Wakatsuki
- National Institutes for Quantum Science and Technology, QST Hospital, Chiba, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Masamichi Obu
- Department of Gastroenterology, Kimitsu Chuo Hospital, Kisarazu, Japan
| | - Yoshihiro Koma
- Department of Gastroenterology, Kimitsu Chuo Hospital, Kisarazu, Japan
| | - Ryosaku Azemoto
- Department of Gastroenterology, Kimitsu Chuo Hospital, Kisarazu, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Tsuji
- National Institutes for Quantum Science and Technology, QST Hospital, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Ogasawara S, Koroki K, Makishima H, Wakatsuki M, Takahashi A, Yumita S, Nakagawa M, Ishino T, Ogawa K, Fujiwara K, Iwanaga T, Sakuma T, Fujita N, Kojima R, Kanzaki H, Kobayashi K, Kiyono S, Nakamura M, Kanogawa N, Saito T, Kondo T, Nakagawa R, Nakamoto S, Muroyama R, Chiba T, Ozawa Y, Kawasaki Y, Kurokawa T, Hanaoka H, Tsuji H, Kato N. Durvalumab with or without tremelimumab combined with particle therapy for advanced hepatocellular carcinoma with macrovascular invasion: protocol for the DEPARTURE phase Ib trial. BMJ Open 2022; 12:e059779. [PMID: 35396315 PMCID: PMC8995959 DOI: 10.1136/bmjopen-2021-059779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) with macrovascular invasion (MVI) has the worst prognosis among all phenotypes. This trial aims to evaluate whether treatment with durvalumab, alone or in combination with tremelimumab, plus particle therapy is a safe and synergistically effective treatment in patients with advanced HCC and MVI. METHODS AND ANALYSIS This phase Ib, multicentre (two sites in Japan), open-label, single-arm, investigator-initiated clinical trial will assess durvalumab monotherapy in combination with particle therapy (cohort A) and that of durvalumab plus tremelimumab in combination with particle therapy (cohort B) for patients with advanced HCC with MVI. Cohort A will receive 1500 mg durvalumab every 4 weeks. Cohort B will receive 1500 mg durvalumab every 4 weeks in principle and 300 mg tremelimumab only on day 1 of the first cycle. Carbon-ion radiotherapy will be administered after day 8 of the first cycle. The primary endpoints are rates of any and severe adverse events, including dose-limiting toxicities (DLTs); secondary endpoints are overall survival, 6-month survival, objective response, 6-month progression-free survival and time to progression. Patients are initially enrolled into cohort A. If cohort A treatment is confirmed to be tolerated (ie, no DLT in three patients or one DLT in six patients), the trial proceeds to enrol more patients into cohort B. Similarly, if cohort B treatment is confirmed to be tolerated (ie, no DLT in three patients or one DLT in six patients), a total of 15 patients will be enrolled into cohort B. ETHICS AND DISSEMINATION This study was approved by the ethics committees of the two participating institutions (Chiba University Hospital and National Institutes for Quantum (approval number: 2020040) and Radiological Science and Technology, QST Hospital (approval number: C20-001)). Participants will be required to provide written informed consent. Trial results will be reported in a peer-reviewed journal publication. TRIAL REGISTRATION NUMBER jRCT2031210046.
Collapse
Affiliation(s)
- Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masaru Wakatsuki
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Asahi Takahashi
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Sae Yumita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyuki Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takamasa Ishino
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kisako Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takafumi Sakuma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoto Fujita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihito Ozawa
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Tomoya Kurokawa
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hideki Hanaoka
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hiroshi Tsuji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Li Z, Li Q, Wang X, Li S, Chen W, Jin X, Liu X, Dai Z, Liu X, Zheng X, Li P, Zhang H, Zhang Q, Luo H, Liu R. Carbon Ion Radiotherapy Acts as the Optimal Treatment Strategy for Unresectable Liver Cancer During the Coronavirus Disease 2019 Crisis. Front Public Health 2021; 9:767617. [PMID: 34957022 PMCID: PMC8695803 DOI: 10.3389/fpubh.2021.767617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has greatly disrupted the normal treatment of patients with liver cancer and increased their risk of death. The weight of therapeutic safety was significantly amplified for decision-making to minimize the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Herein, the safety and effectiveness of carbon ion radiotherapy (CIRT) for unresectable liver cancer (ULC) were evaluated, and Chinese experiences were shared to solve the predicament of ULC treatment caused by SARS-CoV-2. Worldwide studies were collected to evaluate CIRT for ULC as the world has become a community due to the COVID-19 pandemic. We not only searched five international databases including the Cochrane Library, Web of Science, PubMed, Embase, and Scopus but also performed supplementary retrieval with other sources. Chinese experiences of fighting against COVID-19 were introduced based on the advancements of CIRT in China and a prospective clinical trial of CIRT for treating ULC. A total of 19 studies involving 813 patients with ULC were included in the systematic review. The qualitative synthetic evaluation showed that compared with transarterial chemoembolization (TACE), CIRT could achieve superior overall survival, local control, and relative hepatic protection. The systematic results indicated that non-invasive CIRT could significantly minimize harms to patients with ULC and concurrently obtain superior anti-cancer effectiveness. According to the Chinese experience, CIRT allows telemedicine within the hospital (TMIH) to keep a sufficient person-to-person physical distance in the whole process of treatment for ULC, which is significant for cutting off the transmission route of SARS-CoV-2. Additionally, CIRT could maximize the utilization rate of hospitalization and outpatient care (UHO). Collectively, CIRT for ULC patients not only allows TMIH and the maximized UHO but also has the compatible advantages of safety and effectiveness. Therefore, CIRT should be identified as the optimal strategy for treating appropriate ULC when we need to minimize the risk of SARS-CoV-2 infection and to improve the capacity of medical service in the context of the unprecedented COVID-19 crisis.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Sha Li
