1
|
Cathcart J, Barrett R, Bowness JS, Mukhopadhya A, Lynch R, Dillon JF. Accuracy of Non-Invasive Imaging Techniques for the Diagnosis of MASH in Patients With MASLD: A Systematic Review. Liver Int 2024. [PMID: 39400428 DOI: 10.1111/liv.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing public health problem. The secondary stage in MASLD is steatohepatitis (MASH), the co-existence of steatosis and inflammation, a leading cause of progression to fibrosis and mortality. MASH resolution alone improves survival. Currently, MASH diagnosis is via liver biopsy. This study sought to evaluate the accuracy of imaging-based tests for MASH diagnosis, which offer a non-invasive method of diagnosis. METHODS Eight academic literature databases were searched and references of previous systematic reviews and included papers were checked for additional papers. Liver biopsy was used for reference standard. RESULTS We report on 69 imaging-based studies. There were 31 studies on MRI, 27 on ultrasound, five on CT, 13 on transient elastography, eight on controlled attenuation parameter (CAP) and two on scintigraphy. The pathological definition of MASH was inconsistent, making it difficult to compare studies. 55/69 studies (79.71%) were deemed high-risk of bias as they had no preset thresholds and no validation. The two largest groups of imaging papers were on MRI and ultrasound. AUROCs were up to 0.93 for MRE, 0.90 for MRI, 1.0 for magnetic resonance spectroscopy (MRS) and 0.94 for ultrasound-based studies. CONCLUSIONS Our study found that the most promising imaging tools are MRI techniques or ultrasound-based scores and confirmed there is potential to utilise these for MASH diagnosis. However, many publications are single studies without independent prospective validation. Without this, there is no clear imaging tool or score currently available that is reliably tested to diagnose MASH.
Collapse
Affiliation(s)
- Jennifer Cathcart
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- Gastroenterology Department, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Rachael Barrett
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James S Bowness
- University College London Hospitals NHS Foundation Trust, London, UK
- Department of Targeting Intervention, University College London, London, UK
| | | | - Ruairi Lynch
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Hellmann PH, Bagger JI, Carlander KR, Forman J, Chabanova E, Svenningsen JS, Holst JJ, Gillum MP, Vilsbøll T, Knop FK. The effect of curcumin on hepatic fat content in individuals with obesity. Diabetes Obes Metab 2022; 24:2192-2202. [PMID: 35775631 PMCID: PMC9804166 DOI: 10.1111/dom.14804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/05/2023]
Abstract
AIM To evaluate the effect of curcumin treatment on hepatic fat content in obese individuals. MATERIALS AND METHODS In a double-blind, parallel-group trial, 37 obese, non-diabetic individuals were randomized to placebo or curcumin treatment for 6 weeks. Curcumin was dosed as lecithin-formulated tablet; 200 mg twice daily. The primary endpoint was hepatic fat content as assessed by magnetic resonance spectroscopy (MRS). Other endpoints included anthropometric measurements, hepatic biomarkers including FibroScan measurements, metabolic variables, inflammation markers, appetite measures and ad libitum food intake. RESULTS Baseline characteristics (mean ± SD) were age 46 ± 14 years, hepatic fat content 12.2% ± 8.8% points, body mass index 38.8 ± 6.1 kg/m2 and waist circumference 125.8 ± 12.3 cm. After 6 weeks of treatment with curcumin, hepatic fat content was changed by -0.86% points (95% CI -3.65; 1.94) compared with 0.71% points (95% CI - 2.08; 3.51) with placebo, thus resulting in a non-significant estimated treatment difference of -1.57% points (95% CI -5.36; 2.22, P = .412). Compared with placebo, curcumin treatment caused small reductions in fasting plasma glucose (estimated treatment difference [ETD] - 0.24 mmol/L [95% CI -0.45; -0.03]), triglycerides (ETD [percentage change] -20.22% [95% CI -33.21; -6.03]) and gamma glutamyltransferase (ETD [percentage change] -15.70% [95% CI -23.32; -7.32]), but except for gamma glutamyltransferase, none of these differences remained statistically significant after adjusting for multiple testing. Treatment was well tolerated. CONCLUSIONS Compared with placebo, curcumin treatment for 6 weeks had no significant effect on MRS-assessed hepatic fat content in obese individuals with primarily mild steatosis. Curcumin was well tolerated.
Collapse
Affiliation(s)
- Pernille H. Hellmann
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Clinical Research, Steno Diabetes Center CopenhagenHerlevDenmark
| | - Katrine R. Carlander
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
| | - Julie Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Elizaveta Chabanova
- Department of Radiology, Herlev HospitalUniversity of CopenhagenHerlevDenmark
| | - Jens S. Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Matthew P. Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research, Steno Diabetes Center CopenhagenHerlevDenmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte HospitalUniversity of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research, Steno Diabetes Center CopenhagenHerlevDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.
AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.
METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https://www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review.
RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.
CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
4
|
Guan X, Chen YC, Xu HX. New horizon of ultrasound for screening and surveillance of non-alcoholic fatty liver disease spectrum. Eur J Radiol 2022; 154:110450. [PMID: 35917757 DOI: 10.1016/j.ejrad.2022.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022]
|
5
|
Hepatic Steatosis Index and the Risk of Type 2 Diabetes Mellitus in China: Insights from a General Population-Based Cohort Study. DISEASE MARKERS 2022; 2022:3150380. [PMID: 35968500 PMCID: PMC9365599 DOI: 10.1155/2022/3150380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Purpose In the Chinese population, we looked at the relationship between the hepatic steatosis index (HSI) and the risk of type 2 diabetes mellitus (T2DM). Methods To evaluate the association between HSI and the risk of T2DM, Cox regression models were employed. Hazard ratios (HR) and 95 percent confidence intervals (CI) were computed. A stratified analysis with interaction testing was also carried out. Additionally, we evaluated the incremental predictive value of the HSI over the established risk factors using the C-statistic, the IDI, and the NRI. Results During a median follow-up period of 2.97 years, 433 (1.97%) participants developed new-onset T2DM. The smoothing curve fit plot showed a positive correlation between HSI and the risk of T2DM. After adjusting for all noncollinear variables, the risk of T2DM increased by 62% for every 1 standard deviation (SD) increase in HSI. Subgroup analysis indicated that higher HSI levels were associated with a higher risk of T2DM in those aged < 40 years. The addition of HSI enhanced the reclassification and discrimination of established risk factors, with an IDI of 0.027 and an NRI of 0.348 (both P < 0.001). Conclusion Our findings suggest that an elevated HSI is substantially associated with a greater risk of T2DM in the Chinese population. HSI has the potential to be an available and supplementary monitoring method for the management of T2DM risk stratification in the Chinese population.
Collapse
|
6
|
Blank V, Petroff D, Wiegand J, Karlas T. M probe comes first: Impact of initial probe choice on diagnostic performance of vibration controlled transient elastography. Dig Liver Dis 2022; 54:358-364. [PMID: 34446354 DOI: 10.1016/j.dld.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Probe choice (M or XL) in transient elastography can be made by the user's own measure of skin-to-liver-capsule distance (SCD) or with an automated tool (AUTO). We studied how AUTO depends on initial probe choice. METHODS Three fictive clinics were considered: The "M-first clinic" uses AUTO from the M probe, the "XL-first clinic" uses AUTO from the XL probe and a "reference clinic" measures SCD independently. Agreement and discrepancies to the reference clinic were measured. RESULTS 200 patients with chronic liver disease were prospectively included (58% female, 56 years, BMI 28.1 kg/m²). Fleiss' kappa for agreement in probe selection was 0.11 (95% CI -0.09 to 0.31), but accuracy was above 0.8 for both. Probe failure occurred for 16 (M-first clinic), 4 (XL-first clinic) and 3 patients (reference clinic). Use of XL probe given M probe failure improved performance of the M-first approach. The odds ratio for discrepancy in the XL-first vs M-first clinic is 2.4 (95% CI 1.2 to 5.2, p = 0.012) for liver fibrosis and 4.8 (95% CI 1.8 to 16.1, p < 0.001) for steatosis. CONCLUSIONS Agreement in AUTO between M and XL probes is poor although each has acceptable accuracy. The M-first approach leads to fewer discrepancies and should be adopted as a standard.