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| |
Collapse
|
14
|
Ebara M, Shibuya K, Shimada H, Kawashima M, Hirasawa H, Taketomi-Takahashi A, Ohno T, Tsushima Y. Evaluation of Threshold Dose of Damaged Hepatic Tissue After Carbon-Ion Radiation Therapy Using Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging. Adv Radiat Oncol 2021; 6:100775. [PMID: 34934860 PMCID: PMC8655403 DOI: 10.1016/j.adro.2021.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the threshold dose and associated factors using signal-intensity changes in the irradiated area after carbon-ion radiation therapy (C-ion RT) for patients with liver cancer. Methods and Materials Patients treated for the first time with C-ion RT for malignant liver tumors and followed up with 3-Tesla gadoxetic acid (Gd-EOB-DTPA)–enhanced magnetic resonance imaging (MRI) 3 months after treatment completion were retrospectively enrolled. The volume of focal liver reaction (FLR), a low-intensity area in the hepatobiliary phase of Gd-EOB-DTPA after treatment, was measured. Corrected FLR (cFLR) volume, defined as FLR corrected for changes in tumor volume from before to after treatment, was calculated, and the threshold dose was determined by applying the cFLR volume in the dose-volume histogram. To evaluate potential mismatch in fusion images of planning computed tomography and follow-up MRI, the concordance coefficient (CC) was measured, and patients with a CC < 0.7 were excluded. Sixty patients were included. Multiple regression analysis was performed with the threshold dose as the objective variable and the age, dose, number of fractionations, Child-Pugh score, pretreatment liver volume, and pretreatment tumor volume as explanatory variables. The Student t test or Mann-Whitney U test was used as required. Results The median threshold doses for each number of dose fractionations (4 fractions, 12 fractions, and overall) were 51.6, 51.9, and 51.8 Gy (relative biological effectiveness [RBE]), respectively, in patients categorized as Child-Pugh class A and 27.0, 28.8, and 27.0 Gy (RBE), respectively, in patients categorized as Child-Pugh class B. In the multiple-regression analysis, only the Child-Pugh score was significant (P < .001). The number of dose fractionations was not statistically significant. Conclusions Although few patients in the study had decreased liver function, baseline liver function was the only factor significantly associated with the median threshold dose. These findings facilitate appropriate patient selection to receive C-ion RT for malignant hepatic tumors.
Collapse
Affiliation(s)
- Masashi Ebara
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kei Shibuya
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| | | | | | - Hiromi Hirasawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ayako Taketomi-Takahashi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
15
|
Shibuya K, Katoh H, Koyama Y, Shiba S, Okamoto M, Okazaki S, Araki K, Kakizaki S, Shirabe K, Ohno T. Efficacy and Safety of 4 Fractions of Carbon-Ion Radiation Therapy for Hepatocellular Carcinoma: A Prospective Study. Liver Cancer 2021; 11:61-74. [PMID: 35222508 PMCID: PMC8820176 DOI: 10.1159/000520277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 10/16/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Prospective evidence supporting the safety and efficacy of carbon-ion radiotherapy (C-ion RT) for hepatocellular carcinoma (HCC) remains lacking. This prospective study aimed to evaluate the safety and efficacy of hypofractionated C-ion RT in patients with HCC. METHODS The inclusion criteria were as follows: (1) pathologically or clinically diagnosed HCC; (2) measurable tumor and tumor size ≤10 cm; (3) absence of major vascular invasion; (4) no extrahepatic metastasis; (5) the alimentary tract was not adjacent to the target lesion (>1 cm); (6) not suitable for or refusal to undergo surgery or local ablative therapies; (7) an interval ≥4 weeks from previous therapy; (8) no other intrahepatic lesion or at least 2 years after the previous curative therapy; (9) performance status score, 0-2; and (10) Child-Pugh score, 5-9. The prescribed C-ion RT dose was 52.8 Gy (relative biological effectiveness [RBE]) or 60.0 Gy (RBE) in 4 fractions. RESULTS In total, 35 patients with HCC were enrolled between October 2010 and May 2016. The median follow-up durations in the survivor group (n = 23) and in the whole cohort were 55.1 and 49.0 months, respectively. The 2-, 3-, and 4-year overall survival rates were 82.8%, 76.7%, and 69.4%, respectively. The 2-, 3-, and 4-year local control (LC) rates were 92.6%, 76.5%, and 76.5%, respectively. The median time-to-progression was 25.6 months (95% confidence interval, 13.7-37.5 months). Grade 4 or 5 toxicities were not observed. Grade 3 acute and late toxicities were observed in 2 patients. There was no significant deterioration in serum albumin, bilirubin, prothrombin time-international normalized ratio, platelet count, or Child-Pugh score after C-ion RT. CONCLUSION Four fractions of C-ion RT for HCC did not yield serious adverse events and showed promising LC, thus making it a safe and effective modality for this type of malignancy.
Collapse
Affiliation(s)
- Kei Shibuya
- Gunma University Heavy Ion Medical Center, Maebashi, Japan,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan,*Kei Shibuya,
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshinori Koyama
- Department of Diagnostic Radiology, Shibukawa Medical Center, Shibukawa, Japan
| | - Shintaro Shiba
- Gunma University Heavy Ion Medical Center, Maebashi, Japan,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Okamoto
- Gunma University Heavy Ion Medical Center, Maebashi, Japan,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shohei Okazaki
- Gunma University Heavy Ion Medical Center, Maebashi, Japan,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenichiro Araki
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Japan,Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Abousaida B, Seneviratne D, Hoppe BS, Ko SJ, Asaithamby A, Cucinotta FA, Kirwan JM, Mody K, Toskich B, Ashman JB, Hallemeier CL, Krishnan S. Carbon Ion Radiotherapy in the Management of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1169-1179. [PMID: 34595139 PMCID: PMC8478421 DOI: 10.2147/jhc.s292516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Localized hepatocellular carcinoma (HCC) that is unresectable and non-transplantable can be treated by several liver-directed therapies. External beam radiation therapy (EBRT) is an increasingly accepted and widely utilized treatment modality in this setting. Accelerated charged particles such as proton beam therapy (PBT) and carbon ion radiation therapy (CIRT) offer technological advancements over conventional photon radiotherapy. In this review, we summarize the distinct advantages of CIRT use for HCC treatment, focusing on physical and biological attributes, and outline dosimetric and treatment planning caveats. Based on these considerations, we posit that HCC may be among the best indications for use of CIRT, as it allows for maximizing tumoricidal doses to the target volume while minimizing the dose to the organs at risk.
Collapse
Affiliation(s)
- Belal Abousaida
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Stephen J Ko
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francis A Cucinotta
- School of Integrated Health Sciences, University of Las Vegas, Las Vegas, NV, USA
| | - Jessica M Kirwan
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Kabir Mody
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Beau Toskich
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jonathan B Ashman
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
17
|
Okazaki S, Shibuya K, Shiba S, Okamoto M, Miyasaka Y, Osu N, Kawashima M, Kakizaki S, Araki K, Shirabe K, Ohno T. Carbon ion radiotherapy for patients with hepatocellular carcinoma in the caudate lobe carbon ion radiotherapy for hepatocellular carcinoma in caudate lobe. Hepatol Res 2021; 51:303-312. [PMID: 33350034 DOI: 10.1111/hepr.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
AIM The treatment of hepatocellular carcinoma in the caudate lobe (HCCCL) is technically challenging. We aimed to investigate the efficacy and toxicity of carbon ion radiotherapy (C-ion RT) for HCCCL. METHODS Patients with HCCCL treated with C-ion RT at our hospital between January 2011 and December 2018 were evaluated. The total dose was 52.8 or 60 Gy (relative biological effectiveness) in four or 12 fractions depending on the distance between the tumor and the gastrointestinal tract. The survival outcome, the presence or absence of recurrence (local recurrence, intrahepatic recurrence outside the irradiation field, or extrahepatic recurrence), and acute/late adverse events were evaluated. RESULTS Nine patients were included. The median tumor size was 3.4 cm, and the median follow-up duration was 18.3 months for all patients. No patient developed local recurrence during follow-up. Five patients subsequently developed intrahepatic recurrence outside the irradiation field and two had extrahepatic metastasis. Five patients died of hepatocellular carcinoma. No acute adverse events of grade ≥2 were observed. Two patients experienced grade 2 or 3 late adverse events, including obstructive jaundice, hepatic encephalopathy, ascites, and edema. CONCLUSION Carbon ion radiotherapy for HCCCL achieved excellent local control with acceptable adverse events and can thus be a curative treatment option for HCCCL.