Collapse
Affiliation(s)
- Valentin Blank
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig, Germany; Integrated Research and Treatment Center (IFB) AdiposityDiseases, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - David Petroff
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany; Clinical Trial Centre Leipzig, University of Leipzig, Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Friedman SL, Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022; 75:473-488. [PMID: 34923653 DOI: 10.1002/hep.32285] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Steady progress over four decades toward understanding the pathogenesis and clinical consequences of hepatic fibrosis has led to the expectation of effective antifibrotic drugs, yet none has been approved. Thus, an assessment of the field is timely, to clarify priorities and accelerate progress. Here, we highlight the successes to date but, more importantly, identify gaps and unmet needs, both experimentally and clinically. These include the need to better define cell-cell interactions and etiology-specific elements of fibrogenesis and their link to disease-specific drivers of portal hypertension. Success in treating viral hepatitis has revealed the remarkable capacity of the liver to degrade scar in reversing fibrosis, yet we know little of the mechanisms underlying this response. Thus, there is an exigent need to clarify the cellular and molecular mechanisms of fibrosis regression in order for therapeutics to mimic the liver's endogenous capacity. Better refined and more predictive in vitro and animal models will hasten drug development. From a clinical perspective, current diagnostics are improving but not always biologically plausible or sufficiently accurate to supplant biopsy. More urgently, digital pathology methods that leverage machine learning and artificial intelligence must be validated in order to capture more prognostic information from liver biopsies and better quantify the response to therapies. For more refined treatment of NASH, orthogonal approaches that integrate genetic, clinical, and pathological data sets may yield treatments for specific subphenotypes of the disease. Collectively, these and other advances will strengthen and streamline clinical trials and better link histologic responses to clinical outcomes.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Massimo Pinzani
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| |
Collapse
|
8
|
Decharatanachart P, Chaiteerakij R, Tiyarattanachai T, Treeprasertsuk S. Application of artificial intelligence in non-alcoholic fatty liver disease and liver fibrosis: a systematic review and meta-analysis. Therap Adv Gastroenterol 2021; 14:17562848211062807. [PMID: 34987607 PMCID: PMC8721422 DOI: 10.1177/17562848211062807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/02/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The global prevalence of non-alcoholic fatty liver disease (NAFLD) continues to rise. Non-invasive diagnostic modalities including ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy but with limited performance. Artificial intelligence (AI) is currently being integrated with conventional diagnostic methods in the hopes of performance improvements. We aimed to estimate the performance of AI-assisted systems for diagnosing NAFLD, non-alcoholic steatohepatitis (NASH), and liver fibrosis. METHODS A systematic review was performed to identify studies integrating AI in the diagnosis of NAFLD, NASH, and liver fibrosis. Pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and summary receiver operating characteristic curves were calculated. RESULTS Twenty-five studies were included in the systematic review. Meta-analysis of 13 studies showed that AI significantly improved the diagnosis of NAFLD, NASH and liver fibrosis. AI-assisted ultrasonography had excellent performance for diagnosing NAFLD, with a sensitivity, specificity, PPV, NPV of 0.97 (95% confidence interval (CI): 0.91-0.99), 0.98 (95% CI: 0.89-1.00), 0.98 (95% CI: 0.93-1.00), and 0.95 (95% CI: 0.88-0.98), respectively. The performance of AI-assisted ultrasonography was better than AI-assisted clinical data sets for the identification of NAFLD, which provided a sensitivity, specificity, PPV, NPV of 0.75 (95% CI: 0.66-0.82), 0.82 (95% CI: 0.74-0.88), 0.75 (95% CI: 0.60-0.86), and 0.82 (0.74-0.87), respectively. The area under the curves were 0.98 and 0.85 for AI-assisted ultrasonography and AI-assisted clinical data sets, respectively. AI-integrated clinical data sets had a pooled sensitivity, specificity of 0.80 (95%CI: 0.75-0.85), 0.69 (95%CI: 0.53-0.82) for identifying NASH, as well as 0.99-1.00 and 0.76-1.00 for diagnosing liver fibrosis stage F1-F4, respectively. CONCLUSION AI-supported systems provide promising performance improvements for diagnosing NAFLD, NASH, and identifying liver fibrosis among NAFLD patients. Prospective trials with direct comparisons between AI-assisted modalities and conventional methods are warranted before real-world implementation. PROTOCOL REGISTRATION PROSPERO (CRD42021230391).
Collapse
Affiliation(s)
| | | | | | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
9
|
Selvaraj EA, Mózes FE, Jayaswal ANA, Zafarmand MH, Vali Y, Lee JA, Levick CK, Young LAJ, Palaniyappan N, Liu CH, Aithal GP, Romero-Gómez M, Brosnan MJ, Tuthill TA, Anstee QM, Neubauer S, Harrison SA, Bossuyt PM, Pavlides M. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J Hepatol 2021; 75:770-785. [PMID: 33991635 DOI: 10.1016/j.jhep.2021.04.044] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Vibration-controlled transient elastography (VCTE), point shear wave elastography (pSWE), 2-dimensional shear wave elastography (2DSWE), magnetic resonance elastography (MRE), and magnetic resonance imaging (MRI) have been proposed as non-invasive tests for patients with non-alcoholic fatty liver disease (NAFLD). This study evaluated their diagnostic accuracy for liver fibrosis and non-alcoholic steatohepatitis (NASH). METHODS PubMED/MEDLINE, EMBASE and the Cochrane Library were searched for studies examining the diagnostic accuracy of these index tests, against histology as the reference standard, in adult patients with NAFLD. Two authors independently screened and assessed methodological quality of studies and extracted data. Summary estimates of sensitivity, specificity and area under the curve (sAUC) were calculated for fibrosis stages and NASH, using a random effects bivariate logit-normal model. RESULTS We included 82 studies (14,609 patients). Meta-analysis for diagnosing fibrosis stages was possible in 53 VCTE, 11 MRE, 12 pSWE and 4 2DSWE studies, and for diagnosing NASH in 4 MRE studies. sAUC for diagnosis of significant fibrosis were: 0.83 for VCTE, 0.91 for MRE, 0.86 for pSWE and 0.75 for 2DSWE. sAUC for diagnosis of advanced fibrosis were: 0.85 for VCTE, 0.92 for MRE, 0.89 for pSWE and 0.72 for 2DSWE. sAUC for diagnosis of cirrhosis were: 0.89 for VCTE, 0.90 for MRE, 0.90 for pSWE and 0.88 for 2DSWE. MRE had sAUC of 0.83 for diagnosis of NASH. Three (4%) studies reported intention-to-diagnose analyses and 15 (18%) studies reported diagnostic accuracy against pre-specified cut-offs. CONCLUSIONS When elastography index tests are acquired successfully, they have acceptable diagnostic accuracy for advanced fibrosis and cirrhosis. The potential clinical impact of these index tests cannot be assessed fully as intention-to-diagnose analyses and validation of pre-specified thresholds are lacking. LAY SUMMARY Non-invasive tests that measure liver stiffness or use magnetic resonance imaging (MRI) have been suggested as alternatives to liver biopsy for assessing the severity of liver scarring (fibrosis) and fatty inflammation (steatohepatitis) in patients with non-alcoholic fatty liver disease (NAFLD). In this study, we summarise the results of previously published studies on how accurately these non-invasive tests can diagnose liver fibrosis and inflammation, using liver biopsy as the reference. We found that some techniques that measure liver stiffness had a good performance for the diagnosis of severe liver scarring.
Collapse
Affiliation(s)
- Emmanuel Anandraj Selvaraj
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | - Ferenc Emil Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Arjun Narayan Ajmer Jayaswal
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mohammad Hadi Zafarmand
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jenny A Lee
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Christina Kim Levick
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Liam Arnold Joseph Young
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Naaventhan Palaniyappan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Chang-Hai Liu
- UCM Digestive Diseases. Virgen del Rocio University Hospital. Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain; Center for Infectious Diseases, West China Hospital of Sichuan University; Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guruprasad Padur Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Manuel Romero-Gómez
- UCM Digestive Diseases. Virgen del Rocio University Hospital. Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - M Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | | | - Quentin M Anstee
- Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen A Harrison
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Michael Pavlides
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK.
| | | |
Collapse
|
10
|
Alqahtani SA, Schattenberg JM. Nonalcoholic fatty liver disease: use of diagnostic biomarkers and modalities in clinical practice. Expert Rev Mol Diagn 2021; 21:1065-1078. [PMID: 34346799 DOI: 10.1080/14737159.2021.1964958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The global burden of liver disease is increasing, and nonalcoholic fatty liver disease (NAFLD) is among the most common chronic liver diseases in Asia, Europe, North and South America. The field of noninvasive diagnostic and their role in staging, but also predicting outcome is evolving rapidly. There is a high-unmet need to stage patients with NAFLD and to identify the subset of patients at risk of progression to end-stage liver disease. AREAS COVERED The review covers all established diagnostic blood-based and imaging biomarkers to stage and grade NAFLD. Noninvasive surrogate scores are put into perspective of the available evidence and recommended use. The outlook includes genetics, combined algorithms, and artificial intelligence that will allow clinicians to guide and support the management in both early and later disease stages. EXPERT OPINION In the future, these diagnostics tests will help clinicians to establish patient care pathways and support the identification of relevant subgroups for monitoring and pharmacotherapy. In addition, researchers will be guided to better understand available scores and support the development of future prediction systems. These will likely include multiparametric aspects of the disease and machine learning algorithms will refine their use and integration with large datasets.