Collapse
Affiliation(s)
- Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Naoto Osu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Gunma, Japan
| | - Kenichiro Araki
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
18
|
Treatment stage migration and treatment sequences in patients with hepatocellular carcinoma: drawbacks and opportunities. J Cancer Res Clin Oncol 2021; 147:2471-2481. [PMID: 33537908 PMCID: PMC8236446 DOI: 10.1007/s00432-021-03528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Purpose This retrospective analysis focuses on treatment stage migration in patients with hepatocellular carcinoma (HCC) to identify successful treatment sequences in a large cohort of real-world patients. Methods 1369 HCC patients referred from January 1993 to January 2020 to the tertiary center of the Heidelberg University Hospital, Germany were analyzed for initial and subsequent treatment patterns, and overall survival. Results The most common initial treatment was transarterial chemoembolization (TACE, n = 455, 39.3%) followed by hepatic resection (n = 303, 26.1%) and systemic therapy (n = 200, 17.3%), whereas the most common 2nd treatment modality was liver transplantation (n = 215, 33.2%) followed by systemic therapy (n = 177, 27.3%) and TACE (n = 85, 13.1%). Kaplan–Meier analysis revealed by far the best prognosis for liver transplantation recipients (median overall survival not reached), followed by patients with hepatic resection (11.1 years). Patients receiving systemic therapy as their first treatment had the shortest median overall survival (1.7 years; P < 0.0001). When three or more treatment sequences preceded liver transplantation, patients had a significant shorter median overall survival (1st seq.: not reached; 2nd seq.: 12.4 years; 3rd seq.: 11.1 years; beyond 3 sequences: 5.5 years; P = 0.01). Conclusion TACE was the most common initial intervention, whereas liver transplantation was the most frequent 2nd treatment. While liver transplantation and hepatic resection were associated with the best median overall survival, the timing of liver transplantation within the treatment sequence strongly affected median survival. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03528-3.
Collapse
|
19
|
Four-dimensional carbon-ion pencil beam treatment planning comparison between robust optimization and range-adapted internal target volume for respiratory-gated liver and lung treatment. Phys Med 2020; 80:277-287. [PMID: 33246187 DOI: 10.1016/j.ejmp.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 01/30/2023] Open
Abstract
We investigated the dose differences between robust optimization-based treatment planning (4DRO) and range-adapted internal target volume (rITV). We used 4DCT dataset of 20 lung cancer and 20 liver cancer patients, respectively, who had been treated with respiratory-gated carbon-ion pencil beam scanning therapy. 4DRO and rITV plans were created with the same clinical target volume (CTV) and organs at risk (OAR) contours. Four-dimensional dose distribution was calculated using deformable image registration. Dose metrics (e.g. D95, V20) were analyzed. Statistical significance was assessed by the Wilcoxon signed-rank test. For the lung cases, the mean CTV-D95 value for the rITV plan (=98.5%) was same as that for the 4DRO plan (=98.5%, P = 0.106), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.2%) was higher than that for the 4DRO plan (95.2%, P < 0.001). For the liver cases, the mean CTV-D95 value for the rITV plan (=98.1%) was slightly lower than that for the 4DRO plan (=98.5%, P < 0.01), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.0%) was higher than that for the 4DRO plan (94.1%, P < 0.001). For the doses to the organs at risk (OARs), the ipsilateral lung-V20/liver-V20 values for the rITV plan (=10.1%/19.7%) was significantly higher than that for the 4DRO plan (=8.6%/17.6, P < 0.001). Although the target coverage for 4DRO plan may be worse than that for rITV plan in the presence of the setup error, the 4DRO plan can improve OAR dose while preserving acceptable target dose coverage.