Collapse
Affiliation(s)
- Saleh A Alqahtani
- Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Division Of Gastroenterology And Hepatology, Johns Hopkins University, Baltimore, USA
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department Of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
11
|
Besutti G, Bonilauri L, Manicardi E, Venturelli F, Bonelli E, Monelli F, Manicardi V, Valenti L, Ligabue G, Schianchi S, Massari M, Riva N, Froio E, Tagliavini E, Pattacini P, Giorgi Rossi P. Feasibility and efficiency of European guidelines for NAFLD assessment in patients with type 2 diabetes: A prospective study. Diabetes Res Clin Pract 2021; 177:108882. [PMID: 34082056 DOI: 10.1016/j.diabres.2021.108882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
AIM We aimed to evaluate the feasibility and efficiency of a guidelines-compliant NAFLD assessment algorithm in patients with newly diagnosed type 2 diabetes (T2D). METHODS Consecutive patients aged < 75 newly diagnosed with T2D without coexisting liver disease or excessive alcohol consumption were enrolled. Patients were stratified based on liver enzymes, fatty liver index, ultrasound, fibrosis scores and liver stiffness measurement. Referral rates and positive predictive values (PPVs) for histological non-alcoholic steatohepatitis (NASH) and significant fibrosis were evaluated. RESULTS Of the 171 enrolled patients (age 59 ± 10.2 years, 42.1% females), 115 (67.3%) were referred to a hepatologist due to abnormal liver enzymes (n = 60) or steatosis plus indeterminate (n = 37) or high NAFLD fibrosis score (n = 18). Liver biopsy was proposed to 30 patients (17.5%), but only 14 accepted, resulting in 12 NASH, one with significant fibrosis. The PPV of hepatological referral was 12/76 (15.8%) for NASH and 1/76 (1.3%) for NASH with significant fibrosis. The PPV of liver biopsy referral was 12/14 (85.7%) for NASH and 1/14 (7.1%) for NASH with significant fibrosis. CONCLUSIONS By applying a guidelines-compliant algorithm, many patients with T2D were referred for hepatological assessment and liver biopsy. Further studies are necessary to refine non-invasive algorithms.
Collapse
Affiliation(s)
- Giulia Besutti
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
| | - Lisa Bonilauri
- Diabetes Clinic, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Manicardi
- Diabetes Clinic, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Efrem Bonelli
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Filippo Monelli
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido Ligabue
- Radiology Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Schianchi
- Internal Medicine Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marco Massari
- Infectious Diseases Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Nicoletta Riva
- Infectious Diseases Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Froio
- Pathology Department, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Tagliavini
- Pathology Department, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pierpaolo Pattacini
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | |
Collapse
|
12
|
Perez-Diaz-del-Campo N, Riezu-Boj JI, Marin-Alejandre BA, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Milagro FI, Tur JA, Abete I, Zulet MA, Martinez JA. Three Different Genetic Risk Scores Based on Fatty Liver Index, Magnetic Resonance Imaging and Lipidomic for a Nutrigenetic Personalized Management of NAFLD: The Fatty Liver in Obesity Study. Diagnostics (Basel) 2021; 11:1083. [PMID: 34199237 PMCID: PMC8231822 DOI: 10.3390/diagnostics11061083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global population. The pathogenesis of NAFLD is complex; available data reveal that genetics and ascribed interactions with environmental factors may play an important role in the development of this morbid condition. The purpose of this investigation was to assess genetic and non-genetic determinants putatively involved in the onset and progression of NAFLD after a 6-month weight loss nutritional treatment. A group of 86 overweight/obese subjects with NAFLD from the Fatty Liver in Obesity (FLiO) study were enrolled and metabolically evaluated at baseline and after 6 months. A pre-designed panel of 95 genetic variants related to obesity and weight loss was applied and analyzed. Three genetic risk scores (GRS) concerning the improvement on hepatic health evaluated by minimally invasive methods such as the fatty liver index (FLI) (GRSFLI), lipidomic-OWLiver®-test (GRSOWL) and magnetic resonance imaging (MRI) (GRSMRI), were derived by adding the risk alleles genotypes. Body composition, liver injury-related markers and dietary intake were also monitored. Overall, 23 SNPs were independently associated with the change in FLI, 16 SNPs with OWLiver®-test and 8 SNPs with MRI, which were specific for every diagnosis tool. After adjusting for gender, age and other related predictors (insulin resistance, inflammatory biomarkers and dietary intake at baseline) the calculated GRSFLI, GRSOWL and GRSMRI were major contributors of the improvement in hepatic status. Thus, fitted linear regression models showed a variance of 53% (adj. R2 = 0.53) in hepatic functionality (FLI), 16% (adj. R2 = 0.16) in lipidomic metabolism (OWLiver®-test) and 34% (adj. R2 = 0.34) in liver fat content (MRI). These results demonstrate that three different genetic scores can be useful for the personalized management of NAFLD, whose treatment must rely on specific dietary recommendations guided by the measurement of specific genetic biomarkers.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-del-Campo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Jose I. Riezu-Boj
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - J. Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Liver Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Research Group on Community Nutrition and Oxidative Stress, Balearic Islands Institute for Health Research (IDISBA), University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Itziar Abete
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - M. Angeles Zulet
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
13
|