Collapse
|
20
|
Meschini G, Vai A, Paganelli C, Molinelli S, Maestri D, Fontana G, Pella A, Vitolo V, Valvo F, Ciocca M, Baroni G. Investigating the use of virtual 4DCT from 4DMRI in gated carbon ion radiation therapy of abdominal tumors. Z Med Phys 2020; 32:98-108. [PMID: 33069586 PMCID: PMC9948849 DOI: 10.1016/j.zemedi.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To generate virtual 4DCT from 4DMRI with field of view (FOV) extended to the entire involved patient anatomy, in order to evaluate its use in carbon ion radiation therapy (CIRT) of the abdominal site in a clinical scenario. MATERIALS AND METHODS The virtual 4DCT was generated by deforming a reference CT in order to (1) match the anatomy depicted in the 4DMRI within its FOV, by calculating deformation fields with deformable image registration to describe inter-fractional and breathing motion, and (2) obtain physically plausible deformation outside of the 4DMRI FOV, by propagating and modulating the previously obtained deformation fields. The implemented method was validated on a digital anthropomorphic phantom, for which a ground truth (GT) 4DCT was available. A CIRT treatment plan was optimized at the end-exhale reference CT and the RBE-weighted dose distribution was recalculated on both the virtual and GT 4DCTs. The method estimation error was quantified by comparing the virtual and GT 4DCTs and the corresponding recomputed doses. The method was then evaluated on 8 patients with pancreas or liver tumors treated with CIRT using respiratory gating at end-exhale. The clinical treatment plans adopted at the National Center for Oncological Hadrontherapy (CNAO, Pavia, Italy) were considered and the dose distribution was recomputed on all respiratory phases of the planning and virtual 4DCTs. By comparing the two datasets and the corresponding dose distributions, the geometrical and dosimetric impact of organ motion was assessed. RESULTS For the phantom, the error outside of the 4DMRI FOV was up to 4.5mm, but it remained sub-millimetric in correspondence to the target within the 4DMRI FOV. Although the impact of motion on the target D95% resulted in variations ranging from 22% to 90% between the planned dose and the doses recomputed on the GT 4DCT phases, the corresponding estimation error was ≤2.2%. In the patient cases, the variation of the baseline tumor position between the planning and the virtual end-exhale CTs presented a median (interquartile range) value of 6.0 (4.9) mm. For baseline variations larger than 5mm, the tumor D95% variation between the plan and the dose recomputed on the end-exhale virtual CT resulted larger than 10%. Median variations higher than 10% in the target D95% and gastro-intestinal OARs D2% were quantified at the end-inhale, whereas close to the end-exhale phase, limited variations of relevant dose metrics were found for both tumor and OARs. CONCLUSIONS The negligible impact of the geometrical inaccuracy in the estimated anatomy outside of the 4DMRI FOV on the overall dosimetric accuracy suggests the feasibility of virtual 4DCT with extended FOV in CIRT of the abdominal site. In the analyzed patient group, inter-fractional variations such as baseline variation and breathing variability were quantified, demonstrating the method capability to support treatment planning in gated CIRT of the abdominal site.
Collapse
Affiliation(s)
- Giorgia Meschini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy.
| | - Alessandro Vai
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy
| | | | - Davide Maestri
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Giulia Fontana
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Andrea Pella
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Francesca Valvo
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy,Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy
| |
Collapse
|
21
|
Efficacy and Safety of the Radiotherapy for Liver Cancer: Assessment of Local Controllability and its Role in Multidisciplinary Therapy. Cancers (Basel) 2020; 12:cancers12102955. [PMID: 33066141 PMCID: PMC7601963 DOI: 10.3390/cancers12102955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
This study investigated the efficacy and safety of radiotherapy as part of multidisciplinary therapy for advanced hepatocellular carcinoma (HCC). Clinical data of 49 HCC patients treated with radiotherapy were assessed retrospectively. The efficacy of radiotherapy was assessed by progression-free survival, disease control rate, and overall survival. Safety was assessed by symptoms and hematological assay, and changes in hepatic reserve function were determined by Child-Pugh score and albumin-bilirubin (ALBI) score. Forty patients underwent curative radiotherapy, and nine patients with portal vein tumor thrombus (PVTT) underwent palliative radiotherapy as part of multidisciplinary therapy. Local disease control for curative therapy was 80.0% and stereotactic body radiotherapy was 86.7% which was greater than that of conventional radiotherapy (60.0%). Patients with PVTT had a median observation period of 651 days and 75% three-year survival when treated with multitherapy, including radiotherapy for palliative intent, transcatheter arterial chemoembolization, and administration of molecular targeted agents. No adverse events higher than grade 3 and no changes in the Child-Pugh score and ALBI score were seen. Radiotherapy is safe and effective for HCC treatment and can be a part of multidisciplinary therapy.
Collapse
|
22
|
Shiba S, Shibuya K, Okamoto M, Okazaki S, Komatsu S, Kubota Y, Nakano T, Ohno T. Clinical impact of Hypofractionated carbon ion radiotherapy on locally advanced hepatocellular carcinoma. Radiat Oncol 2020; 15:195. [PMID: 32795340 PMCID: PMC7427730 DOI: 10.1186/s13014-020-01634-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) involving a major branch of the portal or hepatic vein is in a locally advanced stage and remains difficult to cure. This study aimed to evaluate the clinical effects of carbon ion radiotherapy (C-ion RT) in locally advanced HCC (LAHCC). Methods The data of 11 consecutive patients with LAHCC who received C-ion RT were analyzed. The C-ion RT doses of 52.8 Gy (relative biological effectiveness [RBE]) and 60.0 Gy (RBE) were delivered in 4 fractions for standard cases, and the 60.0 Gy dose was delivered in 12 fractions for close-to-gastrointestinal-tract cases. Survival and local control probabilities were calculated using the Kaplan-Meier method. Results The median follow-up duration after C-ion RT was 36.4 months. The median age at the time of registration for C-ion RT was 76 years. The median tumor size was 53 mm. The numbers of treatment-naive and recurrent HCC patients were 1 and 10, respectively. Direct invasion of the major branch of the portal vein, hepatic vein, or both portal and hepatic veins was observed in three, five, and three patients, respectively. The 3-year overall survival, local control, and progression-free survival rates were 64, 78, and 18%, respectively. No patient developed radiation-induced liver diseases or grade 3 or higher toxicities in the acute and late phases. Conclusions C-ion RT showed favorable clinical outcomes with a high rate of local control and minimal toxicities in LAHCC. Our findings suggest that C-ion RT is a promising multidisciplinary treatment option in LAHCC.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shuichiro Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
23
|
Kalantzopoulos C, Meschini G, Paganelli C, Fontana G, Vai A, Preda L, Vitolo V, Valvo F, Baroni G. Organ motion quantification and margins evaluation in carbon ion therapy of abdominal lesions. Phys Med 2020; 75:33-39. [PMID: 32485596 DOI: 10.1016/j.ejmp.2020.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/03/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In image-guided particle radiotherapy of abdominal lesions, respiratory motion hinders treatment accuracy. In this study, 2D cineMRI data were used to quantify the tumor (GTV) motion and to evaluate the clinical approach based on deriving an internal target volume (ITV) from a planning 4DCT for gating treatments. METHODS Seven patients with abdominal lesions were treated with carbon-ion therapy at the National Centre of Oncological Hadron-therapy (Italy). The MR scan was performed on the same day of the 4DCT acquisition. For four patients, an additional MR was acquired approximately after 1 week. The cineMRI combined with deformable image registration algorithm was used to quantify tumor motion. Afterwards, two ITVs were defined considering (1) all phases (ITVFB) and (2) only phases within the gating window (ITVG), and then compared with the clinical (4DCT-derived) ITVs (ITVCG and ITVCFB). RESULTS Tumor residual motion estimated by cineMRI data in the two MRI sessions resulted not significantly different from 4DCT, although cineMRI accounted for cycle-to-cycle variations. The ITV normalized for the GTV median values were higher for ITVFB with respect to ITVG, ITVCFB and ITVCG. The Hausdorff distances with respect to the GTV were up to 10.55 mm, 3.13 mm, 5.56 mm and 2.51 mm, for ITVFB, ITVG, ITVCFB and ITVCG, respectively. According to both metrics, ITVCG and ITVG were not found significantly different. CONCLUSIONS CineMRI acquisitions allowed to quantify organ motion without delivering additional dose to the patient and to verify treatment margins in gated carbon-ion therapy of abdominal lesions.
Collapse
Affiliation(s)
| | - Giorgia Meschini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Giulia Fontana
- Centro Nazionale di Adroterapia Oncologica, Str. Campeggi, 53, 27100 Pavia, Italy
| | - Alessandro Vai
- Centro Nazionale di Adroterapia Oncologica, Str. Campeggi, 53, 27100 Pavia, Italy
| | - Lorenzo Preda
- Centro Nazionale di Adroterapia Oncologica, Str. Campeggi, 53, 27100 Pavia, Italy
| | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica, Str. Campeggi, 53, 27100 Pavia, Italy
| | - Francesca Valvo
- Centro Nazionale di Adroterapia Oncologica, Str. Campeggi, 53, 27100 Pavia, Italy
| | - Guido Baroni
- Centro Nazionale di Adroterapia Oncologica, Str. Campeggi, 53, 27100 Pavia, Italy; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
24
|
Shibata O, Kamimura K, Azumi R, Shibuya K, Shiba S, Ohno T, Terai S. Huge liver tumor in young man. JGH Open 2020; 4:301-302. [PMID: 32280786 PMCID: PMC7144760 DOI: 10.1002/jgh3.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022]
Abstract
Intrahepatic cholangiocarcinoma is the second leading primary hepatic tumors, accounting for 5% of all hepatic tumors. The curability depends on the operability; however, the difficulty of early diagnosis and late clinical presentation account for the poor prognosis. Therefore, development of a novel therapeutic option and a method to determine the viability of the primary tumor, which hinder the assessment of the impact of other therapies, including chemotherapy and radiotherapy are needed. Although FDG–PET has been used to detect distant metastases of ICC, which are present in 20% of patients at the initial diagnosis, little is known about the efficacy of FDG–PET of the primary lesion of ICC. Here, we present the case of a 31‐year‐old male diagnosed with unresectable ICC and successfully treated with carbon‐ion radiation, and present the usefulness of fluorodeoxyglucose–positron emission tomography in the determination of the viability of the tumor.