Weng J, Wang X, Xu B, Li W. Augmenter of liver regeneration ameliorates ischemia-reperfusion injury in steatotic liver via inhibition of the TLR4/NF-κB pathway. Exp Ther Med 2021; 22:863. [PMID: 34178136 PMCID: PMC8220637 DOI: 10.3892/etm.2021.10295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Hepatocytes from donors with preexisting hepatic steatosis exhibited increased sensitivity to ischemia-reperfusion injury (IRI) during liver transplantation. Augmenter of liver regeneration (ALR) protected the liver against IRI, but the mechanism was not clarified. Therefore, the hypothesis that ALR attenuated IRI in steatotic liver by inhibition of inflammation and downregulation of the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway was examined. C57BL/6 mice were subjected to a methionine-choline-deficient (MCD) diet to induce liver steatosis. Mice were transfected with ALR-containing adenovirus 3 days prior to partial warm hepatic IRI. After 30 min of ischemia and 6 h of reperfusion injury, liver function, hepatic injury, the inflammatory response and TLR4/NF-κB signaling pathway activation were assessed. ALR maintained liver function and alleviated hepatic injury as indicated by the decreased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), preserved hepatic structure and reduced apoptosis. ALR also reduced the IRI-induced inflammatory response by suppressing Kupffer cell activation, inhibiting neutrophil chemotaxis and reducing inflammatory cytokine production. Further investigation using reverse transcription-quantitative PCR, western blotting and immunohistochemistry revealed that ALR reduced TLR4/NF-κB signaling pathway activation, which led to a decreased synthesis of inflammatory cytokines. ALR functioned as a regulator of the IRI-induced inflammatory response by suppressing the TLR4/NF-κB pathway, which supports the use of ALR in therapeutic applications for fatty liver transplantation.
Collapse
Affiliation(s)
- Junhua Weng
- Department of Gastroenterology, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Xin Wang
- Beijing Key Laboratory of Diabetes Research and Care Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Wen Li
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
14
|
Ballestri S, Tana C, Di Girolamo M, Fontana MC, Capitelli M, Lonardo A, Cioni G. Semi-Quantitative Ultrasonographic Evaluation of NAFLD. Curr Pharm Des 2021; 26:3915-3927. [PMID: 32303161 DOI: 10.2174/1381612826666200417142444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) embraces histopathological entities ranging from the relatively benign simple steatosis to the progressive form nonalcoholic steatohepatitis (NASH), which is associated with fibrosis and an increased risk of progression to cirrhosis and hepatocellular carcinoma. NAFLD is the most common liver disease and is associated with extrahepatic comorbidities including a major cardiovascular disease burden. The non-invasive diagnosis of NAFLD and the identification of subjects at risk of progressive liver disease and cardio-metabolic complications are key in implementing personalized treatment schedules and follow-up strategies. In this review, we highlight the potential role of ultrasound semiquantitative scores for detecting and assessing steatosis severity, progression of NAFLD, and cardio-metabolic risk. Ultrasonographic scores of fatty liver severity act as sensors of cardio-metabolic health and may assist in selecting patients to submit to second-line non-invasive imaging techniques and/or liver biopsy.
Collapse
Affiliation(s)
- Stefano Ballestri
- Internal Medicine Unit, Pavullo Hospital, Azienda USL, Modena, Italy
| | - Claudio Tana
- Internal Medicine Unit, Pavullo Hospital, Azienda USL, Modena, Italy
| | - Maria Di Girolamo
- Internal Medicine Unit, Pavullo Hospital, Azienda USL, Modena, Italy
| | | | - Mariano Capitelli
- Internal Medicine Unit, Pavullo Hospital, Azienda USL, Modena, Italy
| | - Amedeo Lonardo
- Internal Medicine Unit, Pavullo Hospital, Azienda USL, Modena, Italy
| | - Giorgio Cioni
- Internal Medicine Unit, Pavullo Hospital, Azienda USL, Modena, Italy
| |
Collapse
|
15
|
Erden A, Kuru Öz D, Peker E, Kul M, Ateş FSÖ, Erden İ, İdilman R. MRI quantification techniques in fatty liver: the diagnostic performance of hepatic T1, T2, and stiffness measurements in relation to the proton density fat fraction. Diagn Interv Radiol 2021; 27:7-14. [PMID: 33290237 PMCID: PMC7837725 DOI: 10.5152/dir.2020.19654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/22/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) can progress to liver cirrhosis and is predicted to become the most frequent indication for liver transplantation in the near future. Noninvasive assessment of NAFLD is important for diagnosis and patient management. This study aims to prospectively determine the liver stiffness and T1 and T2 values in patients with NAFLD and to compare the diagnostic performance of magnetic resonance elastography (MRE) and mapping techniques in relation to the proton density fat fraction (PDFF). METHODS Eighty-three patients with NAFLD and 26 participants with normal livers were imaged with a 1.5 T scanner. PDFF measurements obtained from the multiecho Dixon technique were used to quantify the liver fat. MRE, native T1 mapping (modified Look-Locker inversion recovery [MOLLI] schemes 5(3)3, 3(3)3(3)5, and 3(2)3(2)5 and the B1-corrected variable flip angle [VFA] method), and T2 mapping values were correlated with PDFF. The diagnostic performance of MRE and the mapping techniques were analyzed and compared. RESULTS T1 values measured with the MOLLI schemes and the B1-corrected VFA (P < 0.001), and the stiffness values from MRE (P = 0.047) were significantly higher in the NAFLD group. No significant difference was found between the groups in terms of T2 values (P = 0.127). In differentiation of the NAFLD and control groups, the B1-corrected VFA technique had slightly higher accuracy and area under the curve (AUC) than the MOLLI schemes. In the NAFLD group, there was a good correlation between the PDFF, MOLLI 3(3)3(3)5 and 3(2)3(2)5, and VFA T1 measurements (r=0.732; r=0.735; r=0.716, P < 0.001, respectively). CONCLUSION Liver T1 mapping techniques have the potential to distinguish steatotic from nonsteatotic livers, and T1 values seem to have a strong correlation with the liver fat content.