Collapse
Affiliation(s)
- Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata University Niigata Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata University Niigata Japan
| | - Rie Azumi
- Department of Gastroenterology and HepatologyKameda Daiichi Hospital Niigata Japan
| | - Kei Shibuya
- Gunma University Heavy Ion Medical Center Maebashi Japan
| | - Shintaro Shiba
- Gunma University Heavy Ion Medical Center Maebashi Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center Maebashi Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata University Niigata Japan
| |
Collapse
|
25
|
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol 2020; 10:82. [PMID: 32117737 PMCID: PMC7010911 DOI: 10.3389/fonc.2020.00082] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the most widely used therapies for malignancies. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to advantageous physical and radiobiologic properties compared to photon based therapy. By taking advantage of these unique properties, carbon ion radiotherapy may allow dose escalation to tumors while reducing radiation dose to adjacent normal tissues. There are currently 13 centers treating with carbon ion radiotherapy, with many of these centers publishing promising safety and efficacy data from the first cohorts of patients treated. To date, carbon ion radiotherapy has been studied for almost every type of malignancy, including intracranial malignancies, head and neck malignancies, primary and metastatic lung cancers, tumors of the gastrointestinal tract, prostate and genitourinary cancers, sarcomas, cutaneous malignancies, breast cancer, gynecologic malignancies, and pediatric cancers. Additionally, carbon ion radiotherapy has been studied extensively in the setting of recurrent disease. We aim to provide a comprehensive review of the studies of each of these disease sites, with a focus on the current trials using carbon ion radiotherapy.
Collapse
|
26
|
Isozaki Y, Takiyama H, Bhattacharyya T, Ebner D, Kasuya G, Makishima H, Tsuji H, Kamada T, Yamada S. Heavy charged particles for gastrointestinal cancers. J Gastrointest Oncol 2020; 11:203-211. [PMID: 32175123 DOI: 10.21037/jgo.2019.03.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbon ion beams constitute the primary delivery method of heavy ion radiotherapy. It offers improved dose distribution, and enables concentration of dose within target volumes with minimal extraneous exposure of normal tissue, while delivering superior biological effect in comparison with photon and proton technologies. Here, we review the application of this technology to various gastrointestinal cancers.
Collapse
Affiliation(s)
- Yuka Isozaki
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tapesh Bhattacharyya
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniel Ebner
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Goro Kasuya
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
27
|
Meschini G, Vai A, Paganelli C, Molinelli S, Fontana G, Pella A, Preda L, Vitolo V, Valvo F, Ciocca M, Riboldi M, Baroni G. Virtual 4DCT from 4DMRI for the management of respiratory motion in carbon ion therapy of abdominal tumors. Med Phys 2020; 47:909-916. [PMID: 31880819 DOI: 10.1002/mp.13992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate a method for generating virtual four-dimensional computed tomography (4DCT) from four-dimensional magnetic resonance imaging (4DMRI) data in carbon ion radiotherapy with pencil beam scanning for abdominal tumors. METHODS Deformable image registration is used to: (a) register each respiratory phase of the 4DMRI to the end-exhale MRI; (b) register the reference end-exhale CT to the end-exhale MRI volume; (c) generate the virtual 4DCT by warping the registered CT according to the obtained deformation fields. A respiratory-gated carbon ion treatment plan is optimized on the planning 4DCT and the corresponding dose distribution is recalculated on the virtual 4DCT. The method was validated on a digital anthropomorphic phantom and tested on eight patients (18 acquisitions). For the phantom, a ground truth dataset was available to assess the method performances from the geometrical and dosimetric standpoints. For the patients, the virtual 4DCT was compared with the planning 4DCT. RESULTS In the phantom, the method exhibits a geometrical accuracy within the voxel size and Dose Volume Histograms deviations up to 3.3% for target V95% (mean dose difference ≤ 0.2% of the prescription dose, gamma pass rate > 98%). For patients, the virtual and the planning 4DCTs show good agreement at end-exhale (3% median D95% difference), whereas other respiratory phases exhibit moderate motion variability with consequent dose discrepancies, confirming the need for motion mitigation strategies during treatment. CONCLUSIONS The virtual 4DCT approach is feasible to evaluate treatment plan robustness against intra- and interfraction motion in carbon ion therapy delivered at the abdominal site.
Collapse
Affiliation(s)
- Giorgia Meschini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, 20133, Italy
| | - Alessandro Vai
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, 20133, Italy
| | | | - Giulia Fontana
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| | - Andrea Pella
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| | - Lorenzo Preda
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| | - Francesca Valvo
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| | - Marco Riboldi
- Chair of Experimental Physics - Medical Physics, Ludwig-Maximilians-Universität (LMU), Munich, 80539, Germany
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, 20133, Italy.,Centro Nazionale di Adroterapia Oncologica, Pavia, 27100, Italy
| |
Collapse
|
28
|
Hsu CY, Wang CW, Cheng AL, Kuo SH. Hypofractionated particle beam therapy for hepatocellular carcinoma-a brief review of clinical effectiveness. World J Gastrointest Oncol 2019; 11:579-588. [PMID: 31435460 PMCID: PMC6700034 DOI: 10.4251/wjgo.v11.i8.579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the second leading cause of cancer mortality worldwide. The cornerstone to improving the prognosis of HCC patients has been the control of loco-regional disease progression and the lesser toxicities of local treatment. Although radiotherapy has not been considered a preferred treatment modality for HCC, charged particle therapy (CPT), including proton beam therapy (PBT) and carbon ion radiotherapy (CIRT), possesses advantages (for example, it allows ablative radiation doses to be applied to tumors but simultaneously spares the normal liver parenchyma from radiation) and has emerged as an alternative treatment option for HCC. With the technological advancements in CPT, various radiation dosages of CPT have been used for HCC treatment via CPT. However, the efficacy and safety of the evolving dosages remain uncertain. To assess the association between locoregional control of HCC and the dose and regimen of CPT, we provide a brief overview of selected literature on dose regimens from conventional to hypofractionated short-course CPT in the treatment of HCC and the subsequent determinants of clinical outcomes. Overall, CPT provides a better local control rate compared with photon beam therapy, ranging from 80% to 96%, and a 3-year overall survival ranging from 50% to 75%, and it results in rare grade 3 toxicities of the late gastrointestinal tract (including radiation-induced liver disease). Regarding CPT for the treatment of locoregional HCC, conventional CPT is preferred to treat central tumors of HCC to avoid late toxicities of the biliary tract. In contrast, the hypo-fractionation regimen of CPT is suggested for treatment of larger-sized tumors of HCC to overcome potential radio-resistance.
Collapse
Affiliation(s)
- Che-Yu Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chun-Wei Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ann-Lii Cheng
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Internal Medicine and Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
29
|
Precision Locoregional Therapies for Hepatocellular Carcinoma: Percutaneous Ablation and Radiotherapy. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-21540-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
30
|
Shiba S, Shibuya K, Katoh H, Kaminuma T, Miyazaki M, Kakizaki S, Shirabe K, Ohno T, Nakano T. A comparison of carbon ion radiotherapy and transarterial chemoembolization treatment outcomes for single hepatocellular carcinoma: a propensity score matching study. Radiat Oncol 2019; 14:137. [PMID: 31375120 PMCID: PMC6679447 DOI: 10.1186/s13014-019-1347-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We compared clinical outcomes of carbon ion radiotherapy and transarterial chemoembolization in the treatment of hepatocellular carcinoma. METHODS Data of 477 patients with hepatocellular carcinoma who had undergone carbon ion radiotherapy or transarterial chemoembolization between April 2007 and September 2016 were retrospectively reviewed. Treatment naïve patients with single HCC, who underwent carbon ion radiotherapy or transarterial chemoembolization as a primary treatment were included. Clinical outcomes of the treatments were compared after utilizing propensity score matching. RESULTS Of 124 patients who received carbon ion radiotherapy and 353 patients who received transarterial chemoembolization, 31 and 23 patients met our inclusion criteria, respectively. After utilizing propensity score matching, 17 matched pairs of patients from each treatment group were analyzed. The median follow-up durations after carbon ion radiotherapy and transarterial chemoembolization were 43 and 32 months, respectively. The 3-year overall survival, local control, and progression-free survival rates in the carbon ion radiotherapy versus transarterial chemoembolization groups were 88% versus 58% (p < 0.05), 80% versus 26% (p < 0.01), and 51% versus 15% (p < 0.05), respectively. CONCLUSIONS Carbon ion radiotherapy showed more favorable clinical outcomes than did transarterial chemoembolization for patients with single hepatocellular carcinoma after matching patient characteristics utilizing propensity score matching. Further studies with larger patient numbers are required to confirm our results. TRIAL REGISTRATION UMIN000036455 : date of registration 22 March 2019, retrospectively registered.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/therapy
- Chemoembolization, Therapeutic/mortality
- Female
- Heavy Ion Radiotherapy/mortality
- Humans
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/therapy
- Male
- Middle Aged
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Neoplasm Recurrence, Local/therapy
- Prognosis
- Propensity Score
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
- Gunma University Heavy Ion Medical Center, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515 Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
| | - Masaya Miyazaki
- Department of Applied Medical Imaging, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 Japan
| | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Syowa-machi, Maebashi, Gunma 371-8511 Japan
| |
Collapse
|
31
|
Da Fonseca LG, Forner A. Carbon-ion radiotherapy for HCC-A potential tool to fulfil an unmet gap in the treatment algorithms? Liver Int 2018; 38:2132-2133. [PMID: 30480378 DOI: 10.1111/liv.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Leonardo G Da Fonseca
- BCLC Group, Liver Unit, Hospital Clínic de Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- BCLC Group, Liver Unit, Hospital Clínic de Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|