Collapse
Affiliation(s)
- Ayşe Erden
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| | - Diğdem Kuru Öz
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| | - Elif Peker
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| | - Melahat Kul
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| | - Funda Seher Özalp Ateş
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| | - İlhan Erden
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| | - Ramazan İdilman
- From the Departments of Radiology (A.E., D.K.Ö. , E.P., M.K., İ.E.), Biostatistics (F.S.Ö.A.), and Gastroenterology (R.İ.), Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
Plaikner M, Kremser C, Viveiros A, Zoller H, Henninger B. [Magnetic resonance elastography of the liver : Worth knowing for clinical routine]. Radiologe 2020; 60:966-978. [PMID: 32399783 DOI: 10.1007/s00117-020-00690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is a noninvasive, quantitative, MRI-based method to evaluate liver stiffness. Beside biopsy and ultrasound elastography, this imaging method plays in many places a significant role in the detection and additive characterization of chronic liver disease. OBJECTIVES, MATERIALS AND METHODS Based on the literature, a brief review of the underlying method and the commercially available products is given. Furthermore, the practical procedure, the analysis, and the interpretation of clinically relevant questions are illustrated and a comparison with ultrasound elastography is provided. RESULTS This relative "young" MRI method allows extensive evaluation of mechanical properties of the liver and is an important diagnostic tool especially in follow-up examinations. The MRE of the liver is with a maximum technical failure rate of 5.8% a robust technique with high accuracy and an excellent re-test reliability as well as intra- and interobserver reproducibility. There is a high diagnostic certainty within the framework of most important clinical indications, the quantification of fibrosis, and with a very good correlation with the "gold standard" biopsy. CONCLUSION Based on its rising clinical relevance and the broad usage, MRE of the liver is increasingly used in many centers and in routine liver protocols. Therefore, basic knowledge of this method is essential for every radiologist.
Collapse
Affiliation(s)
- Michaela Plaikner
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich.
| | - Christian Kremser
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - André Viveiros
- Innere Medizin I, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Heinz Zoller
- Innere Medizin I, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Benjamin Henninger
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| |
Collapse
|
17
|
Miele L, Zocco MA, Pizzolante F, De Matthaeis N, Ainora ME, Liguori A, Gasbarrini A, Grieco A, Rapaccini G. Use of imaging techniques for non-invasive assessment in the diagnosis and staging of non-alcoholic fatty liver disease. Metabolism 2020; 112:154355. [PMID: 32916154 DOI: 10.1016/j.metabol.2020.154355] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease and represent a common finding in highly prevalent metabolic disorders (i.e. type 2 diabetes, metabolic syndrome, obesity). Non-alcoholic steatohepatitis (NASH) requires liver biopsy for grading and staging the liver damage by the assessment of steatosis, inflammation and fibrosis. In parallel with the development of numerous 'liquid' biomarkers and algorithms that combine anthropometric and laboratory parameters, innovative hepatic imaging techniques have increasingly been developed to attempt to overcome the need for biopsy, both in diagnosis and staging of NAFLD, and in possible use in the follow-up of the disease. In this review, we focused on the different imaging techniques trying to highlight the strengths and disadvantages of different approaches, particularly for ultrasound techniques, in stratifying liver injury and fibrosis in patients with NAFLD / NASH.
Collapse
Affiliation(s)
- Luca Miele
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy; Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, Roma. Italy.
| | - Maria A Zocco
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy; Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, Roma. Italy
| | - Fabrizio Pizzolante
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy
| | - Nicoletta De Matthaeis
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy
| | - Maria E Ainora
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy
| | - Antonio Liguori
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, Roma. Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy; Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, Roma. Italy
| | - Antonio Grieco
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy; Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, Roma. Italy
| | - Gianludovico Rapaccini
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Roma, Italy; Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, Roma. Italy
| |
Collapse
|
18
|
Li J, Venkatesh SK, Yin M. Advances in Magnetic Resonance Elastography of Liver. Magn Reson Imaging Clin N Am 2020; 28:331-340. [PMID: 32624152 DOI: 10.1016/j.mric.2020.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Magnetic resonance elastography (MRE) is the most accurate noninvasive technique in diagnosing fibrosis and cirrhosis in patients with chronic liver disease (CLD). The accuracy of hepatic MRE in distinguishing the severity of disease has been validated in studies of patients with various CLDs. Advanced hepatic MRE is a reliable, comfortable, and inexpensive alternative to liver biopsy for disease diagnosing, progression monitoring, and clinical decision making in patients with CLDs. This article summarizes current knowledge of the technical advances and innovations in hepatic MRE, and the clinical applications in various hepatic diseases.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | | | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
19
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease in both Western populations and other parts of the world. This review discusses the prevalence and incidence of NAFLD in various regions around the world. The methodology used to identify the epidemiology and classify the stages of the disease is described. The impact of the disease on individuals, looking at both liver-related and extrahepatic consequences of the disease, is then discussed. Finally, the economic and societal impact of the disease is discussed.
Collapse
|
20
|
Benítez C, Arab JP, Barrera F, Banales JM, Arrese M. Integrative Proposal for the Use of Biomarkers in Clinical Practice Management of NAFLD/NASH. NAFLD AND NASH 2020:225-236. [DOI: 10.1007/978-3-030-37173-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Overview of the Pathogenesis, Genetic, and Non-Invasive Clinical, Biochemical, and Scoring Methods in the Assessment of NAFLD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193570. [PMID: 31554274 PMCID: PMC6801903 DOI: 10.3390/ijerph16193570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. It represents a range of disorders, including simple steatosis, nonalcoholic steatohepatitis (NASH), and liver cirrhosis, and its prevalence continues to rise. In some cases, hepatocellular carcinoma (HCC) may develop. The develop;ment of non-invasive diagnostic and screening tools is needed, in order to reduce the frequency of liver biopsies. The most promising methods are those able to exclude advanced fibrosis and quantify steatosis. In this study, new perspective markers for inflammation, oxidative stress, apoptosis, and fibrogenesis; emerging scoring models for detecting hepatic steatosis and fibrosis; and new genetic, epigenetic, and multiomic studies are discussed. As isolated biochemical parameters are not specific or sensitive enough to predict the presence of NASH and fibrosis, there is a tendency to use various markers and combine them into mathematical algorithms. Several predictive models and scoring systems have been developed. Current data suggests that panels of markers (NAFLD fibrosis score, Fib-4 score, BARD score, and others) are useful diagnostic modalities to minimize the number of liver biopsies. The review unveils pathophysiological aspects related to new trends in current non-invasive biochemical, genetic, and scoring methods, and provides insight into their diagnostic accuracies and suitability in clinical practice.
Collapse
|
22
|
Arrese M, Barrera F, Triantafilo N, Arab JP. Concurrent nonalcoholic fatty liver disease and type 2 diabetes: diagnostic and therapeutic considerations. Expert Rev Gastroenterol Hepatol 2019; 13:849-866. [PMID: 31353974 DOI: 10.1080/17474124.2019.1649981] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The relationship between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) is complex and bidirectional. NAFLD increases the risk of incident diabetes and is very prevalent in T2DM patients and T2DM is an aggravating factor for NAFLD. Timely T2DM diagnosis and treatment in subjects with NAFLD and diagnosis, staging and treatment of NAFLD in those with T2DM are critical issues. Areas covered: PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and T2DM between January 2013 and May 2019. Areas covered included epidemiological, diagnostic and therapeutic aspects. Expert opinion: there is a need for increased awareness on NAFLD adding liver disease as an end-organ complication of T2DM. Emphasis on use of simple non-invasive tools to triage patients with potentially severe liver disease should be made. Management of patients with NAFLD and T2DM relies on lifestyle optimization to achieve significant weight loss. Currently, there is no drug approved for treatment of NAFLD in patients with T2DM although Vitamin E and pioglitazone might be used in selected patients. Approved diabetic medications hold promise for NAFLD treatment and several liver-specific drugs are in evaluation clinical trials. A combination approach will likely represent the future of NAFLD therapeutics.
Collapse
Affiliation(s)
- Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Centro de Envejecimiento y Regeneración (CARE) , Santiago , Chile
| | - Francisco Barrera
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Nicolas Triantafilo
- Departamento de Hematologia y oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|